
Protecting RSA Hardware Accelerators
against Differential Fault Analysis

through Residue Checking
Ana Lasheras, Ramon Canal, Eva Rodrı́guez

Departament d’Arquitectura de Computadors
Universitat Politecnica de Catalunya

Barcelona, Spain
ana.lasheras@est.fib.upc.edu, {rcanal,evar}@ac.upc.edu

Luca Cassano
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano
Milano, Italy

luca.cassano@polimi.it

Abstract—Hardware accelerators for cryptographic algorithms
are ubiquitously deployed in nowadays consumer and industrial
products. Unfortunately, the HW implementations of such algo-
rithms often suffer from vulnerabilities that expose systems to a
number of attacks, among which differential fault analysis (DFA).
It is therefore crucial to protect cryptographic circuits against
such attacks in a cost-effective and power-efficient way. In this
paper, we propose a lightweight technique for protecting circuits
implementing the RSA algorithm against DFA. The proposed
solution borrows residue checking from the traditional fault
tolerance and applies it to RSA circuits in order to first detect the
occurrence a fault and then to react to the attack by obfuscating
the output values. An experimental campaign demonstrated that
the proposed solution detects the 100% of the possible fault
attacks while leading to a 2.85% area overhead, a 16.67% power
consumption increase and with no operating frequency decrease.

Index Terms—Attack Resistance, Cryptographic Hardware
Accelerators, Differential Fault Analysis, Hardware Security

I. INTRODUCTION AND RELATED WORK

Cryptographyc hardware accelerators are employed in a
plethora of consumer products, such as smart phones and smart
cards, where security and performance requirements co-exist.
Although on the one hand modern cryptographic algorithms
proved to be sufficiently robust from the mathematical point
of view [1], their implementations often suffer from a num-
ber of vulnerabilities. In particular, in the last years several
cryptographyc hardware accelerators demonstrated to be prone
to a number of attacks, among which side-channel analysis
(SCA) [2] and differential fault analysis (DFA) [3], [4]. Indeed,
secret information can leak through side channels, such as the
time needed to perform an encription/decription or the power
consumed during such operations. As a result, systems may be
insecure although featuring such security-dedicated modules.

DFA demonstrated to be a very effective attack technique.
It relies on i) injecting maliciously erroneous values into
the cryptographic core while it is performing a number of
encryptions/decryptions, ii) collecting the incorrect outputs of
the circuit, and then iii) analysing the collected outputs to infer
secret information, such as the encryption key. The advantage
of DFA consists in letting the attacker select both the erroneous

values to inject and the points of the circuit where to inject
them. This dramatically reduces the amount of collected data
needed to obtain the bits of the secret key, thus allowing the
attacker to achieve its goal in a reduced time. It is therefore
crucial to protect cryptographic circuits against such attacks
in a cost-effective and power-efficient way.

Several approaches have been proposed in the last decades
to protect cryptographic circuits against fault injection-based
attacks. One approach relies on making the implementation
physically inaccessible through tamper-proof boxes and on-
chip sensors as for the case of the high-end crypto-core IBM
4764 [5]. These approach demonstrated to be particularly
effective but very expensive, since they rely on not-standard
technologies. More cost-effective solutions aim at detecting
faults instead of preventing them. Duplication/triplication and
error detecting codes have thus been employed: these solutions
are much cheaper than the previous ones at the cost of a high
area occupation and power consumption and longer execution
time. Often, these solutions have to be tailored for the specific
algorithm under protection.

In this paper, we focus on the RSA asymmetric encryption
algorithm and we propose a novel approach to protect it
against DFA. When looking at protection techniques specific
for RSA, one set of works are based on the use of random
values during the computation can be found [6], [7]. A
different family of works exploit the invertibility of RSA to
detect faults during decryption by executing encryption and
viceversa [8], [9]. Such techniques protect RSA from attacks
based on the observation of the erroneous output. On the other
hand, they fail against the so-called safe error attack, where
the attacker does not exploit the erroneous output but the
knowledge of whether the output has been affected by the
fault or not [10]. Proposals to tackle such attack have been
presented in [11]–[13].

In this paper, we propose a novel protection technique
against DFA based on residue checking for circuits imple-
menting the RSA algorithm. To the best of our knowledge,
this is the first time RSA is extended with residue checking
to reduce its vulnerability to DFA attacks. Our proposal is

to pair the conventional RSA implementation with a replica
of the RSA algorithm (dubbed modulo RSA) that is meant
to work with a smaller number of input bits. The values fed
into the modulo RSA are the results of a modulo operation
of the values fed into the conventional RSA (i.e. their residue
values). Thanks to the properties of the modulo operation, at
the end of the execution of both replicas the result of the
modulo operation on the output of the conventional RSA will
match the output of the modulo RSA only if no faults occurred
during the processing. On the other hand, this check will fail
in case a fault occurred during the processing, thus allowing
to identify a possible fault attack. Once a fault attack has been
detected, the circuit produces a random output value, thus
making a differential fault analysis of the collected output
values impossible. The proposed countermeasure allows to
detect the 100% of the possible fault attacks while leading to
a 2.85% area overhead, a 16.67% power consumption increase
and a no operating frequency reduction.

The remainder of this paper is organized as follows: Sec-
tion II briefly describes the basics of the RSA algorithm and
then surveys the existing DFA attacks to RSA also highlighting
the ones tackled by our proposal; Section III introduces the
basics concepts of residue checking and it then presents
the details of the proposed protection technique; Section IV
reports about a set of experiments carried out to measure
the effectiveness of the proposed solution and the introduced
overhead; Finally, Section V concludes the paper.

II. THE RSA ALGORITHM AND THE EXISTING ATTACKS

We first briefly present the basics of RSA and then, we
survey the available DFA attacks. We do not discuss general
attacks not specifically addressing HW implementations.

A. The RSA Algorithm

The RSA (Rivest-Shamir-Adleman) algorithm (originally
presented in [14]) is one of the first proposed public-key
cryptographic (or asymmetric) algorithms. Unlike in sym-
metric cryptography, where the same secret key is used for
encryption and decryption, in public-key cryptography two
keys are employed. The public key is used for encryption and
the private key, which is kept secret by the owner, is used for
decryption. It is worth mentioning that RSA can also be used
for producing trusted message signatures.

RSA operations involve three large positive integers, namely
e, d (the encryption and decryption keys, respectively) and n
such that for all integers m (with 0 ≤ m ≤ n) the following
equation holds:

(me)
d ≡ m mod n (1)

as well as the same exponentiation with reordered exponents:

(md)
e ≡ m mod n (2)

For the sake of space and simplicity, we do not mention here
how e, d and n are generated. Nevertheless, it is important to
mention that n is obtained as the product of two very large
randomly chosen prime numbers p and q (that must also be
kept secret) and that e and d are obtained starting from n.

Once e and n have been distributed, they can be used for
encryption. Given a plaintext m, the corresponding cyphertext
c can be computed as:

c ≡ me mod n (3)

The only way to decrypt c is by using the private key
associated with the public key that as been used to encrypt
the original plaintext. In other words, only the owner of d can
decrypt c by computing:

cd ≡ (me)
d ≡ m mod n (4)

In case RSA is used for generating a message signature s
the following equation is computed:

s ≡ md mod n (5)

The signature s associated with a message m is considered to
be valid if and only if:

se ≡ (md)
e ≡ m mod n (6)

That means that the signature is valid if and only if it has
been produced with the right private key (and thus by the
right person) and the message has not been modified.

B. Attacks to RSA

Two families of attacks to RSA do exist: the first one
aims at either factoring n (and thus discovering the prime
numbers p and q) or directly recovering d; the second one
tries to decrypt an encrypted message c without knowing d.
A detailed discussion on differential fault attacks to RSA (and
other cryptographic algorithms) may be found in [15].

As we previously said, the first family of attacks aims
at discovering the private key (or the prime numbers from
which it is generated) during either a decryption or a signature
computation. The very first type of attacks belonging to this
family aimed at entirely discovering the secret information
with a singole fault injection. The basic idea behind the
Bellcore attack (proposed in [16]) is to inject a fault during
a signature computation in order to perturbate the nominal
processing and to induce the system to compute s̃ instead of
s, where s is the expected fault-free signature and s̃ = s+ δ.
Once s̃ and s have been calculated, the attacker can recover
one of the secret prime numbers from which the keys are
generated (and thus also the secret key) by calculating the
greatest common divisor between (s̃ − s) and n. A similar
attack has been proposed in [17] where a fault is injected
during the check of the signature and the prime number is
recovered by calculating the greatest common divisor between
(s̃e − m) and n. The advantage of such attack is not to require
the fault-free signature s.

Another type of attacks belonging to the first family aims
at leaking one bit of the secret key at a time under the
following assumptions: i) the attacker has arbitrary access to
the device; ii) the attacker can chose any ciphertext to be
fed into the device; iii) there is no limit to the number of
fault injection experiments the attacker is allowed to perform
(and thus the fault injection is assumed not to be destructive).

The first attack to RSA belonging to this family has been
proposed in [18]. The basic idea of this attack is injecting a
number of faults during a number of signature computations
where each injected fault leaks a single bit of the private key.
A fault during signature computation may be injected such
that the corrupted output signature is either s̃ = sd−2i or
s̃ = sd+2i (depending on whether the fault caused a 0-to-1
or a 1-to-0 bit flip) where i ∈ [0, v − 1] and v is the number
of bits of the private key. Once s̃ has been computed, the
attacker can calculate the ith bit of the secret key as either
m2i mod n = s/s̃ mod n or m2i mod n = s̃/s mod n.

The last type of attacks belonging to the first family aims
at discovering the secret key without requiring to observe the
output of the circuit [10], [19]. These are the so-called safe
error attacks, where the attacker only exploits the knowledge
of whether the output has been affected by the fault or not.
Indeed, in case a fault is injected in a register storing one bit
of the secret key, the output of the circuit will be the same as
the expected output in case the bit of the key was 0 (flipped
to 1 by the fault). On the other hand, the output of the circuit
will differ from the expected output in case the bit of the key
was 1 (flipped to 0 by the fault). Although very effective, this
attack has been demonstrated to be impractical [20].

The second family of attacks to RSA aims at decrypting an
encrypted message without any knowledge of the private key,
by injecting faults during encryption [20]. Similarly to what
happens in the Bellcore attack, the obtained faulty cyphertext
is either c̃ = ce−2i or c̃ = ce+2i where, again, c is the expected
chphertext, i ∈ [0, v − 1] and v is the number of bits of the
public key. Given the correct cyphertext c and the faulty one
c̃, and being able to compute inverses over Z, the attacker can
compute c · c̃−1 mod n, thus, easily computing the plaintext
associated with c.

The protection methodology proposed in this paper repre-
sents an effective and lightweight countermeasure against all
the available type of fault attacks except for the safe error
attack that, as we mentioned, is very unlikely to be deployed
in practice.

III. THE PROPOSED RESIDUE CHECKING-BASED
COUNTERMEASURE

This proposal protects the HW implementation of RSA by
pairing the conventional implementation with a replica (i.e.
the modulo RSA). The values fed into the modulo RSA are
the results of a modulo operation of the values fed into the
conventional RSA (i.e. their residue values). Depending on
the modulo value, the resulting replica will have fewer input
bits. At the end of the execution, a modulo operation is
performed on the output of the conventional RSA; the result
of this operation will match the output of the modulo RSA
only if no faults occurred during the processing. In case a
fault perturbated the processing of the conventional RSA, this
check will fail, thus allowing to identify a possible fault attack.
Finally, when a fault has been detected, a random output value
is produced in order to make the differential fault analysis of
the circuit’s output unfeasible.

In the remainder of this section, we first recall the basic
properties and definitions of residue checking and we then
discuss how to select the most appropriate modulo value
and how to enhance a HW implementation of RSA with the
proposed residue checking-based countermeasure.

A. Detecting Faults through Residue Checking

Given two positive integers a and m (where m is dubbed
the modulo value), we can calculate a as:

a = m ∗ q + r (7)

where both q and r are positive integers (q is the quotient and
r is the residue). The operation modulo(a, m) is defined
as the residue of the integer division of a by m (represented
as |a|m) and it returns r.

Residue Checking is a lightweight mathematical mecha-
nisms for statically validating the results produced by arith-
metic units. It detects changes on the output data based on
the calculation of the residue. For instance, an addition can be
checked by testing the equality of Equation 8.

|a+ b|m = ||a|m + |b|m|m (8)

Indeed, if both sides of the equation are equal, it is likely that
no error has occurred. On the other hand, the occurrence of a
fault during the processing would for sure make the check fail.
Similarly, if no error has occurred the mathematical equality
will hold. Thus, when used to detect errors, residue checking
guarantees that there are no false positives.

Residue checking works as described for any arithmetical
operator. As a consequence, it also works for the modular
exponentiation that is a key component of the RSA algorithm.
On the other hand, it is worth noting that residue checking
does not work for logical operators [21].

B. Selection of the modulo value

On of the key aspects of a fault detection mechanism based
on residue checking is the selection of the modulo value. The
chosen modulo value strongly affects both the fault detection
capability and the introduced overhead.

A modulo value that is a power of 2 can be easily im-
plemented as a logical masking operation, thus reducing the
introduced overhead. When the modulo value is a power of
2, given an integer a and a modulo value m, the modulo
operation can be expressed as:

|a|m = a&(2m − 1) (9)

Consequently, the residue value can be expressed in m− 1
bits (if treated as an unsigned integer when designing the
circuit). On the one hand this choice significantly simplifies the
implementation while, on the other hand, it makes the fault de-
tection much less effective. For any power of 2 modulo value,
the residue checking operation will miss any modification of
the upper bits (i.e. the masked bits). Therefore, the smaller
the modulo value, the smaller the introduced overhead but
also the lower the fault detection capability (as we will see in
in Section IV).

Figure 1. Block Diagram of RSA + Protection Circuit

When the modulo is a non-power of 2 value, the calculation
of the residue requires the use of all the bits in a and the fault
detection capability does not depend on the chosen modulo
value. A naive implementation of the modulo operation for
non power of 2 modulo values simply computes the division
and then makes a subtraction. Such implementation, although
being straightforward, introduces a very high area overhead.
Much more optimized implementations with fewer hardware
requirements exist [22]. In this line, we rely on the optimized
implementation of the modulo operation provided by the
Xilinx Vivado™ [23] synthetizer.

C. Implementation of RSA + residue checking

A high-level representation of the RSA hardware imple-
mentation enhanced with the proposed protection technique is
depicted in Figure 1 where the dark grey blocks belong to
the conventional RSA while the light grey ones belong to the
modulo RSA. The circuit takes an input text (either plain or
encrypted) and a key (either public or private) and produces
an output text (either plain or encrypted depending on the
requested operation).

The implementation of the conventional RSA is based on
the implementation of the modular multiplication operation.
As it has been discussed in Section II, the RSA encryption
performs the exponent shown in equation (3) and the de-
cryption performs the exponent shown in equation (4). Given
two positive integers x and n, xn (referenced in the text as
Pow(x, n)) can be computed as the result of the following
recursive algorithm:

Pow(x, n) =


x, if n = 1
Pow(x2, n/2), if n is even
x× Pow(x2, (n− 1)/2), if n > 2 is odd

This algorithm is much faster than the ordinary method to
perform the exponent calculation. Indeed, when multiplying x
by itself, calculating xn requires n operations. On the other
hand, when implementing the algorithm shown above, only
log2(n) operations are needed. The circuit implementing RSA
based on such an algorithm for the exponent calculation only
counts one multiplier and one square. The feedback loop that
brings the output back to the input multiplexer implements the
recursivity of the algorithm.

In parallel with the conventional RSA, the modulo RSA
takes in input the text and the key. The first step performed by
the modulo RSA replica is a modulo operation on both the text
and the key. Then the results of such modulo operation are fed
into the actual n-bit wide replica of the RSA algorithm where
n = dlog2(m)e is the number of bits needed to represent the
modulo value m.

The output of the conventional RSA circuit is fed into a
modulo operation whose output is compared with the output
of the modulo RSA circuit. If these two values are the same, no
fault occurred and the output of the conventional RSA circuit is
forwarded to the output of the circuit. In case the two modulo
values are different, a fault is assumed to have occurred and a
random text is forwarded to the output of the circuit in order
to make differential fault analysis unfeasible.

IV. EXPERIMENTAL RESULTS

Here, we analyze the effectiveness of the residue checking
and the impact on area, power and critical path delay.

A. Experimental Environment

As a real-world HW implementation of the RSA algorithm
we considered the trojan-free version of the BASIC RSA-
T100 available in the TrustHub repository [24]. Such an RSA
HW implementation has then been extended with the proposed
residue checking-based protection mechanism. We used Xilinx
Vivado™ [23] as a development and synthesis environment
and we then employed the accompanying Device Utilization
Summary and Power Estimator tools for area, power and time
analysis. We considered the Virtex UltraScale+ FPGA (model:
xcvu13p-fhga2104-3-e) as a target device.

B. Effectiveness Analysis

The first analysis we carried out aimed at analysing the
effectiveness of the proposed countermeasure in detecting fault
occurred in the conventional RSA and the impact of the chosen
modulo value on the achieved fault detection capability. We
implemented a VHDL-level fault simulator that allowed us
to emulate the occurrence of faults in both the registers and
the output of the conventional RSA circuit. We run a set of
fault simulation experiments on a server equipped with one
AMD EPYC 7401P (24-Cores) running at 3GHz with 128
GB of DDR4. In each fault simulation experiment, a fault
was randomly injected in either a flip-flop or an output bit of
the conventional RSA at a random clock cycle.

When dealing with simulation, statistically significant re-
sults are usually understood as 99% confidence level at 5%

Table I
NUMBER OF REQUIRED SIMULATIONS PER CONFIDENCE AND ERROR

MARGIN VALUE

Confidence Level 99% 95%
Error Margin 10% 5% 1% 10% 5% 1%
RSA simulations 638 2551 63756 370 1477 36910

Figure 2. Injected faults and errors caused

error margin. Based on this target, the authors in [25] defined
the number of experiments -based on the input signals- needed
to reach the selected goal. Table I reports the number of
simulations (i.e. different combinations of input values and
fault location and clock cycle) needed to achieve the required
statistical significance. In this paper, we report the results
for 99% confidence and 1% error margin. Consequently, we
performed about 64000 simulations for each modulo value
(which takes roughly 16 minutes to complete in our server
-when using the batch mode of Vivado™).

1) Error Identification: Due to logical and temporal mask-
ing, not all faults lead to an erroneous modification of the
output (i.e. an error). Moreover, when the circuit is working
in the field, this percentage will be increased by electrical
masking (this cannot be simulated directly with Vivado™).
From a differential fault analysis point of view the critical
faults are only those that can propagate to the output of the
circuit. Figure 2 reports the percentage of faults injected in the
conventional RSA that resulted in a modified and unmodified
output1. The considered HW implementation of the RSA
algorithm already tolerates a large percentage of faults (72%).
Thus, only the 28% of the faults actually cause an erroneous
output of the conventional RSA circuit. These faults (now
errors) will be the ones used in the following subsections to
assess the effectiveness of the proposed detection technique.

2) Error Detection Capability Analysis: In order to analyze
the error detection capability of the proposed technique, we
implemented several versions of the protected RSA circuit
with several power of 2 and non-power of 2 modulo values. We
performed a set of fault injection experiments in which only

1We did not inject faults in the modulo RSA because this does not bring
any advantage to the DFA attacker. As the residue checking will detect also
a mismatch in this case.

Figure 3. Detection capabilities as a function of the modulo value

Figure 4. Area and power increase for RSA + Resiude Checking mechanism

the previously identified error generating faults are considered.
Figure 3 reports the percentage of detected errors as a function
of the number of bits of the modulo value. Given a number of
bits (x-axis), two modulo values have been analyzed: 2n (grey
squares) and 2n−1 (black diamonds). Note that, if the modulo
value is a power of 2 then the modulo computation is just a
mask operation; otherwise, it requires a full computation with
all the bits of the source value (this is actually the advantage
of the modulo computation we take advantage of).

Figure 3 clearly shows that any non-power of two modulo
value allows to detect all the errors while a conventional power
of 2 modulo value is unable to detect all the faults. As we
previously mentioned, when a power of 2 modulo value is
used, only the lower n bits are stored for checking. Thus,
any fault in the upper bits is not detected. Consequently,
the detection capabilities of power of 2 modulo values are
fundamentally linear to the number of bits considered. When
all the bits are considered (i.e. full replication of the circuit),
the percentage of errors reaches 100%.

C. Efficiency Analysis

To measure the area, power and critical path delay overhead
introduced by the proposed protection technique we synthe-
sized the baseline RSA design and its protected version choos-
ing the 232−1 modulo value in order to present the worst-case
scenario. Figure 4 reports the results of this analysis.

First, we analysed the area increase. The baseline RSA
occupies 596 LUTs, 459 flip-flops, 40 CARRY8 blocks, 132
Bonded IOB and 1 clock buffer. The protected RSA occupies
a 2.85% more of LUTs, while all other resources remain the
same. This area increase is mostly caused by the random
number generator, as shown in the breakdown in Figure 4.

We also measured the power consumption increase by aver-
aging the 64000 executions. The baseline RSA dynamic power
consumption is about 180mW while for the protected RSA it is
210mW. The random number generator is always on in order
to avoid safe error attacks (as discussed in the introduction).
This means the proposal introduces a 16.67% overhead in
terms of power. Figure 4 shows also the breakdown between
the residue checking computation (5.56%) and the random
number generator (11.11%). It is worth mentioning that, in
this analysis, we did not consider leakage power since this
value would have been affected by all the unused resources
in the FPGA and, as a consequence, it cannot be attributed
-solely- to the circuit under examination.

Finally, we analyzed the critical path delay increase and
thus the operating frequency reduction. Both the baseline
RSA circuit and the proposed have a maximum operating
frequency of 134,39 MHZ. Consequently, the proposal does
not reduce at all the operating frequency. Such a result is
explained because the FPGA implementation of both designs
is dominated by the path from the input flip-flop, through the
multiplier, into the output multiplexor and back to the flip-
flop (that stores the partial results). The delay observed in the
FPGA is mostly caused by the wiring of this path. By design,
also the modulo RSA and the comparison work in parallel
with the conventional RSA and thus, the overall effect is not
visible in terms of critical path delay.

V. CONCLUSIONS

In this paper, we integrate residue checking in a hardware
implementation of the RSA cryptographic algorithm to protect
against DFA attacks. Our results show that non-power of 2
modulo values provide effective and efficient implementations
to detect the occurrence of faults during RSA computation
and to trigger the substitution of the erroneous output with a
random value. The proposed solution makes differential fault
analysis unfeasible.

The presented experimental results demonstrate that the
proposed countermeasure allows to detect all the errors with
an extremely reduced overhead. Indeed, we measured a worse
case 2.85% area increase, a 16.67% dynamic power consump-
tion increase and a no operating frequency slowdown.

REFERENCES

[1] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone,
Handbook of applied cryptography. CRC press, 1996.

[2] Y. Zhou and D. Feng, “Side-channel attacks: Ten years after its publi-
cation and the impacts on cryptographic module security testing.” IACR
Cryptology ePrint Archive, vol. 2005, p. 388, 2005.

[3] E. Biham and A. Shamir, “Differential fault analysis of secret key cryp-
tosystems,” in Annual international cryptology conference. Springer,
1997, pp. 513–525.

[4] M. Joye and M. Tunstall, Fault analysis in cryptography. Springer,
2012, vol. 147.

[5] T. W. Arnold, C. Buscaglia, F. Chan, V. Condorelli, J. Dayka,
W. Santiago-Fernandez, N. Hadzic, M. D. Hocker, M. Jordan, T. Morris
et al., “Ibm 4765 cryptographic coprocessor,” IBM Journal of Research
and Development, vol. 56, no. 1.2, pp. 10–1, 2012.

[6] A. Shamir, “Method and apparatus for protecting public key schemes
from timing and fault attacks,” Nov. 23 1999, uS Patent 5,991,415.

[7] M. Ciet and M. Joye, “Practical fault countermeasures for chinese
remaindering based rsa,” in Workshop on Fault Diagnosis and Tolerance
in Cryptography–FDTC, vol. 5, 2005, pp. 124–132.

[8] M. Joye, “Protecting rsa against fault attacks: The embedding method,”
in Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2009, pp. 41–45.

[9] A. Boscher, H. Handschuh, and E. Trichina, “Fault resistant rsa signa-
tures: Chinese remaindering in both directions.” IACR Cryptology ePrint
Archive, vol. 2010, p. 38, 2010.

[10] M. Joye and S.-M. Yen, “The montgomery powering ladder,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems,
2002, pp. 291–302.

[11] C. Giraud, “An rsa implementation resistant to fault attacks and to simple
power analysis,” IEEE Transactions on computers, vol. 55, no. 9, pp.
1116–1120, 2006.

[12] C. H. Kim and J.-J. Quisquater, “How can we overcome both side
channel analysis and fault attacks on rsa-crt?” in Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC 2007), 2007, pp. 21–
29.

[13] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon, “Rsa speedup with chinese
remainder theorem immune against hardware fault cryptanalysis,” IEEE
Transactions on computers, vol. 52, no. 4, pp. 461–472, 2003.

[14] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, Feb. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359340.359342

[15] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection
attacks on cryptographic devices: Theory, practice, and countermea-
sures,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076, 2012.

[16] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in International conference
on the theory and applications of cryptographic techniques, 1997, pp.
37–51.

[17] A. K. Lenstra, “Memo on rsa signature generation in the presence of
faults,” Tech. Rep., 1996.

[18] F. Bao, R. H. Deng, Y. Han, A. Jeng, A. D. Narasimhalu, and T. Ngair,
“Breaking public key cryptosystems on tamper resistant devices in the
presence of transient faults,” in International Workshop on Security
Protocols, 1997, pp. 115–124.

[19] S.-M. Yen and M. Joye, “Checking before output may not be enough
against fault-based cryptanalysis,” IEEE Transactions on computers,
vol. 49, no. 9, pp. 967–970, 2000.

[20] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low voltage fault
attacks on the rsa cryptosystem,” in 2009 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2009, pp. 23–31.

[21] J. F. Wakerly, “Principles of self-checking processor design and an
example,” Departments of Electrical Engineering and Computer Science,
Stanford University, Tech. Rep. 115, 1975.

[22] J. T. Butler and T. Sasao, “Fast hardware computation of x mod z,”
in 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum, May 2011, pp. 294–297.

[23] Xilinx. (2018, dec) Xilinx vivado design suite - hlx editions
2018.3. [Online]. Available: https://www.xilinx.com/products/design-
tools/vivado.html

[24] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, vol. 1, no. 1, pp. 85–102,
Mar 2017.

[25] “Chapter 3 - architectural vulnerability analysis,” in Architecture Design
for Soft Errors, S. Mukherjee, Ed. Burlington: Morgan Kaufmann,
2008, pp. 79 – 120.

