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Abstract—The use of Neural Network (NN) inference on
edge devices necessitates the development of customized Neural
Inference Accelerators (NIA) in an attempt to meet performance
and accuracy requirements. However, edge infrastructure often
relies on highly constrained resources with limited power budget
and area footprint. At the same time, reliability is very crucial,
especially, for critical applications and trade-offs area and power
due to the needed for protection. In this paper, we study the
soft-error vulnerability of an edge NIA, using an emulation-
based fault injection framework, which allows for accurate and
fine-grained analysis. We consider the tinyTPU architecture,
which resembles Google’s Tensor Processing Unit (TPU) but
is optimized for edge-based applications. Through a proposed
error outcome taxonomy for NN-based algorithms, we study the
criticality of each NIA component and explore their vulnera-
bility to Single Event Upsets (SEU), while providing analysis
of performance-accuracy trade-offs such as using smaller NN
models and periodic memory refresh. Further, through analysis
of the tinyTPU architecture, we manage to considerably reduce
the emulation time for components with non-persistent faults.

Index Terms—Artificial Neural Networks, Vulnerability Anal-
ysis, Fault Tolerance, Single Event Upsets, Soft Errors, Edge
Accelerators, Emulation-Based Fault Injection

I. INTRODUCTION

Neural Networks (NNs) have been applied in multiple safety
critical applications, such as wearable biomedical diagnostics
and unmanned aerial and terrestrial vehicles [1], [2]. Typi-
cally, these applications use dedicated hardware accelerators,
embedded in edge devices to process the inference with low
communication latency. Despite the substantial advantages,
edge devices are resource constrained due to limited physical
and power footprint. Thus, several techniques have been
introduced to reduce the size of the NNs in order to utilise
less hardware and power with minimal impact on accuracy
[3]. Additional reduction of NNs accuracy can be induced
by soft errors, caused by power supply voltage-scaling or
environmental conditions [4]. These errors can either cause
application or system crashes, or affect the program’s output
(silent data corruption errors), leading to misclassifications that
in some cases can be catastrophic [5].

Existing redundancy techniques for soft error mitigation
come with high cost on area, power, and performance, which
edge devices cannot afford [6]. Consequently, it is important
to explore the vulnerability of these devices at design time and
apply selective redundancy at a fine-grained level, as needed
[7]–[10]. Recent works that study the vulnerability in the
presence of soft errors in various accelerators are reviewed in
[4]. These works are based on either neutron beam experiments

on real platforms [7], [11], or fault injections using either high-
level simulation [12]–[14], or emulation [15]–[19]. This paper
extends our previous work in [18], [19], an emulation-based
fault injection framework, to provide fine-grain vulnerability
analysis of a resource constrained edge accelerator architec-
ture. The vulnerability analysis is performed by using an error
outcome taxonomy, which categorizes the impact of Silent
Data Corruption (SDC) errors based on the NN classification
outcome between the fault-free and faulty NN. Particularly,
in this analysis we consider the tinyTPU [20], a systolic
array architecture geared towards edge devices that resembles
Google’s TPU [21], using the MNIST dataset [22].

Via our analysis process we, also, identify the tinyTPU
components with non-percistent faults, i.e, faults which only
propagate for a limited number of cycles, due to the tinyTPU
architecture. This allows us to reduce the emulation time per
fault injection in these components, and achieve a considerable
speed-up compared to baseline approach that does consider
non-persistent faults. The overall methodology can be easily
extended to apply alternative accelerator architectures and NN
inference algorithms.

The rest of the paper is organized as follows: Section II
gives information on the architecture of the edge tinyTPU
accelerator. The considered vulnerability evaluation methodol-
ogy is presented in Section III, which includes the underlying
SDC classification-based taxonomy and an overview of the
fault injection mechanism. Section IV discusses the exper-
imental use case and setup. The vulnerability analysis for
each component is presented in Section V, and then a more
fine-grained analysis is performed for all the components for
different NN models. Section VI concludes this work and gives
future directions.

II. EDGE ACCELERATOR ARCHITECTURE (TINYTPU)

TinyTPU architecture consists of ten main components,
41,861 registers and around 4.4M bits as shown in Table I.
Figure 1 illustrates the accelerator architecture which com-
prises of: (1) Unified Buffer (UB): a read/write memory array
that stores the input and output data of all the layers, (2)
Systolic Array Control (SAC): an array that transforms data
derived from UB, (3) Control Weight (WBCtrl): responsible
for the read process of WB, (4) Control MMU (MMUCtrl):
controls the data transferred to and from MMU, (5) Control
Activation (ACTCtrl): enables activation component if needed,
and selects the appropriate activation function, (6) Control
Coordinator (COORDCtrl): decodes step-by-step instructions



Fig. 1: Considered framework, including tinyTPU Architecture and Fault Injection Emulation Mechanism

TABLE I: Total Number of Registers/Bits of tinyTPU

Component # Registers # Bits
1. Unified Buffer (UB) 4153 459424
2. Systolic Array Control (SAC) 91 728
3. Control Weight (WBCtrl) 17 83
4. Control MMU (MMUCtrl) 21 435
5. Control Activation (ACTCtrl) 17 1253
6. Control Coordinator (COORDCtrl) 6 85
7. Weight Buffer (WB) 32825 3670688
8. Matrix Multiply Unit (MMU) 982 13847
9. Accumulators (ACC) 2674 234953
10. Activation (ACT) 75 1298
Total 41861 4382794

of NN inferences and provides control signals throughout the
system accordingly, (7) Weight Buffer (WB): a read/write
memory array that stores the training weights, (8) Matrix
Multiply Unit (MMU): a two-dimensional systolic array of
Multiply and ACcumulate (MAC) units that multiplies the data
derived from SAC with the weights from WB, (9) Accumulator
(ACC): stores and accumulates the multiplied results derived
from MMU, (10) Activation (ACT): adds non-linearity to the
results derived from ACC using activation functions; its output
is stored back to the UB for further processing, if needed. In
Figure 1, interactions between the controllers and the other
components are omitted for clarity purposes.

Figure 1 also illustrates how the input (for example, an im-
age from the MNIST dataset) and the NN weights are loaded to
the UB and WB, respectively. In the scenario considered in this
paper, outputs are classified using confidence level (for each
possible digit 0 to 9 in this example). The highest confidence
level, is used to classify the input. For the particular example

shown in Figure 1, the highest confidence level (40) classifies
correctly that the input image is digit 8.

III. VULNERABILITY EVALUATION METHODOLOGY

A. Error Taxonomy

The error outcome caused by a bit-flip can be categorized
as masked error, Silent Data Corruption (SDC) error, or
crash/hang error. Figure 2 shows the error outcome taxonomy
used throughout this paper. Masked errors do not manifest
at the final output. On the other hand, crashes/hangs cause
undesirable behavior to the running application and SDCs
show an output discrepancy between the fault-free and faulty
runs, and can manifest differently according to their exact
impact on the classification outcome (correct or not). When
an SDC produces a misclassification (MC), the error can
be categorized as tolerable (TMC), critical or no impact
error. TMC errors occur when we have different outputs (i.e.,
different confidence levels) between the fault-free and faulty
runs, however, the result of the classification remains exactly
the same. No impact errors are similar to TMC errors (i.e., they
are also tolerated), with the only difference that the result of
the misclassification changes to a different, incorrect output.
For example, in Figure 1, a no impact error happens when
input 8 is classified as 6 in the fault-free scenario and as 3
in the faulty one. In contrast to TMC and no impact errors,
critical SDCs have negative impact on the classification as they
result to an incorrect classification in the faulty case while
there was a correct classification in the fault-free case. For
example, an SDC causing the confidence level for digit 8 to
drop to value 15 (from 40) will result to a miss-classification



Fig. 2: Error Outcome Taxonomy

since the NN will classify digit 3 instead of digit 8. Thus,
critical errors reduce the accuracy of the classification.

In the case of an SDC leading to correct classification
(CC), the error can be categorized to either tolerable (TCC)
or beneficial. TCC errors, as in TMC category, occur when
the SDC changes the confidence level between the fault-free
and faulty runs, but the final classification is not affected. As
an example, let an SDC change the output(s) in Figure 1,
causing the confidence level for digit 8 to drop to 35 (from
40). In this case, the output confidence level is different,
but the classification remains correct. Beneficial SDCs have
a positive impact on vulnerability, since they change the
output of the classification from incorrect to correct. The
presented taxonomy is generic and can be adopted by different
classifiers, different confidence levels. Also, it can be adapted
to other types of classification algorithms.

B. Fault Injection Mechanism

The fault injection mechanism used in this paper is based on
the VHDL framework in [18], [19]. This mechanism provides
vulnerability analysis using hardware-based models for fault
injection which are integrated with the system to be evaluated
(see Figure 1). Fault injection experiments can be applied
either at the entire system level or at the component and reg-
ister level for finer-grained evaluation. Each granularity level
has its dedicated randomization mechanism, which allows for
appropriate selection on when and where to inject a fault.
In each case, the impact of an error on the entire system is
emulated.

Furthermore, we incorporated the following additions and
optimizations, allowing for the effective execution of very
large fault injection campaigns in an automated fashion, while
at the same time enabling the parameterized evaluation of
alternative accelerator architectures.

1) Injection of errors: The FI mechanism can inject single
event upsets (SEU), as well as multiple event upsets (MEU). In
this work we focus on SEUs experiments. Each fault injection
is executed in real-time, which decreases substantially the fault
campaign’s overall execution time.

2) Capability of injecting faults in Memory: We allow
fault injection in memory components, as it is necessary for
studying the vulnerability of edge-based accelerators for which
memory protection techniques may prove to be prohibitive

due to their resource and latency constrained requirements. In
particular, tinyTPU’s WB is implemented in blockRAM with
112-bit length per element (tinyTPU word size). To inject a
fault in WB, the targeted faulty register ID is translated to
the corresponding address in the blockRAM. Next, the data
from the particular address are retrieved, modified to emulate
the fault, and then stored back. An extra register is used to
store the fault-free value, which is used at the end of a fault
injection experiment to restore the data back to the fault-free
value. This allows for fast execution of several experiments,
without the need of re-writing all the memory bits.

3) Parameterizable hardware design: We have extended
the tool to be parameterizable to alternative accelerator de-
signs. The fault injection mechanism works as an external
module which takes as input the number of components, the
number of registers per component and the number of bits
in each register, and generates the appropriate outputs for
injecting faults to the targeted design. The interface between
the fault injection mechanism and the accelerator still requires
some customization, nevertheless, this is an important gener-
alization that can be used for emulation-based fault injection
soft-error vulnerability analysis for a variety of architectures,
including different accelerator implementations.

IV. EXPERIMENTAL USE-CASE AND SETUP

We consider the inference phase, running on the tinyTPU
[20], and evaluate the vulnerability of one hidden-layer NN
using the MNIST dataset. The MNIST dataset uses 28 X 28-
pixel gray scale images of handwritten digits from 0 to 9 as
input and includes a set of 60000 images, which we have used
for the training phase to derive the needed weights, and a set of
10000 test images that we use during the evaluated inference
phase [22].

Initially, an NN with 126 neurons (ANN126) within the
hidden layer is considered, which uses Sigmoid activation
function for both hidden and output layers. In Section V-D
additional smaller NNs are evaluated.

SEUs are injected in all the 10 components of the archi-
tecture, while the inference of MNIST workload is running.
To evaluate each component, the whole system’s inputs and
outputs are used (images and classification) - and not the
isolated inputs and outputs of each component. It is important
to stress out that our aim is to evaluate the architecture’s
components, therefore we assume that all the input data
(weights, images and instructions) are fault-free, when they
enter the tinyTPU.

To determine the total number of faults to be injected and
ensure the statistical correctness of the experiments, we used
the method introduced in [23], with a confidence level of 99%
and an initial error margin of 4%. Reducing the emulation
latency as we show in Section V-A, allowed for a further
reduction of the error margin to 1% for all the components
with non-persistent faults (all components except of the WB).
Therefore, for each component with 1% error margin we
inject 17136 faults and for the WB we inject 1039 faults
with 4% error margin. We observe that the same number of



Fig. 3: Emulation Latency (a) when a fault is injected per
10000 images and (b) per batch of 14 images

fault injection experiments are needed for each component
with non-persistent faults, even though they have a noticeable
difference in their size. This happens due to fact that the
number of needed fault injection experiments depends on
both the component’s size and the workload’s total cycles,
where the number of cycles (around 53M cycles) dominates
the component’s size [23]. In total, we perform 138127 fault
injections for all the components.

The experiments were performed in real-time on the Xilinx
Zynq-7000 SoC ZC702 evaluation board. The architecture
of the tinyTPU was implemented and synthesized through
Vivado, using VHDL and mapped to the FPGA via Vitis.
The training phase was implemented in the host PC, using
Tensorflow, and the NN weights were quantized from 32 bits-
floating point to 8 bits-integer, and then transferred to the
FPGA and stored in the weight buffer (WB).

V. EXPERIMENTAL RESULTS

A. Reduction of emulation latency

TinyTPU architecture allows parallel execution of up to 14
images, leading to 714 batches for the 10000 images of the
inference workload we consider (10000/14). It is observed that
when a new batch of images is loaded, any previous error is
removed/overwritten due to the non persistent nature of soft
errors. Hence, any single fault injection can affect the process
until the end of a single batch and cannot be propagated to any
other upcoming batch. Based on this architectural-depended
observations, we can speed-up the process by injecting one
fault per batch, aggregating a total number of 714 fault injec-
tions per workload execution (i.e., accelerating the process by
714 times). In addition, through this approach we ensure that
faults will be injected evenly along the 10000 images. Figure 3
illustrates the fault injection process throughout the workload’s
execution when we inject a fault per 10000 images and when
we inject a fault per batch of 14 images. The Weight Buffer
is the only component with persistent soft errors due to the
fact that all NNs’ weights are stored within the WB and are
not overwritten until the end of the execution. Table III shows
the number of cycles for 14 and 10000 images respectively.

Fig. 4: AVF per Component for ANN 126

B. Component Vulnerability Analysis

Initially, the vulnerability of the ten components is evaluated
using an NN model with 126 neurons and trained accuracy of
96.5%. Figure 4 shows the Architectural Vulnerability Factor
(AVF) of each component for the different SDC categories
(Figure 2), in logarithmic scale. The AVF is proportionally
weighted to the size of each component (3rd column of Table
I). COORDCtrl causes application crashes without any output
in every single fault injection, thus, this component is excluded
from all the presented results. We do not observe any crash for
all the other components and, thus, for each of the remaining
components we present the SDCs results. Figure 4 indicates
that the component with the highest AVF for all the categories
is the weight buffer (WB). In terms of critical errors (yellow
bar), the WB is showing a considerable difference from all
the other components. This happens because all the weights
are stored in the WB from the beginning of an execution,
therefore, a SEU will persist, manifesting a permanent fault.
Hence, once a bit flip occurs in WB, it affects all of the
remaining images.

The majority of the components (7 out of 9), express the
same trend between the SDC categories with the exception
of ACTctrl that has more critical errors than all the other
errors. A reasonable explanation lays in the activation function
importance in the NN computation procedure. Applying a
different activation function can drastically change the output
of a neuron beyond the approximation nature of the algorithm
causing mostly critical SDCs.

C. Weight Buffer Performance - Reliability Trade-off Analysis

We further analyze the most critical component from the
previous analysis (WB) by investigating how software refresh
can help to reduce the SDC effects. In this way extra area
overheads that common redundancy protection mechanisms
require could be avoided. Thus, we analyse the idea of period-
ically overwriting the weights in the WB during the inference
execution [24]. Table II shows the percentage of the reduced
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Fig. 5: Probability of a Fault Injection Effect for each model (ANN126, ANN103, ANN80, ANN63, ANN40, ANN15) for the
tinyTPU’s components (a) WB, (b) ACC, (c) ACTCtrl, (d) UB, (e) MMUCtrl, (f) WBCtrl, (g) MMU, (h) SAC, (i).

TABLE II: Performance Overhead and Percentage of SDC
reduction in each Category for Different Refresh Rates Nor-
malized with the No Refresh WB

Refresh
Frequency
(# Images)

Perf.
Overhead

(%)

TCC
(%)

TMC
(%)

Critical
(%)

Benef.
(%)

No
Imp.
(%)

No Refresh 0 0 0 0 0 0
5000 0.75 55.56 48.67 63.89 8.00 28.57
2500 2.23 72.70 65.34 61.11 64.00 74.43
1000 6.77 91.02 88.56 83.33 72.00 100
500 15.74 95.35 95.48 94.44 92.00 100

SDC errors for each category for different refresh rates, as well
as the performance overhead when compared to a WB with no
refresh. We consider four different refresh rates, by determin-
ing the number of the images processed between refreshes.
As seen in Table II, when the refresh frequency increases,
the different SDC errors for all the categories decrease. At
the same time, the latency increases reaching up to 15.74%
when the memory is refreshed every 500 processed images,
where there is a significant reduction to all the SDC error

categories. This experiment and analysis clearly motivates for
the need of more sophisticated approaches to provide efficient
and low overhead protection mechanisms for the WB in such
accelerators.

D. Models Vulnerability Analysis at Component Granularity

To investigate the effects of soft errors in ANN of different
sizes (in terms of the number of neurons), we train different
models ranging from 126 to 15 neurons in the hidden layer.
The range was selected with the aim to reduce the NN area and
at the same time allow only up to 5% accuracy degradation.

Table III shows the different ANN models with their re-
spective accuracy and the number of cycles needed for an
inference execution of 14 and 10000 images. This analysis
allows the investigation of the trade-off between reliability and
latency/area overhead for each component.

Figure 5 shows the probability of the fault injection effects
to all tinyTPU components while inferencing all the ANN
models listed in Table III. It is important to note that the
presented results express the probability of fault injection



TABLE III: Neural Network Models

Model
Name

# of
Neurons

Accuracy
in %

MNIST cycles

14 images 10000 images
ANN126 126 96.5 7475 5337150
ANN103 103 96.65 6747 4817358
ANN80 80 96.24 5124 3658536
ANN63 63 95.25 4316 3081624
ANN40 40 94.4 2701 1928514
ANN15 15 90.6 1892 1350888

(FI) effects after a fault is injected, hence the effect of the
component’s size is not incorporated in this analysis. In most
of the components we can observe a general increasing trend
in critical SDCs as the number of ANNs decreases. This
happens due to the fact that smaller ANNs do not have a lot
of redundancy and, thus, their neurons are more vulnerable
to SEUs. The results for ACT component, show that even
though is a non-critical component with ANN126, when the
number of neurons in the hidden layer of the ANNs decreases
to 40 and 15, the critical errors appear and the component is
turned from non-critical to a vulnerable component. Another
observation is that the three controllers (ACTctrl, MMUctrl

and WBctrl) have the highest probability of manifesting a
critical SDC as they provide the control signals and an error
on those signals can affect the whole classification process.

The results clearly indicate that identifying the components
to protect in a system for each NN model is not a straightfor-
ward process. Thus, such analysis needs to be done to guide
selective protection decisions.

VI. CONCLUSIONS

This paper provides a vulnerability analysis of an edge-
based NN inference accelerator architecture by using a pro-
posed evaluation methodology. The results presented in this
work demonstrate that it is important to provide accurate
and fine-grained vulnerability analysis, before making dif-
ferent design choices. The findings of this analysis point to
several future directions, such as the investigation on how
the combination of optimization techniques like pruning and
quantization can affect the criticality of different components.
Finally, it is important to investigate the generality of the
observations made on the architecture used in this work,
with alternative datasets, accelerator architectures and neural
networks with more depth and different activation functions.
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