

Delft University of Technology

A non-conservative software-based approach for detecting illegal CFEs caused by
transient faults

Rodrigues, Diego; Nazarian, Ghazaleh; Moreira, Álvaro; Carro, Luigi; Gaydadjiev, Georgi

DOI
10.1109/DFT.2015.7315166
Publication date
2015

Published in
Proceedings of the 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, DFTS 2015

Citation (APA)
Rodrigues, D., Nazarian, G., Moreira, Á., Carro, L., & Gaydadjiev, G. (2015). A non-conservative software-
based approach for detecting illegal CFEs caused by transient faults. In Proceedings of the 2015 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, DFTS 2015
(pp. 221-226). Article 7315166 Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/DFT.2015.7315166
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/DFT.2015.7315166
https://doi.org/10.1109/DFT.2015.7315166

A non-conservative software-based approach for
detecting illegal CFEs caused by transient faults

Diego Rodrigues
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Email: diegogr@inf.ufrgs.br

Ghazaleh Nazarian
Faculty of Electrical Engineering, Mathematics

and Computer Science
Delft University of Technology

Delft, The Netherlands
Email: g.nazarian@tudelft.nl

Álvaro Moreira
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Email: afmoreira@inf.ufrgs.br

Luigi Carro
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Email: carro@inf.ufrgs.br

Georgi Gaydadjiev
Department of Computer Science

and Engineering
Chalmers University of Technology

Gothenburg, Sweden
Email: georgig@chalmers.se

Abstract—Software-based methods for the detection of
control-flow errors caused by transient fault usually consist in
the introduction of protecting instructions both at the beginning
and at the end of basic blocks. These methods are conservative in
nature, in the sense that they assume that all blocks have the same
probability of being the target of control flow errors. Because of
that assumption they can lead to a considerable increase both
in memory and performance overhead during execution time.
In this paper, we propose a static analysis that provide a more
refined information about which basic blocks can be the target
of control-flow-errors caused by single-bit flips. This information
can then be used to guide a program transformation in which only
susceptible blocks have to be protected. We implemented the static
analysis and program transformation in the context of the LLVM
framework and performed an extensive fault injection campaign.
Our experiments show that this less conservative approach can
potentially lead to gains both in memory usage and in execution
time while keeping high fault coverage.

Keywords—Fault tolerance, Reliability, availability, and service-
ability.

I. INTRODUCTION

The rate of transient faults caused by radioactive particles
striking circuits have increased recently. The reasons for this
increase are the advances in the technology, leading to smaller
and denser transistor, combined with lower voltage levels. And
as embedded systems using this more susceptible technology
are becoming widely disseminated, the demand for mitigation
approaches for transient faults has become a concern for
embedded systems developers in general.

However, the costs for developing and deploying highly
effective hardware-based mitigation approaches, such as dual
or triple modular redundancy, are prohibitive. Because of
that, software-based solutions present themselves as viable
alternatives for dealing with transient hardware faults in off-
the-shelf processors.

The problem is that low-cost and effective software-based
mitigation techniques impose, in general, considerable perfor-

mance overheads, making such techniques usually inadequate
for systems that require high performance.

Most of the control-flow error detection methods reported
in the literature instrument programs at compiling time. Based
on the information available in the program’s control-flow
graph (CFG), the compiler first assigns a signature to each
basic block. The extra protecting code, consists basically in
instructions that check the signatures of the basic blocks which
are the origin and the destination of a control-flow. If this flow
of control from one block to another does not exist in the
program’s CFG an illegal control-flow error is detected.

These signature checking techniques detect illegal inter-
block control flow errors and are known to be conservative in
the sense that, due to the strict fault model they assume, they
add protecting instructions for every basic block.

In this paper we propose an effective software-based tech-
nique for the detection of certain control flow errors that
can potentially led to improvements in performance when
compared with similar techniques. With a more relaxed, but
still realistic fault model, we show that not every basic block
need to be instrumented with protecting code.

We achieve that by means of a systematic analysis of the
impact of single bit-flips on the control-flow misbehavior of a
given program that allows the identification of all susceptible
and all non-susceptible basic-blocks of a program, i.e. the basic
blocks which constitute the potential destinations of faulty
transitions, and the basic block that can never be the target
of illegal inter-block control flow error, respectively. We use
the result of this analysis to instrument the targeted program
only at the identified susceptible basic-blocks.

All current CFE detection methods with acceptable fault-
coverage and performance overhead, however, update the
signature incrementally as they introduce set assertions in
all basic blocks. Therefore, omitting set assertions in non-
susceptible basic-blocks will corrupt the signature. For this
purpose, we propose a novel signature monitoring scheme

221978-1-4799-8606-4/15/$31.00 c⃝2015 IEEE

for CFE detection allowing assertions removal in arbitrary
basic-blocks. Our Flexible Control Flow Check (FCFC) has
lower performance overhead and sufficient fault-coverage as
compared to other proposed methods. We present a straight-
forward implementation of FCFC and of our bit-flip analysis
in a technique we call partial FCFC and study its benefits.

We use the x86 processor in our experiments, however, the
proposed approach can be easily applied to any other target,
general purpose, HPC or embedded

The rest of the paper is organized as follows: next section
discusses related work. Section III presents the fault model we
assume. The detailed explanation of our bit-flip analysis and of
FCFC is presented in Section IV. Section V demonstrates the
experimental setup and discusses the results obtained. Finally
we present the conclusions and future work.

II. RELATED WORK

Several software-based methods for CFE detection exist:
ECCA [1], CFCSS [5], YACCA [2], CEDA [7], ACFC [8],
Abstract Control Signatures (ACS) [4] and SWIFT [15]. All
the mentioned methods add extra protecting code to all basic
blocks.

CFE detection methods can be divided into two main
categories: path-asserting and predecessor/successor meth-
ods. A path-asserting method adds test in one basic block
per control-flow path to assert correct path execution.
Predecessor/Successor-asserting methods add tests in all basic
blocks to check if the previous (or next) basic block in the
execution flow is the correct predecessor (or successor).

The difference between the two categories is in the number
of added instructions in the program. Predecessor/Successor
methods add more tests, therefore they have higher overheads
and also potentially higher fault-coverage. Path asserting meth-
ods add less test assertions, have lower overhead but decreased
fault-coverage. CFCSS, ECCA, CEDA, YACCA and CCA
represent predecessor/successor-asserting methods with high
fault coverage and high overhead. ACFC and ACS add one
test assertion per group of basic blocks and are categorized as
path-based methods.

We divide predecessor/ successor methods into two sub-
groups: 1) methods with incremental signatures update; 2)
methods with local signature updates. Incremental signature
update methods require the use of a global signature as input.
This means that the value of the global signature, at each
basic block, depends on all set assertions in the predecessor
basic-blocks along the execution path. Methods for incremental
signature update are CEDA, CFCSS and YACCA. On the other
hand, local signature updates set the signature at the current
basic-block independent of global signature content. ECCA
and CCA are examples of methods with local signature update.

Abstract Control Signatures (ACS) [4] is a path-based
control flow error detection technique that divides the control
flow graph into regions and add only one signature checking
by region. This method is closer to ours in that it also is non-
conservative and is based on the same fault model.

III. FAULT MODEL

The target fault model in our work is bit transitions which
can happen due to events such as crosstalk or radiation. As
investigated in [6], multiple bit transitions cause the same
misbehavior as single bit flips. Therefore, in this work we
consider only single bit transitions.

Control-flow errors may occur due to three main reasons:
1) single bit flip leading to branch creation; 2) single bit flip
leading to branch deletion and 3) single bit flip leading to error
in the address operand of branch instructions

Branch creation may occur if a non-branch instruction
converts to a branch, and branch deletion may happen if a
branch instruction converts to a non-branch instruction (in-
valid instructions are included in this category). However, the
probability of transforming a non-branch opcode to a branch
and vice versa due to a single bit transformation is extremely
low and depends on the opcode coding of the instruction set
architecture.

It is important to note that branch creation may also
happen due to bit-flips in the program counter. However, the
probability of control flow error occurrence due to single bit-
flip in the program counter is relatively low as it is a small
circuitry compared to the rest of processor components.

For all these reasons, in this work, we target only control
flow errors caused by single bit-flips in address operands
of branch instructions. This same fault model has also been
adopted in other recent work on software-based approaches to
control flow error detection [4].

Our fault injection experiments, performed following this
fault model, will consist of the following: at each program
execution, a branch instruction will be selected and a single bit
of its address operand will be flipped. The bit to be flipped in
randomly selected but the selection of the branch instruction is
based on the probability of its execution. Hence, before starting
a fault injection campaign we also collect some statistics about
the probability of each branch instruction to be executed.

Control flow errors are called illegal when the flow of
control is not present in the program’s CFG. When an error in
the control flow leads to a flow of control allowed by the CFG
is it called legal. Illegal control flow errors can be (i) intra-
block, when the source and target of the flow of execution
are the same basic block, (ii) inter-block, when source and
destination are different program basic blocks, or (iii) they
can have as destination areas outside the address space of
the program. When the target of an illegal control flow error
is an area outside of the program address space usually a
segmentation fault is detected by the operating system.

As it is the case with all signature checking mechanisms
in the literature, ours aims at detecting only illegal inter-block
control flow errors.

IV. IDENTIFYING AND PROTECTING SUSCEPTIBLE BASIC
BLOCKS

Figure 1 shows the schematic view of the first stage of
the process for identifying and protecting susceptible basic
blocks. In the first step, (a), the source code is compiled to its
LLVM intermediate representation (LLVM-IR) by the Clang

222 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)

compiler. In the next step, (b), the FCFC transformation is
applied to the LLVM-IR using the infra-structure provided
by LLVM for the implementation of program transformations.
This step generates a LLVM-IR code with all basic blocks
protected with the FCFC technique. In step (c), the LLVM-IR
code is compiled to x86 assembly code by the x86 back end
of the LLVM static compiler. In step (d) the assembly code
is compiled to an executable in x86 architecture by the Clang
compiler.

Fig. 1: Step 1

C
code

Clang
Compiler

LLVM FCFC
transformation

LLVM
static

compiler

Clang
Compiler

(a) (b) (c) (d)

(a) LLVM-IR
(b) LLVM-IR + FCFC all basic blocks protected
(c) x86 program with mnemonic and symbolic addresses, all basic blocks protected
(d) x86 program with all address resolved, all basic blocks protected

(LLVM framework)

Figure 2 shows the schematic view of the second stage of
the process. The inputs for this stage are the x86 assembly
code and also the x86 executable, both corresponding to the
same source program and both with all basic blocks protected.

In step (e), the binary-dump 1 of the x86 executable is
generated. The binary-dump is a text file that contains all
program instructions with the memory addresses of each one
of them.

After, in step (f), the systematic bit-flip analysis is per-
formed having as inputs both the binary dump and the x86
assembly code (the details of this analysis are given in sub-
section B). The result of bit-flip analysis is a list with of all
susceptible basic blocks (SBL).

Fig. 2: Step 2

assembly
code

x86
Program objdump Systematic

bit-flip analysis
(e) (f)

(e) Program dump
(f) Suscetible basic blocks lists (SBL)

Figure 3 shows the third and final stage of the process. The
inputs for this stage are the list of susceptible basic blocks
and the LLVM-IR program. The LLVM-IR program is then
transformed into another LLVM-IR program where only the
susceptible basic blocks are protected (step (g)). In step (h), the
LLVM-IR code is compiled to x86 by Clang, generating a non-
conservative version of the program, that is, a new program
where only the susceptible basic blocks are protected by FCFC.

1This work is done by Linux objdump command

The FCFC technique was chosen because it has the neces-
sary properties for working in conjunction with the systematic
bit flip analysis: a) it performs local signature update, i.e the
update of runtime signature does not depend on the signature
of all basic blocks along the control flow graph, and b) it
does not introduce new basic blocks to the program’s original
control flow graph.

Fig. 3: Step 3

LLVM-IR

SBL LLVM FCFC
transformation

Clang
Compiler

(g) (h)

(LLVM framework)

(g) LLVM-IR+FCFC, only susceptible basic blocks protected
(h) x86 program with all addresses resolved, only susceptible
basic blocks protected

In the next subsection we give a precise definition of
suceptible basic block. In the sequence we provide details
about the systematic bit flip analysis and then we explain how
the non-conservative protection technique is performed as a
program transformation step.

A. Susceptible basic blocks

Figure 4 shows a simple control flow graph with four basic
blocks. In this control flow we may notice that there are four
legal branches, from B1 to B2 and B3, from B2 to B4 and
from B3 to B4.

If a control flow error occurs due to a single bit flip in the
address operand of a branch instruction we have the following
possibilities: we may have a legal (w.r.t the program’s CFG)
but wrong flow of control, or we may have an illegal flow of
control. An illegal control flow can be intra-block, inter-block
or it can have as target an area outside the program’s address
space.

An illegal intra-block branch may happen if a CFE has as
source and target the same basic block. This kind of illegal
branch is not in the scope of control flow error detection
techniques, thus it is also not considered in this work.

An illegal inter-block branch may happen when a control
flow error creates a branch between different basic blocks that
does not exist in the original CFG, for example, between basic
blocks B1 and B4.

Susceptible basic blocks are those that may be the target
of illegal inter-block control flow errors. If we identify all the
susceptible basic blocks we can reduce the overhead added by
CFE detection technique by protecting only susceptible basic
blocks and by avoiding to protect non-susceptible basic blocks.

B. Systematic bit-flip analysis

Assuming as our fault model single bit flips in the address
operands of branch instructions it is possible to generate all

2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) 223

B1

B2 B3

B4

Illegal inter-block branch

Fig. 4: Susceptible basic blocks

potential destination addresses produced by transient faults. It
is important to observe that the proposed scheme considers that
all branch instructions have their target addresses calculated
statically, so all the addresses are know before the program
execution.

To perform the systematic bit-flip analysis the proposed
scheme takes the assembly code and the binary-dump of the
program as input. From the binary-dump we can obtain all
memory addresses used by the basic blocks of the program, all
branch instructions, and all original memory addresses which
are targets of each branch instruction.

All single bit flips are produced and each single bit flip
produces a new address. Considering, for instance, the branch
instruction jmpq 402475 , and considering 24 bits addressing
length (x86), Table I show some possible values that the branch
operand can take if a single bit-flips affects it.

Original Single bit-flip Result
jne,402475 0000 0000 0000 0000 0000 0001 jne, 402474
jne,402475 0000 0000 0000 0000 0000 0010 jne, 402477
jne,402475 0000 0000 0000 0000 0000 0100 jne, 402471
jne,402475 0000 0000 0000 0000 0000 1000 jne, 40247D
jne,402475 0000 0000 0000 0000 0001 0000 jne, 402465
jne,402475 0000 0000 0000 0000 0010 0000 jne, 402455
...
...
jne,402475 0000 0100 0000 0000 0000 0000 jne, 442475
jne,402475 0000 1000 0000 0000 0000 0000 jne, 482475
jne,402475 0001 0000 0000 0000 0000 0000 jne, 502475
jne,402475 0010 0000 0000 0000 0000 0000 jne, 602475
jne,402475 0100 0000 0000 0000 0000 0000 jne, 2475
jne,402475 1000 0000 0000 0000 0000 0000 jne, C02475

TABLE I: Systematic bit-flip analysis

Having produced all possible addresses resulting from
single bit flips in all operands of all branch instructions of
the program, the identification of susceptible basic blocks can
be initiated.

First, all invalid addresses are discarded. Invalid addresses
are addresses to areas outside the program’s address space.
Addresses that can lead to a control flow allowed according to
the program’s CFG are also discarded since they correspond
to legal branches, i.e, branches allowed according to the CFG.
From this set we still remove those addresses pointing to the
same block of the branch instruction that had bit flips affecting
its address operand (these correspond to illegal intra-blocks

control flow errors).

After removing addresses corresponding to invalid and to
legal branches, and also removing addresses corresponding to
illegal but intra-block branches, we are left only with addresses
corresponding to illegal inter-block branches

By identifying which basic blocks occupy these addresses
we are identifying the list of all susceptible basic blocks of
the program (the list SBL of Figure 2).

C. Protecting susceptible basic blocks

Notice that the analysis of which basic blocks need to be
protected was performed having as one of its inputs the x86
executable with all memory addresses resolved. In order to
avoid the misalignment problem, instead of simply removing
protecting instructions of nonsusceptible basic blocks, the
memory address where the protecting instructions were po-
sitioned are replaced by NOP instructions. With this approach
it is possible to remove instructions for detecting CFEs in non-
susceptible basic blocks while maintaining the same alignment
of the original version in the modified version of the program.

Because x86 is a CISC architecture different instructions
have different lengths. Because of that, depending on the type
of instruction, it might have to be replace by several NOP
instructions. For example, a movq instruction takes 12 memory
addresses, so it needs to be replaced by 12 NOPs, because each
NOP takes only one memory address.

As a final optimization the new NOP instructions inserted
at the beginning of basic blocks are moved and positioned after
the branch instruction at the end of the block. By doing so, the
alignment is still preserved, but the chances that these NOPs
instruction are executed are reduced (if they are left at the
entrance of basic blocks they will always be executed when
the flow of control reaches the block).

If these NOP instructions are positioned after an uncondi-
tional branch they will never be executed. If they are placed
after a conditional branch instruction they may or may not be
executed. It will depend on the outcome of the condition of
the branch instruction.

V. EXPERIMENTS

To investigate the coverage and performance a set of
experiments using a subset of representative workload from
Mibench [3] embedded benchmark suite was performed. All
experiments were dome on a machine with one AMD Tu-
rion(tm) II P520 Dual-Core Processor and 4GB memory, using
the Operational System Ubuntu GNU/Linux 12.04 LTS x86-
64.

In order to simulate CFEs in the binaries at runtime and
to evaluate the coverage in fault detection, we implemented a
GDB2-based fault-injector similar to the one used for previous
CFE detection methods evaluation [7]. In these fault injectors
the instruction to be affected by the bit flip is selected statically
and, at runtime, a single bit flip is injected in the chosen
instruction according the fault model presented in Section III.

2The GNU debugger

224 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)

A. Detection coverage

In the first set of experiments, an executable version of
each benchmark with all basics blocks protected with FCFC
(conservative version) was produced. For each benchmark we
injected a thousand faults using the proposed fault injector and
model.

Table II shows the result of this set of experiments. The
second column (S) represents the faults that resulted in Seg-
mentation Fault and were detected by the Operating System.
The third column (I) represents the faults that resulted in Illegal
Instructions, also detected by the Operating System, as well
as the faults of the forth columns (OS), which represents other
kinds of faults less frequent: Sigkill, Sigtrap, Sigfpe, Sigbus.
The fifth column (T) represents the faults that lead the fault
injector to timeout and could not be evaluated. The sixth
column (EC) represents the faults that were not detected by
the Operating System neither by FCFC and resulted in correct
outputs. The seventh columns (EW) represents the faults that
were not detected by the Operating System neither by FCFC
and resulted in wrong outputs. Finally, the last column (D)
represents the faults detected by FCFC.

Benchmark S I OS T EC EW D
basicmath 70,5% 14,6% 1,6% 0,0% 2,0% 3,0% 8,3%
CRC 76,7% 9,3% 0,0% 0,0% 0,0% 2,2% 11,8%
dijkstra 79,2% 7,2% 2,2% 0,0% 4,0% 0,0% 7,4%
FFT 78,8% 7,2% 0,1% 0,0% 1,3% 5,7% 6,9%
patricia 73,8% 9,3% 0,1% 0,1% 6,4% 1,0% 9,3%
pbmsrch 76,3% 8,6% 0,1% 0,0% 4,2% 0,2% 10,6%
qsort 74,5% 9,4% 0,0% 0,0% 3,7% 2,7% 9,7%
rijndael 74,0% 9,1% 1,4% 0,0% 4,2% 2,8% 8,5%

TABLE II: FCFC: conservative version

In the second set of experiments we first generated the
list of susceptible basic blocs for each benchmark. Table III
shows the total number of basic blocks of each benchmark,
the number of susceptible basic blocks, and the percentage of
non-susceptible basic blocks.

Benchmark Basic blocks
Total Susceptible % not susceptible

basicmath 63 62 1,59%
CRC 20 16 20,00%
dijkstra 60 56 6,67%
FFT 93 88 5,38%
patricia 179 136 24,02%
pbmsrch 34 34 0,0%
qsort 19 17 10,53%
rijndael 186 172 7,53%

TABLE III: Susceptible basic blocks

With the list of susceptible basic blocks, an executable
version for each benchmark, with only susceptible basic blocks
protected, was generated. Again, for each benchmark, one
thousand faults were injected using the proposed fault injector
and model. The faults injected were exactly the same that
were injected in the previous experiment. We did that in order
to better compare the coverage results obtained with both
experiments.

In the third set of experiments, the versions generated in
step two had their branches instructions changed and a new

Benchmark S I OS T EC EW D
basicmath 70,5% 14,5% 1,6% 0,0% 2,2% 3,0% 8,2%
CRC 76,7% 9,3% 0,0% 0,0% 0,0% 2,2% 11,8%
dijkstra 79,2% 7,2% 2,2% 0,0% 4,2% 0,0% 7,2%
FFT 78,8% 7,2% 0,1% 0,0% 1,3% 5,7% 6,9%
patricia 73,8% 9,3% 0,1% 0,1% 6,4% 0,9% 9,4%
pbmsrch 76,3% 8,6% 0,1% 0,0% 4,2% 0,2% 10,6%
qsort 74,5% 9,4% 0,0% 0,0% 3,7% 2,7% 9,7%
rijndael 74,0% 9,1% 0,0% 1,4% 4,2% 2,8% 8,5%

TABLE IV: FCFC: Non-conservative version

version of each benchmark was generated (NOPs inverted). For
each benchmark one thousand of faults were injected using the
proposed fault injector and model and again using the same
faults used to simulate the errors in binaries of Table II and
Table IV. Table V shows the result coverage of this set of
experiments.

Benchmark S I OS T EC EW D
basicmath 70,5% 14,6% 1,6% 0,0% 2,1% 3,0% 8,2%
crc 76,7% 9,3% 0,0% 0,0% 0,0% 2,2% 11,8%
dijkstra 79,2% 7,2% 2,2% 0,0% 4,2% 0,0% 7,2%
FFT 79,1% 6,9% 0,1% 0,0% 1,3% 5,7% 6,9%
patricia 73,8% 9,3% 0,1% 0,1% 6,4% 0,9% 9,4%
pbmsrch 76,3% 8,6% 0,1% 0,0% 4,2% 0,2% 10,6%
qsort 74,5% 9,4% 0,0% 0,0% 3,7% 2,7% 9,7%
rijndael 74,0% 9,1% 1,4% 0,0% 4,2% 2,8% 8,5%

TABLE V: FCFC: NOPs inverted

As we can see in the comparative chart of Figure 5, the
data converge between the FCFC conservative, FCFC non-
conservative and FCFC with NOPs inverted are almost the
same.

basicmath CRC dijkstra FFT patricia pbmsrch qsort rijndael
0

2

4

6

8

10

12

(%
)

FCFC (conservative) FCFC (non-conservative) FCFC (NOPs inverted)

Fig. 5: Comparing FCFC with all basic blocks protected and
with only basic blocks protected and branchs changed

B. Performance

To evaluate the performance gain between the different
versions of FCFC we have decided not to count the time
that each benchmark took to execute. Instead, we decided to
count the number of instructions that each version of each
benchmark has executed. With the program tracer it is possible
to count the number of instructions executed eliminating any
time inaccuracy caused by the underline operating system.

Table VI shows the number of instructions executed by
each benchmark in FCFC conservative version. Table VII

2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) 225

shows the number of instructions executed by each benchmark
in FCFC non-conservative version.

Benchmark Instruction Executed
basicmath 7,422,666
CRC 54,754,761
dijkstra 192,411,876
FFT 7,661,798
patricia 16,667,614
pbmsrch 542,441
qsort 6,854,311
rijndael 47,002,968

TABLE VI: Performance: FCFC conservative

Benchmark Instruction executed NOPs executed
basicmath 7,497,816 87,174
CRC 54,754,798 43
dijkstra 304,335,026 130,072,850
FFT 7,661,798 0
patricia 16,758,042 105,092
pbmsrch 542,441 0
qsort 11,310,369 5,178,662
rijndael 48,445,256 1,676,173

TABLE VII: Performance: FCFC non-conservative

Table VIII shows the number of instructions executed by
each benchmark in FCFC with NOPs inverted. Comparing with
Table VII, we may notice a gain in terms of NOPs instructions
not executed. The gain ranged from 0,006420% (basicmath) to
72,091302% (rijndael). In terms of total number of instructions
the gain ranged from 0,000135% (CRC) to 34,447616% (qsort)

Benchmark Instruction executed NOPs executed
basicmath 7,497,753 87,111
CRC 54,754,755 0
dijkstra 303,406,576 129,144,400
FFT 7,661,798 0
patricia 16,744,092 91,142
pbmsrch 542,441 0
qsort 8,763,264 2,631,557
rijndael 47,236,876 467,793

TABLE VIII: Performance: FCFC NOPs inverted

As we can see the number of instructions between the
conservative and non-conservative version have increased. It
happened because in our CISC environment one instruction
needs to be replaced by many NOPs, for example, a movq
instruction takes 12 memory addresses, so it needs to be
replaced by 12 NOPs. In a RISC environment, like MIPS,
SPARC, PowerPC or ARM, where all instructions have the
same length the number of instructions executed would not in-
crease. Moreover, instead of executing a complex instructions
(mov, xor, etc.) we would execute a simple and faster NOP
instruction. As consequence the time and power consumption
of the program would be reduced.

If the experiments were ran in a RISC environment the
number of NOPs would be much smaller, as show in Table
IX. This table shows a simulation of replacing instructions by

NOPs in a RISC environment, where each instruction would be
replaced by a single NOP. The second column shows the total
number of instruction executed by the conservative version.
The third column show the number of NOPs executed by
the non-conservative version and the fourth column show the
number of NOPs executed in the version with NOPs inverted.
As it is possible to notice, the number of NOPs executed is
smaller than those shown in the tables VII and VIII.

Benchmark Instructions Executed
Conservative

NOPs executed
Non-Conservative

NOPs executed
Change NOPs

basicmath 7,422,666 12,024 12,014
CRC 54,754,761 6 0
dijkstra 192,411,876 18,149,700 17,999,950
FFT 7,661,798 0 0
patricia 16,667,614 14,664 12,414
pbmsrch 542,441 0 0
qsort 6,854,311 722,604 426,429
rijndael 47,002,968 233,885 38,985

TABLE IX: Prevision of FCFC in a RISC environment

VI. CONCLUSION

In this paper, we presented a non-conservative software-
based method for detecting certain control-flow errors caused
by transient faults. The method is non-conservative in the sense
that not all basic blocks need to be protected. Only susceptible
basic blocks have to be instrumented with protecting code.

In terms of fault coverage, the technique proved quite
successful since it kept the same coverage rate observed in
the version of programs with all basic blocks protected.

In terms of performance improvement, we argued that
it is possible to obtain considerable gains if we target a
RISC architecture instead of a CISC such as x86 used in our
experiments.

REFERENCES

[1] Z. Alkhalifa, V. S. S. Nair, N. Krishnamurthy, and J. A. Abraham.
Design and evaluation of system-level checks for on-line control flow
error detection. IEEE Transactions on Parallel and Distributed Systems,
10(6), June 1999.

[2] O. Goloubeva, M. Rebaudengo, M. Reorda, and M. Violante. Soft-error
detection using control flow assertions. In IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, pages 581–588, 2003.

[3] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. Mibench: A free, commercially representative em-
bedded benchmark suite. In IEEE International Workshop on Workload
Characterization, pages 3–14, 2001.

[4] D. S. Khudia and S. Mahlke. Low cost control flow protection using
abstract control signatures. In ACM Conference on Languages, Compilers
and Tools for Embedded Systems, LCTES’13, pages 3–12, 2013.

[5] N. Oh, P. Shirvani, and E. McCluskey. Error detection by duplicated
instructions in super-scalar processors. IEEE Transactions on Reliability,
51(1):63–75, March 2002.

[6] B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson. A study
of the impact of bit-flip errors on programs compiled with different
optimization levels. In European Dependable Computing Conference,
pages 146–157, 2014.

[7] R. Vemu and J. Abraham. Ceda: Control-flow error detection using
assertions. IEEE Transactions on Computers, 60(9):1233–1245, Sept
2011.

[8] R. Venkatasubramanian, J. Hayes, and B. Murray. Low-cost on-line fault
detection using control flow assertions. In On-Line Testing Symposium,
IOLTS, pages 137–143, 2003.

226 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)

