
Usability-based Cross-Layer Reliability Evaluation
of Image Processing Applications

Cristiana Bolchini, Luca Cassano, Andrea Mazzeo, Antonio Miele
Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Italy

{first name.last name}@polimi.it

Abstract—Image processing applications are today increasingly
employed in safety- and mission-critical fields for perception
tasks. It is therefore vital to analyse the reliability of the designed
system before its deployment and, if necessary, to adopt specific
hardening techniques. In this paper we propose a cross-layer
reliability evaluation framework specifically meant for image
processing applications accelerated onto SRAM-based FPGAs.
The framework is based on two key concepts: i) an application-
level error simulation based on validated error models to speed-
up execution times, and ii) an analysis of the usability of the
output images based on the working scenario. Such usability
analysis allows the designer to study whether the downstream
system would be able to take correct decisions even if the image
processing outputs are corrupted. We applied the proposed idea
on a motion detection application and we compared the achieved
accuracy and the required execution times with the ones of a
circuit-level fault injector, here considered as a ground truth.
This experiment highlighted an accuracy comparable with the
one of the fault injection with a dramatic time saving.

I. INTRODUCTION AND RELATED WORK

Image processing is increasingly used as the entry stage
for processing pipelines enabling autonomous driving and
control capabilities in automotive systems, unmanned flying
vehicles or robots [1]. Such systems exploit image processing,
frequently based on Machine Learning (ML), for perception
tasks: images taken from cameras/sensors are processed to
extract features that are then used by a downstream control
application [2]. Due to their critical role, such applications
are required to expose high reliability levels.

Classical redundancy-based techniques, such as Duplication
with Comparison or Triple Modular Redundancy, cannot al-
ways be applied in a straightforward way on image processing
applications. In fact, these applications are highly data- and
compute-intensive; therefore, full module replication, applied
at any abstraction level (either hardware or software), may
not be affordable. On the other hand, image processing is
inexact by nature, due to sensor noise and data quantiza-
tion [3]; therefore, a pipeline is generally designed to tolerate
approximation errors. As a consequence, slight modifications
of the processed images due to soft errors or other faults may
not affect the capability of the downstream control applications
to take correct decisions. Indeed, it may be only necessary to
take care of those faults that have a disruptive effect on the
produced outputs. Based on these considerations, a paradigm
shift from the classical bit-wise correct/wrong classification to
a usability-based one has been proposed in [4], opening the

path to novel ad-hoc hardening techniques. In this context, it is
fundamental to accurately study the usability of the produced
outputs from the point of view of the downstream control
application to exploit such new paradigm, leading to a quest
for novel advanced in-depth reliability analysis approaches for
image processing application.

When considering this class of applications implemented
onto FPGA devices, the current best practice for reliability
analysis consists in the circuit-level fault injection (e.g., [5],
[6], [7], [8]). Such approaches generally require the overall
system to be fully implemented and deployed on an FPGA,
not allowing for a fast and early feedback to the hardening
process. Moreover, faults may produce no error or they can
be masked, or they may produce an intermediate incorrect data
that is later absorbed by the application, thus slowing down the
analysis. Finally, most of these approaches [5], [6] are based
on the classical bit-wise correct/wrong output classification,
while only few ones adopt image quality metrics to measure
the visual impact of the fault on the produced image (such as
the SSIM index in [7], [8]).

As an alternative to circuit-level fault injection, application-
level error simulation is recently receiving interest. In this case,
corrupted intermediate data are injected in the application, thus
allowing to perform an early and low cost reliability analysis,
i.e., no system prototype and target hardware platform are
required [9], [10]. Moreover, error simulation ensures that in
every experiment the application will be fed with actually
corrupted data, thus not incurring in fault activation and
masking issues. A possible limitation is related to the accuracy
of the results. It is indeed fundamental that the corrupted data
injected in the application well represents the effects of the real
possible faults, i.e., that the adopted error models are accurate.
A first attempt of extracting accurate error models specific for
image processing applications accelerated onto SRAM-based
FPGAs has been presented in [11].

We present a preliminary proposal of a usability-based
cross-layer reliability evaluation framework against soft errors
for complex image processing applications consisting of a
pipeline of filters and implemented onto Xilinx SRAM-based
FPGA devices. The framework is based on two key concepts:

• application-level error simulation, and
• usability-based reliability analysis.

The first concept is achieved by means of a two-step process
based on i) preliminary fault injection campaigns used to
define error model libraries for the most common image978-1-6654-1609-2/21/$31.00 ©2021 IEEE

input image

fl1 fl2 fln

output image

downstream
control

application

application pipeline

software implementation hardware implementation

fl1

fl2

fln

filter/implementation
error models

error injector

oraclefl1 fl2 fln

soft-errors application-level error

reliability
report

circuit-level fault injection error modeling error simulation

Figure 1. The proposed cross-layer reliability evaluation framework.

processing filters based on the approach presented in [11], and
ii) error simulation of the entire image processing application
where the previously identified error models are exploited. The
second concept requires the definition of a scenario-based
oracle capable of modeling the main characteristics of the
downstream control application and to classify whether the
(possibly corrupted) output of the image processing applica-
tion would still allow the downstream control application to
take correct decisions, or not.

The framework has been used to analyze the reliability of a
motion detection application, comparing the achieved accuracy
and the required execution times with the ones of a circuit-
level fault injector, here considered as a ground truth. This
experiment highlighted an accuracy comparable with the one
of the fault injection experiments with a dramatic time saving.

The remainder of this paper is organized as follows. Sec-
tion II discusses the details of the proposed framework and
its implementation. Section III presents the considered case
study and the results from the application of the proposed
framework. Finally, Section IV draws the conclusions.

II. THE PROPOSED FRAMEWORK

Figure 1 depicts a high-level representation of the pro-
posed framework for a usability-based cross-layer reliability
evaluation of complex image processing applications accel-
erated onto Xilinx SRAM-based FPGAs. The framework is
designed for image processing applications composed of a
pipeline of basic image processing filters, whose output is
processed by a downstream control application for decision
making. The framework input is the high-level specification
of the application (in our prototype we consider a Python
implementation). The output of the framework is a detailed
reliability report of the performed error simulation campaign
offering the possibility to identify the most relevant criticalities
of the application w.r.t. the usability of its outputs by the
overall system.

The proposed methodology is cross-layer because it com-
bines the accuracy of circuit-level fault injection and the ease

and speed of application-level error simulation. The framework
is mainly divided into two parts; the leftmost part, that exploits
circuit-level fault injection, is devoted to the definition of
validated error models relevant for the filters of the pipeline.
These models are later used in the rightmost part of the
framework to perform error simulation and the usability-based
reliability analysis.

Each filter is individually synthesized in hardware on the
target platform and analyzed by means of an extensive circuit-
level fault injection campaign. The goal is to obtain a rich
set of corrupted output images, analyzed in a semi-automated
way to extract a set of accurate high-level functional error
models representative of all the possible effects of faults in
the specific filter/implementation. This activity allows to build
a database of error models for the filters/implementations,
exploited to perform the reliability analysis of the overall
pipeline by means of an error simulation.

The first relevant point is that the error simulation can be
performed directly on the high-level software implementation
of the application in the early phases of the design flow, thus
not requiring the entire system to be synthesized onto the
FPGA. Nonetheless, since image processing pipelines are gen-
erally composed by a recurrent set of filters, another advantage
of the proposed approach is that the error model database is
defined only once for each type of filter and implementation on
the FPGA platform. In subsequent analyses, it will be possible
either to refer to existing models for filter/implementation pairs
in the database, or to execute the preliminary error modeling
phase. In the long term, all most-commonly adopted filters
will be available in the database, and the application analysis
activity will only focus on the error simulation part, thus
allowing for relevant time-saving.

A second peculiarity of the proposed error simulation en-
vironment is how output images are analyzed. Indeed, the
classical approach based on a bit-wise check and classification
into correct or corrupted result is here replaced by a scenario-
based oracle. The oracle is in charge of determining whether
the global results of the image processing application are

FPGA

host
machine

UART

processor

MEM

SEM IP

DUT
controller

BRAM_out

BRAM_in filter
DUT

A
X
I

Figure 2. The FPGA circuit-level fault injector.

usable or not based; this classification depends on whether
the downstream application using the outputs is able to take
the same decision even on partially corrupted data. This
approach allows one to focus on faults having a disruptive
effect, leveraging on the inexact nature of image processing,
where limited corrupted data is inherently tolerated by the
processing. The final goal is to reduce as much as possible the
overheads introduced by the hardening techniques, possibly
having to deal with a limited number of critical cases. The
framework integrates an oracle mimicking the downstream
control application instead of the application itself for the
following reasons: i) the downstream application may not
be available when designing and analysing the image pro-
cessing application, and ii) using the full (possibly complex)
downstream application may dramatically slow down the error
simulation.

A. Circuit-level Fault Injection

To perform the circuit-level fault injection, the final hard-
ware implementation of each image processing filter is ex-
pected to be available, or it needs to be synthesized. In
our experimental case study, we used Xilinx Vivado HLS
to automatically design the hardware module of each filter
starting from its software implementation.

The tool has been designed with a pretty-standard architec-
ture (shown in Figure 2), similar to the one in [8], targeting
Xilinx FPGA devices1. The hardware implementation of the
filter, which represents the Design Under Test (DUT), is
integrated in a testbed comprising two memory banks, for the
input and output images respectively. A custom module is used
to drive the clock, reset and start signals and to receive the
DUT done output. It is worth mentioning that the testbed needs
to be customized based on the specific interface of the current
DUT. Finally, the Xilinx SEM IP module is used to emulate
soft errors by injecting bit-flips in the configuration memory.

Hardware components are connected to an on-chip proces-
sor by means of an AXI bus. The fault injection components
are coordinated by a software application running on the
processor. It receives from the host machine, through the serial
connection, the input image to be used, the golden output
and the mask presenting all injectable memory locations and
performs a fault injection campaign by following a classical

1The fault injector prototype has been implemented on a Zybo Zynq-7000
development board; however, it can be easily ported on any Series-7 device.

execution flow, where all injectable memory locations are
corrupted one at a time, and returns i) the response for each
experiment (corrupted output, not corrupted output ,or time-
out), and ii) the corrupted output images to the host machine.
As a final note, as already discussed in [11], numerous input
images are employed during the fault injection campaign not
to introduce biases in the identified error models.

B. Error Modeling

The set of corrupted output images obtained from the fault
injection campaign on a specific filter/implementation are then
analyzed to define the error models (as proposed in [11]).
In particular, the images are visually inspected to identify
recurrent visual patterns in the corruption w.r.t. the golden
counterpart. Identified visual patterns are also studied to assess
that are independent from the specific input sample and can be
“reproduced” by an algorithm applied on the golden image.
If all these conditions hold, the visual pattern leads to the
definition of an image error model.

The proposed approach is semi-automated; a tool, imple-
mented as a Python script, compares each corrupted image
against the golden counterpart to count the number of different
pixels and highlight the areas where such pixels are located.
Then, an automated preliminary clustering of the images is
performed based on this extracted information; finally, the
actual identification of the visual patterns of the errors has been
manually performed. The preliminary clustering represents a
simplistic hint to the visual pattern identification; then, the
final pattern identification requires a relevant effort by the
designer.

Finally, the designer has to define an algorithm receiving the
golden output as input and capable of mimicking the effects
of the faults. Such an algorithmic description may present
a parametric fashion since the intensity and the distribution
of the corruption frequently vary among the images that
have been categorized together for the same visual pattern.
The outcome of this phase is a collection of image error
models identified for each analyzed filter/implementation to
be included in the database to support the error simulation.

C. Error Simulation

Thanks to the accurate error models defined in the previous
phases, the overall image processing application can be ana-
lyzed against faults by means of an error simulation approach.

The error simulator has been designed in Python, in ac-
cordance with the implementation of the image processing
application. Figure 3 sketches a simplified version of the main
Python script, which contains a high-level description of the
error simulator workflow. The loop in the main function
performs the classical iteration on the number of experiments
planned in the error simulation campaign. The loop body
executes three main steps: 1) loading of the inputs and golden
outputs, 2) execution of the application and error injection,
and 3) execution of the oracle to classify the experiment.

As shown in the listing, the application source code is
required to be integrated into the main loop; Lines 8-23 present

1 # main loop o f t h e e r r o r s i m u l a t o r
2 def main () :
3 l o g = []
4 f o r e in range (0 , NUM EXPS) :
5 # load da ta
6 [in img , back img , g o l d e n o u t] = l o a d d a t a ()
7 # a p p l i c a t i o n p i p e l i n e + e r r o r i n j e c t i o n
8 gray img = r g b 2 g r a y (in img)
9 [gray img , e r r] = i n j e c t e r r o r (gray img , r g b 2 g r a y)

10 i f e r r i s not None :
11 c o r r u p t e d = [gray img , e r r]
12 gauss img = g a u s s i a n (gray img)
13 [gauss img , e r r] = i n j e c t e r r o r (gauss img , g a u s s i a n)
14 i f e r r i s not None :
15 c o r r u p t e d = [gray img , e r r]
16 mov img = mot ion (gauss img , back img)
17 [mov img , e r r] = i n j e c t e r r o r (mov img , mot ion)
18 i f e r r i s not None :
19 c o r r u p t e d = [gray img , e r r]
20 er img = e r o s i o n (mov img)
21 [er img , e r r] = i n j e c t e r r o r (er img , e r o s i o n)
22 i f e r r i s not None :
23 c o r r u p t e d = [gray img , e r r]
24 # e v a l u a t e u s a b i l i t y
25 c o r r u p t e d . append (u s a b l e)
26 u s a b l e = o r a c l e (er img , g o l d e n o u t)
27 c o r r u p t e d . append (u s a b l e)
28 l o g . append (c o r r u p t e d)
29 re turn l o g
30

31 # e r r o r i n j e c t i o n f u n c t i o n
32 def i n j e c t e r r o r (img , f i l t e r f u n c) :
33 e r r o r = s e l e c t R n d E r r o r (f i l t e r f u n c)
34 c o r r i m g = a p p l y E r r o r (img , e r r o r)
35 re turn c o r r i m g
36

37 # example o f e r r o r model c o r r u p t i n g few p i x e l s
38 def g a u s s f e w p i x e l s e r r o r m o d e l (img) :
39 import numpy as np
40 rnd = np . random
41 noise num = rnd . r a n d i n t (1 , FEW PIXELS NUM)
42 o u t = np . copy (img)
43 f o r i in range (noise num) :
44 row = rnd . r a n d i n t (0 , o u t . shape [0])
45 c o l = rnd . r a n d i n t (0 , o u t . shape [1])
46 v a l = rnd . r a n d i n t (1 , 256)
47 o u t [row] [c o l] = (o u t [row] [c o l] + v a l) % 256
48 re turn o u t

Figure 3. The application-level error simulator.

the image processing pipeline used as case study in this paper,
where each filter is implemented by a separate function. As
an alternative, the application can be also be executed from
an external Python script, to increase the flexibility of the
tool. Moreover, the application source code is instrumented
with the error injection facilities (Lines 9-11 for the first
filter in the pipeline). In particular, since error models are
defined as corruptions of the golden output of the selected
filter, the injection facility is implemented as a saboteur by the
inject_error function whose call is located immediately
after the code implementing the filter.

When the inject_error function is called, it randomly
selects an error model for the specific filter/implementation
based on the occurrence probabilities characterized in the
error modeling phase2. Thus, the instantiated error model
is applied on the filter output, and the corrupted image is
fed to the remaining part of the application pipeline. In a
single experiment one filter is corrupted and the corresponding

2The implementation of the error model database and the selection of the
error to be injected are omitted for the sake of simplicity.

(a) Input (b) Output

Figure 4. Example of input and output images for the case study.

corrupted image is saved to be appended at the end to the
campaign log.

For the sake of completeness, Lines 38-48 present also
the implementation of an error model performing a random
corruption of few pixels in the image. Python NumPy library
has been used for image manipulation; being such a library
widely used for image processing, it allows the implemented
error simulator directly to be applicable to many applications.

The last step of each experiment is the execution of the
oracle, whose function is expected to be implemented by
designer according to the working scenario to classify results
as usable or not. The final output of the error simulator is the
log reporting for each experiment the injected error model and
the final usability response.

The error simulator may be required to be customized to
integrate and analyze a new application and the companion
oracle or to add new error models. Being a scripting language,
Python has been selected since it gives to the framework the
necessary flexibility and customizability of the source code at
a very low designer’s effort. Moreover, the error simulator is
really lightweight; it consists of around 1,000 lines of code,
including error models, application and oracle.

III. CASE STUDY

We here present the employment of proposed framework in
a case study considering a motion detection application.

A. Case Study Application

The considered case study is an application for the detection
of moving objects in a scene. The application has been applied
on images taken by a camera on an Italian highway. The
output of the application is the list of the bounding boxes to be
drawn around the identified cars (Figure 4). The application
is composed of a pipeline of four filters:

• an RGB to gray scale conversion;
• a Gaussian filter to remove the noise in the image;
• a Motion detection filter comparing the image against a

background one (previously defined with a Gaussian Mix-
ture Model) that produces a black/white image containing
the blobs associated with the moving objects; and

• an Erosion filter to improve the shape of the blobs.
Finally, a bounding box detector computes the coordinates of
the bounding boxes and draws them on the original image.

Due to the criticality of the downstream control application
that detects the moving cars, the oracle has been defined as
in [12] to verify that all identified bounding boxes overlap the

Table I
COMPARISON BETWEEN FAULT INJECTION AND ERROR SIMULATION

Error Model Fault Injection Error Simulation
Corrupted Usable Corrupted Usable

R
G

B
to

gr
ay

sc
al

e multi pixels 16 16 160 128
horizontal shift 4 0 40 0
horizontal line 11 3 110 10
square shift 83 0 830 0
few pixels 428 411 4280 4103
vertical shift 21 0 210 0
vertical noise 196 58 1960 486
Total 759 488 7590 4727
Avg. Usability 64.30% 62.28%

G
au

ss
ia

n

all black 158 0 1580 0
border 24 0 240 0
vertical line 33 1 330 0
horizontal noise 73 6 730 32
all gray 8 0 80 0
vertical region 18 0 180 0
colors corrupted 19 0 190 5
multi pixels 19 12 190 189
vertical noise thresh 12 1 120 18
horizontal shift 10 0 100 0
horizontal line 28 6 280 48
few pixels 94 77 940 837
all white 4 0 40 0
horizontal region 66 0 660 0
vertical shift 7 0 70 0
vertical noise 50 11 500 24
Total 623 114 6230 1153
Avg. Usability 18.30% 18.51%

M
ot

io
n

de
te

ct
io

n all black 4 0 40 0
multi pixels 187 145 1870 1855
thresh noise 131 6 1310 0
few pixels 217 146 2170 1791
vertical noise 61 0 610 0
Total 600 297 6000 3646
Avg. Usability 49.50% 60.77%

E
ro

si
on

all black 77 0 770 0
white border 9 0 90 0
bb modify 80 17 800 173
bb remove 3 0 30 13
bb white keep 29 0 290 0
bb noise 20 2 200 45
all white 59 0 590 0
vertical noise 19 5 190 26
bb shift 16 1 160 0
Total 312 25 3120 257
Avg. Usability 8.01% 8.23%

one in the golden output by a Jaccard index measure larger
than 50%.

B. Experimental Results

We aimed at validating the accuracy of the proposed error
simulation framework and at assessing the advantage of its
adoption w.r.t. the classical fault injection process. To this end,
we ran a set of fault injection experiments3 to be considered
as a ground truth, and we compared the outputs of these
experiments with the ones of a similar set of error simulations.
More precisely, we ran 10,000 random fault injections into
each filter composing the considered application. Whenever
the fault caused the filter output to be corrupted at least in one
pixel, we saved the output image. All the collected corrupted

3Filters have been synthesized in hardware as in [11].

images have then been fed in the subsequent filters to analyze
image usability. Columns three and four of Table I report the
total number of obtained corrupted images after fault injection
and the number of usable corrupted images, respectively. We
grouped the images w.r.t. the filter under analysis and w.r.t. the
error model identified in the corrupted image (as in [11]). The
identified error models for each filter are reported in the first
column of Table I; it can be observed that some error models,
e.g., vertical noise, are common to all filters, while other error
models are specific for one filter or a subset of filters, e.g.,
horizontal shift. A first consideration based on these results is
that, as it has already been discussed in the motivations for the
adoption of error simulation, a very small number of corrupted
images has been collected for each filter after 10,000 fault
injections (about 3% up to about 7%). To have a significant
experimental comparison, we ran (for each filter) a number of
error simulations equal to ten times the number of corrupted
images obtained by fault injection, by considering the same
occurrence distributions of each error model (as reported in the
fifth column of Table I). Again, after each error injection we
completed the simulation and we asked the oracle to classify
whether the obtained output image was usable or not (results
reported in the last column of Table I). It is worth noting that
the results on usability in the two approaches are very similar.
The only exception is represented by the Motion Detection
filter, the most complex one, that requires better refined error
models to be as accurate. Finally, to show the fidelity of
the defined error models, Figure 5 reports some examples
of corrupted images for the filters in the application after
fault injection and error simulation, respectively. As previously
mentioned, faults affecting the Motion Detection filter are the
most complex ones to be reproduced; indeed, the defined error
models are still not very accurate (especially visible in the last
example).

To have an idea of the benefits of the adoption of the
proposed error simulation framework in terms of required
analysis time w.r.t. fault injection we can notice that, for each
of the four filters in the application we injected 10,000 faults;
only about 2,200 out of the total 40,000 experiments actually
produced a corrupted output, taking around 20 hours. On the
other hand, the execution of 22,000 error simulations, all with
an error injection, required about 73 minutes. This benefit
becomes even more relevant when considering the application
of to a real experimental campaign where the number of
corrupted images required to build a significant dataset may
be hundreds of thousands (e.g., [4]).

IV. CONCLUSIONS

We presented a fast reliability evaluation framework for im-
age processing applications based on accurate error modeling
and simulation. The proposed framework allows the designer
to perform an in-depth usability-based analysis of the faults
that may occur while running the considered application; such
analysis, in turn, enables a fine tuning of the fault-hardening
technique to be applied, thus increasing efficiency without
compromising effectiveness. We applied the proposed idea to

Golden output Fault injection Error simulation
R

G
B

to
gr

ay
sc

al
e

G
au

ss
ia

n
M

ot
io

n
de

te
ct

io
n

E
ro

si
on

Figure 5. Example of image corruptions generated with fault injection and error simulation.

a motion detection application and we compared the achieved
accuracy and the required execution times with the ones of a
circuit-level fault injector, here considered as a ground truth.
The experiment highlighted a comparable accuracy in terms of
the simulated error effects, while requiring a limited amount
of time.

REFERENCES

[1] I. Yaqoob, L. U. Khan, S. M. A. Kazmi, M. Imran, N. Guizani, and
C. S. Hong, “Autonomous driving cars in smart cities: Recent advances,
requirements, and challenges,” IEEE Network, vol. 34, no. 1, pp. 174–
181, 2020.

[2] M. Xu, C. Li, S. Zhang, and P. L. Callet, “State-of-the-Art in 360°
Video/Image Processing: Perception, Assessment and Compression,”
IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 1,
pp. 5–26, 2020.

[3] S. Mittal, “A Survey of Techniques for Approximate Computing,” ACM
Computing Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[4] M. Biasielli, C. Bolchini, L. Cassano, E. Koyuncu, and A. Miele, “A
Neural Network Based Fault Management Scheme for Reliable Image
Processing,” IEEE Trans. on Comp., vol. 69, no. 5, pp. 764–776, 2020.

[5] M. Mousavi, H. R. Pourshaghaghi, M. Tahghighi, R. Jordans, and
H. Corporaal, “A Generic Methodology to Compute Design Sensitivity
to SEU in SRAM-Based FPGA,” in Proc. Euromicro Conf. on Digital
System Design (DSD), 2018, pp. 221–228.

[6] B. Du, S. Azimi, C. Sio, L. Bozzoli, and L. Sterpone, “On the Reliability
of Convolutional Neural Network Implementation on SRAM-based
FPGA,” in Proc. Intl. Symp. on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), 2019, pp. 1–6.

[7] I. Tsounis, A. Tsigkanos, V. Vlagkoulis, M. Psarakis, N. Kranitis, and
A. Paschalis, “Analyzing the Resilience to SEUs of an Image Data
Compression Core in a COTS SRAM FPGA,” in Proc. NASA/ESA Conf.
on Adaptive Hardware and Systems (AHS), 2019, pp. 17–24.

[8] S. T. Fleming and D. Thomas, “Injecting FPGA Configuration Faults in
Parallel,” in Proc. Intl. Conf. on Field-Programmable Technology (FPT),
2018, pp. 198–205.

[9] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. De-
Bardeleben, “TensorFI: A Flexible Fault Injection Framework for Ten-
sorFlow Applications,” in Proc. Intl. Symp. Software Reliability Engi-
neering, 2020, pp. 426–435.

[10] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding Error Propagation in Deep Learning
Neural Network (DNN) Accelerators and Applications,” in Proc. Intl.
Conf. High Performance Computing, Networking, Storage and Analysis
(SC), 2017, pp. 8:1–8:12.

[11] C. Bolchini, L. Cassano, A. Mazzeo, and A. Miele, “Error Modeling
for Image Processing Filters accelerated onto SRAM-based FPGAs,” in
Proc. Intl. Symp. On-Line Testing Robust System Design, 2020, pp. 1–6.

[12] F. Fernandes dos Santos, L. Carro, and P. Rech, “Kernel and layer
vulnerability factor to evaluate object detection reliability in GPUs,”
IET Computers Digital Techniques, vol. 13, no. 3, pp. 178–186, 2019.

