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Abstract—Neural Networks are currently one of the most
widely deployed machine learning algorithms. In particular,
Convolutional Neural Networks (CNNs), are gaining popularity
and are evaluated for deployment in safety critical applications
such as self driving vehicles. Modern CNNs feature enormous
memory bandwidth and high computational needs, challenging
existing hardware platforms to meet throughput, latency and
power requirements. Functional safety and error tolerance need
to be considered as additional requirement in safety critical
systems. In general, fault tolerant operation can be achieved by
adding redundancy to the system, which is further exacerbating
the computational demands. Furthermore, the question arises
whether pruning and quantization methods for performance
scaling turn out to be counterproductive with regards to fail
safety requirements. In this work we present a methodology
to evaluate the impact of permanent faults affecting Quantized
Neural Networks (QNNs) and how to effectively decrease their
effects in hardware accelerators. We use FPGA-based hardware
accelerated error injection, in order to enable the fast evaluation.
A detailed analysis is presented showing that QNNs containing
convolutional layers are by far not as robust to faults as
commonly believed and can lead to accuracy drops of up to
10%. To circumvent that, we propose two different methods to
increase their robustness: 1) selective channel replication which
adds significantly less redundancy than used by the common
triple modular redundancy and 2) a fault-aware scheduling of
processing elements for folded implementations.

Index Terms—neural networks, safety, automotive, FPGA,
quantized neural networks

I. INTRODUCTION

In order to use an electronic device in a safety critical

application, its dependability must be evaluated, usually com-

posed of reliability, availability, maintainability and safety

(RAMS). The functional safety analysis and its evaluation is

regulated by standards depending on the application domain

(e.g., IEC-61508 for industrial systems, ISO-26262 for road

vehicles and EN 50126/8/9 for rail transport), with safety

levels proportional to the criticality of the application. Failure

modes, effects, and diagnostic analysis (FMEDA) [1] have to

be evaluated for each of the components of a design in order

to model the system’s safety features.

Within machine learning, deep learning and especially

CNNs have recently gained major visibility due to their

high accuracy in many computer vision tasks. Nonetheless,

their algorithm complexity is associated with enormous com-

pute and memory requirements. Significant efforts have been

made, tackling the inherent redundancy of neural networks

by means of weights and synapse pruning, using less inten-

sive layers (depth-wise separable convolution [2]) and non-

arithmetic layers (e.g., ShiftNet [3]) or applying parameter

quantization [4]. Many of those techniques require ad-hoc

hardware back-ends to fully exploit the optimization strategies,

making programmable devices like Field Programmable Gate

Arrays (FPGAs) and Adaptive Compute Acceleration Plat-

forms (ACAPs) very interesting implementation targets due

to their reconfigurability and flexibility. Additionally, the pro-

grammability of FPGAs enables hardware architecture changes

to customize the application demands, making those devices

appealing for safe implementations of hardware accelerators.

The need for dependable electronic systems in safety critical

applications has led to the need for fast, reliable and affordable

methodologies to assess and measure safety. In this paper

we present hardware accelerated error injection for quantized

neural networks. The main contributions of this paper are:

• High confidence, bit-accurate and high-speed error injec-

tion by means of FPGA implementations;

• Two orthogonal methodologies for deriving optimized

hardware implementations for guaranteed worst-case ac-

curacy drops in case of single errors.

II. RELATED WORK

Multiple recent works are trying to assess the safety of

neural networks, especially targeting autonomous driving sys-

tems [5]. To evaluate the safety level, fault or error injection

can be used to get precise diagnostic coverage data but

requires much more power in terms of computation, usually

resorting to software simulation or hardware emulation. In

order to overcome this problem, Bosio et al. [6] proposed the

adoption of statistical permanent fault injection to decrease

the computational needs, at the expense of confidence in

the measured diagnostic coverage. Gehr et al. [7] rely on

abstract interpretation to model neural network layers, in order

to perform error injection at higher abstraction levels, thus

decreasing the simulation time. In [8], a framework for bit-

level error injection in the memory subsystem in Keras is

presented, showing a 12% difference in resilience analysis978-1-5386-8398-9/18$31.00 ©2019 IEEE
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with respect to an hardware implementation for a multi-layer

perceptron. Multiple works are targeting soft-errors only, either

by performing software emulation [9] or by mean of neutron

beam testing [10], proving some inherent resilience of neural

networks. Even when heavily quantized, CNNs still provide

some built-in fault tolerance, as shown by Nunez-Yanez et

al. [11] while the system is stressed under Dynamic Voltage

Scaling (DVS) and Dynamic Frequency Scaling (DFS).

III. BACKGROUND

A. Neural Network Acceleration and Scheduling

CNNs are usually composed of a sequence of layers, each

with its characteristics in terms of feature map sizes, channels

and filters. We refer the readers to [12]–[14] for an exhaustive

list of CNN accelerators targeting programmable logic. In this

paper, we adopted the QNNs accelerator, code-named FINN,

and described in [15], [16] which are publicly available at [17].

CNN hardware accelerators consist in general of an array of

Processing Elements (PEs) on which layers or portion of layers

are scheduled to be executed in sequence, with the network

parameters either residing on-chip or in external memory.

Whenever a single PE is faulty, it is thus going to affect

multiple outputs both within the layer or among layers. The

portion of the network affected by the corrupted PE depends

on the scheduling of the neural network. For FINN, due to the

data flow structure instantiating one compute block per layer

(with multiple PEs per compute block) a single faulty PE will

affect results of a single layer. This is visualized in Figure 1,

which shows a case in which 3 PEs are instantiated to compute

6 output channels of a layer. The ratio between channels and

PEs gives the number of clock cycles required for computing

an output pixel and is defined as the folding factor f , in this

case f = 6/3 = 2.

B. Error Injection Model

In general, QNNs are using potentially different precisions

for their weights W and activations A, denoted in the fol-

lowing as WwAa, where w and a are the respective bit

widths. Depending on the activation precision, neurons can

attain different activation stages which we are injecting. The

evaluated networks are thereby all using symmetric activations

around zero. Thus, assuming a ternary activations network

(i.e., a = 2), activations can have a value out of {-1, 0, 1},

which is equal to the possible stuck-at errors in our error

injection context using this precision. When setting neurons

in the network to stuck-at values, we are thus always injecting

a bits at once.

IV. ERROR INJECTION METHODOLOGY

The adopted implementation of the FINN [15] compute

data path, as an example of a typical CNN compute fabric, is

based on data flow implementations of all the neural network

layers. Each layer is built upon a Matrix-Vector Threshold Unit

(MVTU) performing the computation. The MVTU consists

of an array of multiply and accumulate engines performing

the matrix-vector multiplication, and a thresholding block.

This is shown in Figure 2. The thresholding block performs

a comparison between the accumulation results and a set

of thresholds, which are computed at design time by fusing

biases, batch-normalization and activation quantization [15].

Since batch-normalization and biases, as resulted from train-

ing, are different for each OFM channel, a different set of

thresholds has to be computed for each channel. In detail,

the activation within an MVTU is performed by accumulating

the results of
∑N

i=1(val > thi), where val is the result of

the matrix-vector accumulation operation and thi is each of

the computed thresholds. Assuming a fully binarized network

(W1A1), it is possible to inject stuck-at 1 (s@1) and stuck-

at -1 (s@-1) errors by setting those threshold values during

run-time. We refer as s@-1 for BNN since -1 is the logical

value of 0 in a BNN. A s@-1 can be implemented by fixing

the th to thmax where thmax is a value which is bigger than

any input can reach. Thus, the activation is never performed.

Similarly, s@1 can be implemented by fixing the th to −thmax.

The accumulation will always be greater than the regarding

threshold. In case of multiple bit output, it is possible to fix

the result activation to any possible value by fixing as many

thresholds as needed to −thmax and the others to thmax.

In all of the following analysis experiments, we decided to

use the overall accuracy of the neural network as a figure

of merit, measured by running inference on the complete

testset (10,000 images, as used during training to validate

accuracy) in the error-injected system. We are evaluating

two different topologies, namely CNV (trained on CIFAR-10)

and LFC (trained on MNIST), as introduced in FINN [15].

The networks are implemented with different precisions for

weights activations to analyze accuracy and error tolerance

with the precision. LFC is a multi-layer perceptron (MLP)

with 3 fully connected layers while CNV is a CNN with

6 convolutional layers, 3 max pooling layers and 3 fully

connected layers.

As shown in [18], neuron error (stuck-at) is one of the

common error models for feed-forward artificial neural net-

works. This model perfectly applies to fully connected layers,

in which a single error will effect a single output pixel,

being the output a single dimensional feature map. Expanding

on the concept to CNNs, a neuron stuck-at will affect a

complete output channel of a layer. We refer to error injection

instead of fault injection since we fix the activations of a

whole output channel to one of the possible activations values.
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This means that, for multi-bit activations, multiple faults are

actually injected.

V. GENERIC MODEL OPTIMIZATION

A. Analysis of Stuck-At Errors

The goal of the generic model analysis is to evaluate the

tolerance of the neural network itself, without considering

the actual specifics of a given hardware architecture and the

associated compute schedule of the layers and channels.

As explained in Section IV, we run experiments and eval-

uate accuracy when a complete output feature map (OFMap)

channel (ofm chan) of a layer is stuck-at a fixed value, as

shown in Figure 2. For each output channel a set of thresholds

is evaluated. In order to perform error injection on a complete

channel, it is sufficient to fix the related threshold values as

explained in Section IV.

Tables I and II list the results of the injection campaign per-

formed on LFC and CNV, respectively, at multiple precisions.

For each network precision, we list the minimum accuracy

achieved with one of the channel stuck-at experiments, as well

as the maximum among all channels. For the fully binarized

neural network, as shown in the first row of both tables, we

report results of injection of s@−1 and s@1 having a binary

representation of 0 and 1, respectively. When a higher bitwidth

is used for activations, as in W1A2 and W2A2, we perform

injection for each of the possible values of the activation. In

the 2-bit activation case (actually ternary due to symmetric

quantization) we inject the values −1, 0 and +1, having a

binary representations of 11, 00 and 01, respectively.

From the LFC results in Table I, the overall accuracy is only

slightly impacted, for all tested precisions, showing a worst-

case accuracy drop of only 0.09 % in the W2A2 case for

s@−1. This is mainly due to the fact that only fully connected

layers are used which are inherently very redundant and able

to easily tolerate a single neuron generating error results.

The situation changes significantly when the network con-

tains convolutional layers like for CNV as shown in Table II.

For the W1A1 case, accuracy will drop by 6.21% when

channel 23 of layer 1 is s@1 leading to an overall worst-case

TABLE I
WHOLE CHANNEL STUCK-AT EFFECTS ON LFC-W1A1, LFC-W1A2 AND

LFC-W2A2 NETWORKS (TRAINED ON MNIST)

Accuracy in %

Net Err. single s@−1 single s@0 single s@1

free min max min max min max

W1A1 98.40 98.33 98.46 – – 98.33 98.45
W1A2 98.49 98.44 98.55 98.45 98.54 98.43 98.55
W2A2 98.53 98.44 98.57 98.46 98.55 98.46 98.55

TABLE II
WHOLE CHANNEL STUCK-AT EFFECTS ON CNV-W1A1, CNV-W1A2 AND

CNV-W2A2 NETWORKS (TRAINED ON CIFAR-10)

Accuracy in %

Net Err. single s@−1 single s@0 single s@1

free min max min max min max

W1A1 79.22 75.30 79.76 – – 73.01 79.69
W1A2 82.66 73.81 83.24 79.91 83.18 71.85 83.11
W2A2 84.29 74.80 84.68 82.44 84.69 74.18 84.76

accuracy (min column) of 73.01%. Here, a single channel can

be identified that has a significant effect to the overall accuracy

of the system. Even higher accuracy drops can be noticed at

higher precisions. As expected, the higher the precision, the

more accurate is the error free network. On the other hand,

CNV-W1A2 shows a worst-case accuracy drop of 10.81% in

layer 2, with an accuracy of 71.85% which is even lower

than the worst-case for W1A1 (73.01%). This higher drop can

be explained by the fact that, virtually, the error injection of

s@−1 consists of 2 concurrent faults in the coding at bit level.

However, increasing the weight precision to 2 bits instead

achieves, as expected, a slightly better worst-case accuracy

of 74.18% (drop of 10.11%) compared to CNV-W1A2.

Interestingly, in each network it is possible to identify

complete channels which, when fixed to a certain value,

actually show higher accuracy (max column) than the baseline.

As an example, fixing the output channel 2 of layer 0 to value

1 in the W1A1 case would increase the overall accuracy of the

network by 0.54%. This shows that, despite the quantization,

the neural network still contains redundancy, maybe due to

overfitting or limitations in training. Channel pruning could

be applied to those neural networks without loss in accuracy

and without the need of retraining but this is out of the scope

of this paper.

It can be concluded that QNNs containing convolutional

layers are by far not as robust to faults as commonly believed.

A single neuron stuck-at at the wrong place can cause accuracy

drops of up to 10% which may not be tolerable in a safety

critical application.

B. Robustness Optimization by Selective Channel Replication

In safety critical applications, fault-tolerant systems rely

on the addition of redundancy, e.g., using Triple Modular

Redundancy (TMR) to achieve the desired safety integrity



TABLE III
NUMBER OF CHANNELS TO BE TRIPLICATED AND OPERATION OVERHEAD IN ORDER TO ACHIEVE A CERTAIN WORST-CASE ACCURACY DROP

CNV-W1A1 CNV-W1A2 CNV-W2A2 CNV-W4A4

layer type channels ≥ 0.5% ≥ 1% ≥ 2% ≥ 0.5% ≥ 1% ≥ 2% ≥ 0.5% ≥ 1% ≥ 2% ≥ 0.5% ≥ 1% ≥ 2%

#
ch

an
n
el

s
to

tr
ip

. 0 conv 64 17 7 2 12 8 1 19 10 3 5 0 0
1 conv 64 63 51 24 64 59 38 64 61 38 62 57 33
2 conv 128 106 80 35 121 109 71 120 106 73 114 96 67
3 conv 128 113 75 9 125 116 82 124 115 80 123 116 93
4 conv 256 87 8 0 168 58 3 142 36 1 160 37 3
5 fc 256 0 0 0 0 0 0 0 0 0 0 0 0
6 fc 512 0 0 0 0 0 0 0 0 0 0 0 0
7 fc 512 0 0 0 0 0 0 0 0 0 0 0 0

ops overhead when trip.
req. ch. [%]

173.47 129.70 49.87 186.24 167.65 109.49 185.24 168.86 109.36 179.63 159.60 104.96

level. Clearly, TMR adds an overhead of 200%. To avoid

this, we propose selective channel replication as a method

to increase the error tolerance by triplicating only the critical

channels. This is performed by first identifying the channels of

the neural network that cause accuracy drops which are below

a certain threshold. Next, only those channels are replicated

using TMR.

Table III lists, for multiple network precision bit widths,

how many channels, when affected by a channel s@, would

incur a worst-case accuracy drop of more than 0.5%, 1% or 2%

in presence of a single error. The last row shows the percentage

of operational overhead (counted in number of multiply and

accumulation operations) in case of triplicating the channels

which would ensure a worst-case accuracy drop that is lower

or equal to the given thresholds. As it can be noticed, the

lower the tolerated worst-case drop, the higher the amount of

overhead, but in all cases the overhead is always smaller than

the 200% given for a full implementation of TMR. Giving

the results of the error injection, it is possible to evaluate how

many channels need TMR in order to achieve a desired single-

error worst-case accuracy, leading to minimal increase in the

total number of operations.

C. Cost Analysis of Selective Channel Replication

In this section, we analyze the trade-off between accuracy

and hardware cost across a spectrum of precisions. For this,

we adopted the hardware cost model for High-Level Synthesis

designs for MAC blocks, as explained in [16], using the

formula 1.6 · w · a, where w and a are, again, the bit widths

for weights and activations, respectively. The resulting design

space is shown in Figure 3. For each precision, the relationship

between the hardware cost and the worst-case error rate in

presence of a single error is shown. The optimal compromises

in the design space will be located on the Pareto frontier.

Interestingly, each one of the precisions in the CNV net-

works on CIFAR-10 have entry points into the Pareto optimal

curve. If the tolerated worst-case error rate is higher than

21.8%, the completely binarized solution is the optimal solu-

tion. However, when more channels in the binarized network

require triplication to achieve the desired worst-case error rate,

then the network with 2 activation bits becomes optimal. As

expected, for high worst-case accuracy requirements, the so-

109 1010

15

20

25

Hardware Cost [LUT]

1
0
0

-
A

cc
u
ra

cy
[%

]

W1A1 W1A2 W2A2 W4A4 Pareto optimal

Fig. 3. Pareto frontier of single error-tolerant worst-case test error vs.
hardware cost

lutions with higher precision for both weights and activations

provide the best (and only) solution.

VI. HARDWARE-SPECIFIC OPTIMIZATION

Section V showed results of error injection and analyzed the

cost of selective triplication. The study was based on the as-

sumption that the neural network accelerator uses parallelism

enabling a permanent fault in a PE to affect only a limited

portion of a single channel in a single layer. Nonetheless, in an

overlay architecture, it is more likely that a portion of the same

layer or multiple layers are physically executed on the same

PE. Thus, the presence of a single fault in that PE would affect

multiple aspects of the complete neural network, depending

on the actual scheduling of the neural network on the array of

PEs. In this section, we try to explore the effects of a single

defective PE evaluating multiple portions of a layer as shown

in Figure 1, first by analyzing the scheduling proposed in [15].

A. Analysis of Stuck-At Errors

In the default schedule of FINN [15], consecutive channels

are computed by consecutive PEs. Channel c is computed

in PE = c mod #PE. In case of a folding factor f =
#Channels/#PEs = 2, with 64 channels and 32 PEs, the first

PE will compute channel 0 and channel 32, while the second
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PE will compute channels 1 and 33 (and so on). Figure 4

shows the accuracy whenever one PE is s@0 in layer 0 of the

CNV-W1A1 network and assuming different folding factors

for scheduling, listing both the average accuracy among all

faulty PEs as well as the difference between the maximum and

minimum achieved accuracy. As expected, when increasing

the folding factor (decreasing the number of PEs) the average

accuracy drop increases as a larger portion of the layer result

being corrupt by the faulty PE. Furthermore, the accuracy drop

depends on which specific channels are executed on the faulty

PE, making the worst-case accuracy results being schedule-

dependent. It is possible to minimize overall accuracy drop

by finding and using the optimal scheduling of channels for a

given number of PEs through this analysis as will be analyzed

in greater detail below.

B. Robustness Optimization by Scheduling

As explained above, it is necessary to analyze the effects

when combinations of output channels are faulty. To illustrate

this, Figure 5 shows the achieved accuracy when one PE for

two output channels (folding factor f = 2) is s@0, here

evaluated for layer 0 of CNV-W1A1. For each combination

of two channels, which are assumed to be executed on the

same PE, the resulting accuracy in case of a single faulty

PE is presented, having the first channel on the abscissa and

the second channel on the ordinate. The worst-case accuracy

in case of a single faulty PE with the default scheduling is

74.82%, indicated with ⋄ in Figure 5. That would be the case

if PE30 computing channels 30 and 62 is s@0. By analyzing

the complete 2-D space in Figure 5, it is possible to identify

that mapping the calculation of channels 24 and 38 onto the

same PE would lead to the even worse single-error accuracy

of only 66.86%.

As it is possible to simply reorder the channels, this allows

to optimize the schedule for higher error-tolerance. To be

more precise, it is possible to find the optimal scheduling for

providing the most error-tolerant behaviour towards single cor-
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Fig. 5. Analysis of different mappings of the computations of two channels
to one faulty PE in layer 0 using a folding factor of 2 (32 PEs, 64 channels).

rupt PEs. For that, the following Integer Linear Programming

(ILP) model was used to find the schedule that maximizes the

accuracy, which is explained in the following:

maximize minacc

subject to

C1:

N−1
∑

j=0,j 6=i

smin(i,j),max(i,j) = 1

∀ i = 0 . . .N − 1

C2: (1− sij)Macc + si,jEi,j ≥ minacc

∀ i = 0 . . .N − 1, j = 0 . . . i− 1

minacc ∈ R, si,j ∈ {0, 1}

The formulation considers a single corrupt PE using the data

from the combined error injection analysis and maximizes the

minimal accuracy minacc when a PE is corrupt. For that, the

Boolean variable si,j is used, which is one, when channel

i and j out of N channels are scheduled on the same PE.

As si,j is equal to sj,i per definition, we define i < j to

avoid redundancy and to achieve a less complex formulation.

Now, any channel i can be scheduled onto a PE with any

other channel j 6= i, but every channel can only be scheduled

once. This is realized by constraint C1. Here min(i, j) and

max(i, j) are used to achieve i < j. Constraint C2 formulates

the minimal accuracy for the scheduling. The constant Ei,j

is the accuracy, when channel i and j are scheduled on

the same PE and that PE is defect. Macc is the highest

accuracy the network can achieve when a PE in the layer is

corrupt. When the variable si,j is zero, C2 is fulfilled because

Macc ≥ minacc. When si,j is one, which means that channel i
and j are scheduled on the same PE, the constraint becomes

Eij ≥ minacc which prevents minacc from getting lower than

possible. Note that Ei,j and Macc are the number of correct

classifications of the evaluation set with 10.000 images. If we

want to maximize the accuracy for s@0 and s@1 together, we

can set Ei,j to min(E0
i,j , E

1
i,j), where E0

i,j and E1
i,j are the



s@0 and s@1 accuracies, respectively. The given formulation

is for a folding factor of 2 but can easily be adopted for higher

folding factors.

The resulting mapping of channels to PEs of the optimal

schedule are marked with a ⋆ in Figure 5, while the default

schedule is marked with a ⋄. The optimal schedule achieves

a worst-case accuracy of 76.70%, which is an increase of

1.88% with respect to the default scheduling. Reordering the

scheduling of channels just means rearranging the weights of

the network and comes at no additional hardware overhead,

making it an appealing solution. Nonetheless, there is no easy

way to estimate the accuracy for each combination of channels

mapped on a faulty PE.

The analysis relies on time consuming error injection cam-

paigns, in which each possible combination of channels is s@

each possible value. The number of experiments also heavily

increases with the number of channels c and folding factor f :

#experiments =

(

c

f

)

=
c!

f ! · (c− f)!

For example, with f = 4 and c = 64, 635,276 experiments are

needed for each injected value. FPGA hardware acceleration,

in case of W1A1 using a Xilinx ZCU104 board (XCZU7EV)

running at 300 MHz, achieves 32,880 frames per second. This

implementation enables ∼3 experiments per second, finishing

the characterization in ∼59 hours. This is 5.8× faster than

running Theano using an NVIDIA P40 where the overall

campaign took more then 14 days.

To conclude, the worst-case accuracy can be further in-

creased by additionally using the Selective Channel Repli-

cation method proposed in Section V-B. However, when the

PEs computing M out of the N channels are replicated, the

scheduling should be adjusted to consider only the remaining

N −M channels.

VII. CONCLUSIONS

In this paper, we presented a methodology to characterize

and systematically increase the robustness of QNNs with an

FPGA-accelerated error injection analysis and two orthogonal

methods for robustness optimization. The FPGA-accelerated

error characterization enables the fast identification of the

most susceptible channels. Here, our experiments showed that

QNNs with convolutional layers are less robust to single

faults than commonly believed. As a countermeasure, the

information retrieved from the analysis can be used to decide

which channels have to be replicated to achieve a given level

of error-tolerance in the generic model. This allows to trade

robustness against hardware complexity leading to significant

resource reductions compared to common TMR schemes. In

the common case when PEs compute multiple channels, we

showed how scheduling influences the robustness and pro-

posed an ILP model that finds the optimal schedule regarding

single-fault robustness without any hardware overhead. Future

work will analyze modeling of hardware errors during training

to train error-tolerant neural networks, as well as generalizing

the injection tool to model single-event upsets (SEU).
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