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Abstract—High-level synthesis (HLS) tools have provided 
significant productivity enhancements to the design flow of dig-
ital systems in recent years, resulting in highly-optimized cir-
cuits, in terms of area and latency. Given the evolution of hard-
ware attacks, which can render them vulnerable, it is essential 
to consider security as a significant aspect of the HLS design 
flow. Yet the need to evaluate a huge number of functionally 
equivalent designs of the HLS design space challenges hardware 
security evaluation methods (e.g., fault injection - FI cam-
paigns). In this work, we propose an evaluation methodology of 
hardware security properties of HLS-produced designs using 
state-of-the-art Graph Neural Network (GNN) approaches that 
achieves significant speedup and better scalability than typical 
evaluation methods (such as FI). We demonstrate the proposed 
methodology on a Double Modular Redundancy (DMR) coun-
termeasure applied on an AES SBox implementation, enhanced 
by diversifying the redundant modules through HLS directives. 
The experimental results show that GNNs can be efficiently 
trained to predict important hardware security metrics con-
cerning fault attacks (e.g., critical and detection error rates), by 
using regression. The proposed method predicts the fault vul-
nerability metrics of the HLS-based designs with high R-
squared scores and achieves huge speedup compared to fault in-
jection once the training of the GNN is completed. 
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I. INTRODUCTION 
Over the last decades, High-level Synthesis (HLS) has 

been proven a significant ally in developing quality designs 
targeting hardware platforms [1]. The methodology allows the 
coding of complex functionalities in widely accessible high-
level languages and automatically generates their register 
transfer-level (RTL) equivalent. This revolutionizes the de-
sign flow in terms of productivity and democratizes the do-
main of developing hardware to non-experts [2]. Modern HLS 
tools offer optimization and design exploration capabilities 
within their flow, through compilation directives that can han-
dle architectural considerations related to the design specifi-
cations [3]. The HLS paradigm role within the Electronic De-
sign Automation (EDA) flow can be proved crucial, consider-
ing the increasing demand for acceleration, enabled by mod-
ern hardware platforms [2]. Thus, the advantages of HLS can 
significantly assist developers to respond to the strict time-to-
market needs by implementing high-quality designs. 

 In many cases, hardware accelerators perform computa-
tions on sensitive data, as is the case of cryptographic [4] and 
Machine Learning [5] applications. Therefore, an additional 
important design aspect of these accelerators is their security 
level against attacks. Hardware attacks form a powerful threat 
against the security of these circuits and include fault and side-
channel attacks [6]. For instance, the injection of faults into 
the operation of a hardware accelerator can severely affect its 
security and reliability, as studied in [7].  

 One way to increase the resilience of accelerators against 
such attacks is the integration of the appropriate countermeas-
ures [8]. Though such countermeasures can be integrated at 

any level of abstraction (HLS, RTL, Gate, Layout), the most 
convenient and efficient level is the higher level used to de-
scribe the functionality of the accelerator. Lower abstraction 
levels might need to be used in case the countermeasure re-
quires lower-level information, to be implemented efficiently 
[9], at the cost of additional complexity and effort. In [10] and 
[11], countermeasures were applied outside of the HLS flow 
to avoid any optimization that could reduce the expected lev-
els of security. While such a methodology can assure that the 
HLS flow will not affect security properties, at the same time 
it loses all the advantages HLS offers.  

 Since HLS tools and optimizations do not consider hard-
ware security properties, it becomes imperative to perform 
evaluations and search the HLS design space to find the opti-
mal solutions concerning security [12][13]. Yet, traditional 
evaluation methods, such as fault injection (FI) campaigns 
[14] for evaluating fault detection countermeasures, require 
considerable time and computational efforts. Emulation and 
simulation techniques need to be employed to inject large 
numbers of faults, making these methods non-scalable, espe-
cially for complex circuits. As a compromise, statistical ap-
proaches are usually applied, at the cost of reduced accuracy. 
Statistical FI [15] inherently involves a margin of error and 
confidence level depending on the number of fault samples of 
the campaign. 

In this work, we present a methodology based on state-of-
the-art Graph Neural Networks (GNN) [16] proposing an ac-
celerated approach to evaluate the HLS design space, i.e., all 
the functionally equivalent different implementations of the 
“protected” hardware accelerator that can be produced by the 
HLS design flow, against such attacks. We take advantage of 
the ability to represent any design’s RTL netlist as a graph, so 
as to provide to a GNN the structure of the circuit. Once the 
GNN is trained to evaluate the efficiency of a countermeasure 
(e.g., the error detection coverage of a scheme that protects 
against fault attacks), it is able to predict error rate metrics in 
a small fraction of the time needed to perform a FI campaign. 
We study our proposed flow using an on-the-fly AES SBox 
high-level description [17] protected against fault attacks us-
ing double modular redundancy (DMR) [18]. In addition, we 
utilize the HLS synthesis directives to introduce a level of 
functional diversity [19], in an attempt to further enhance the 
fault detection capability of the DMR countermeasure against 
multiple (e.g., double)-fault attacks. The use of HLS synthesis 
directives to diversify the DMR replicas allowed us to gener-
ate a large number of functionally equivalent designs, assist-
ing with the creation of a dataset for our model’s training. The 
proposed approach can be integrated into the HLS design flow 
in order to evaluate the resilience of large quantities of HLS 
design space solutions. This way, it is possible to approximate 
the error detection capability of many HLS-generated diversi-
fied DMR schemes and, thus, to avoid the need to perform 
time-consuming FI campaigns. The experimental results 
showed that our proposed approach speeds up the evaluation 
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by several orders of magnitude (depending on the total num-
ber of designs, with a small loss of accuracy). 

The methodology and tools described in the current work 
will be published with an open-source license to the following 
link: https://github.com/******** 

The paper is organized as follows. Section II presents the 
necessary background on the topics of GNNs and hardware 
fault tolerance, the efforts of introducing reliability in HLS 
flows and the concept of diversity as a fault tolerance counter-
measure. Section III describes the methodology we followed 
to generate the designs under test. Section IV presents the de-
sign space under test. In Section V we present our results and 
lastly, in Section VI we provide our conclusions and potential 
future directions. 

II. RELATED WORK 

A. Graph Neural Networks for Security 

Learning-based approaches have already been developed 
to leverage the information of graph-like structures. Previ-
ously explored methods include Recurrent Neural Networks 
(RNNs) [20] and Convolutional Neural Networks (CNNs), 
which are, however, limited to regular structures (e.g., im-
ages) [21]. Graph Neural Networks (GNNs) can be viewed as 
a generalization of CNNs, extending their use for irregular 
structures, for applications mainly related to social networks 
and biochemical components [22]. 

Recent approaches apply GNNs as a tool for assisting ei-
ther the design or the evaluation of circuits [23]. Regarding 
the use of GNNs for circuit evaluation, in [24], the authors 
rely on them to perform reverse engineering by classifying 
subcircuits depending on their functionalities. In [25] and 
[26], the authors use GNNs as an alternative to FI-based reli-
ability evaluation. They train GNNs by means of FIs to the 
same circuit so as to model fault tolerance metrics of individ-
ual flip-flops. Therefore, their flow uses GNNs to perform 
tasks characterizing the nodes of the graph. In the current 
work we present a graph-oriented approach, resulting in a 
global metric.  

To the best of our knowledge, no work exists on GNN-
based graph-oriented prediction of the security or reliability 
(e.g., error detection) metrics of countermeasures integrated 
at the HLS. The graphs used for training the GNNs originate 
from the circuit’s RTL netlist, allowing faster evaluations 

(compared to gate-level evaluations) and analysis at the ab-
straction level following HLS. This way, the evaluation takes 
into account the effects of HLS on the integrated counter-
measures, without the impact of the synthesis flow following 
RTL. So far, mainly gate-level graphs are used in literature to 
provide the GNNs with more accurate information at a lower 
level of abstraction. 

B. Countermeasures against fault attacks 

Hardware redundancy is a well-established fault detection 
method [18] that replicates the protected component into sev-
eral copies. Typically, these copies are executed in parallel, 
and comparison logic (either a comparator or a majority selec-
tion voter) is used to detect - and potentially correct - the er-
rors. Hardware redundancy provides stronger protection 
against fault attacks than other, less resource intense redun-
dancy techniques, such as temporal or information redun-
dancy.  

The concept of diversity is applied to enhance the error 
detection capabilities of the hardware redundancy tech-
niques.Such countermeasures are designed to compute the 
same result in a different manner [27]. This way, the redun-
dant modules cannot be easily affected in the same way. Di-
versity can be applied at the algorithmic level [19] by using 
different algorithms to produce the same results.  

C. Fault Tolerance in HLS 

Attempts to introduce those countermeasures automati-
cally in the context of an HLS flow have been proposed in the 
literature. In [10], the authors apply partial Triple Modular Re-
dundancy (TMR) at the RTL output of HLS implementations. 
In order to determine the logic which needs to be triplicated, 
they use information from the HLS flow. Their approach leads 
to the minimization of the area overhead and also avoids the 
cross-optimizations between redundant modules. In [11], the 
authors apply hardware duplication to the control logic, which 
is considered a critical part of the circuit, by taking advantage 
of the access to the code’s intermediate representation created 
at the beginning of the HLS flow. 

Techniques to develop error-resilient circuits can also be 
directly integrated into the HLS flow. In [28], the authors treat 
fault tolerance as a design constraint and examine it, during 
the HLS flow, in parallel to the traditional constraints of area 
and latency. Works such as [29] explore the notion of a relia-
bility-aware HLS design space, achieving better results than 
applying post-HLS TMR. In both cases, the authors quantify 

   
Figure 1. GNN Training & Prediction Flow 

 



the fault tolerance by performing a theoretical analysis instead 
of actual FI campaigns, an approach that may lead to inaccu-
rate results.  

When combined with hardware redundancy, it is well-
known that diversity significantly improves fault tolerance 
rates [30]. Thus, it is important to quantify diversity, espe-
cially in an early design stage, and possibly avoid costly FI 
simulations. To the best of our knowledge, the following three 
methods exist in literature. D-metric [30] examines the prob-
ability of double faults affecting the outputs of a diverse DMR 
implementation in the same way, so that the modules produce 
the same erroneous output. The methodology requires the ex-
haustive simulation of all possible faults (time and location of 
faults), for all possible inputs of the design under evaluation. 
Hence, even for relatively small designs, this approach is not 
scalable for the majority of existing fault models. Another 
metric presented in the literature is the Diversity Metric based 
on circuit Path analysis (DIMP) [31]. In this case, the metric 
seeks the same patterns of gates among computational paths 
of the redundant modules of a countermeasure, yet the authors 
only present its use against timing attacks. Both methodolo-
gies require the examination of the circuit either at RTL or 
gate-level, with the latter achieving higher accuracy. In [32], 
the authors develop a predictive model, trained with the HLS 
reports containing high-level characteristics (e.g., latency, 
number of FFs, LUTs, etc.) of multiple DMR designs, and 
their corresponding gate-level D-metric. After the completion 
of the training phase, the model is used to predict the diversity 
of a design. Their model presents better results compared to 
DIMP and RTL D-metric.  

However, this approach may lead to misleading results. 
Specifically, in order to maximize diversity (i.e., by using a 
genetic algorithm), the methodology will attempt to differen-
tiate as much as possible high-level properties (e.g., resources 
and timing/latency), resulting in sub-optimal designs, while 
better choices might exist in the HLS design space. Addition-
ally, the approach in [32] is limited to a diversity-oriented 
countermeasure. Instead, our methodology can be generalized 
to examine any fault-tolerance countermeasure. 

III. EVALUATION FLOW 

The evaluation methodology and tools we propose are de-
picted in Fig. 1. The flow is separated into the GNN training 
flow and the GNN prediction flow. The following sub-sec-
tions detail each of these flows. 

A.  GNN Training Flow 

Given a high-level description (in C language) of a dupli-
cated hardware accelerator, we apply a random selection of 
Vivado HLS directives set to each redundant module in order 
to diversify them. A random synthesis directive is generated 
for each function and loop existing in the two modules.  

1) Generation of Random Directives and HLS Synthesis 

Firstly, the high-level input code is parsed to derive the 
names of the functions and loops included. Afterwards, a set 
of directives is applied, selected randomly from the collec-
tions of the function directives and the loop directives. Re-
garding functions, the collection includes the limitation of al-
location in modules and/or operational units, imposing ex-
pression balancing, inlining and pipelining. For loops, we se-
lect the application of a dataflow directive, pipelining or un-
rolling. Each of these directives can be differentiated through 

various synthesis options; for example, unrolling can be per-
formed by a different factor (in our flow, it can be set to 2, 3, 
5 or 7). Our aim is to be able to choose from a generic and 
broad pool of designs, and thus, there may exist cases that a 
directive has no actual effect on the function/loop (i.e., a di-
rective may impose the limitation of shifter logic on functions 
that do not contain any). In addition, the application of a di-
rective in one replica does not prohibit the use of the same 
directive in another replica. In that case, the same directive 
could be applied in the corresponding functions/loops of two 
replicas and not diversify them. This would result in designs 
with different degrees of diversity. 

Since Vivado HLS seeks optimization opportunities, the 
tool will enforce the two modules to operate sequentially, in 
order to perform resource sharing. Essentially, the counter-
measure will serve as temporal rather than hardware redun-
dancy, which was the initial goal. To remedy this behavior, 
an additional directive, #pragma HLS INTERFACE 
ap_ctrl_hs register port=return, was added to the top function 
of each DMR replica. The input code, along with the gener-
ated directive file, compose a solution of the implementation. 
We generate as many solutions as we need. Solutions are syn-
thesized, producing the HDL functional equivalents. The 
HDL files are added to a Vivado project, from where the RTL 
netlists, as well as the registers for the FI evaluation, are ex-
tracted for each design. 

2) Netlist Information Extraction 

In order to extract the graph from each RTL netlist, as well 
useful information to annotate the graph elements, we use the 
SPYDRNET framework [33]. Using the EDIF netlist of each 
design as input, the framework allows us to extract the infor-
mation that we consider relevant to the graph prediction task. 
GNN models require the use of the graph adjacency matrix as 
an input, in order to obtain the interconnectivity of nodes. The 
nodes of the input graphs can be enhanced with features to 
characterize their role in the graph. For our purposes, we have 
chosen the following features: a) the number of input and out-
put connections to other nodes, b) the node’s type (e.g., AND 
gate, multiplexer, etc.), and c) the number of connections to 
the primary inputs and outputs of the graph, if any exist. These 
features create vectors for each node, which are transformed 
into one-hot encoding representations to assist the model 
training. 

3) Simulation and Evaluation of FI 

At the same time, our automated flow proceeds to the eval-
uation of the countermeasure through FI campaigns. The 
adopted fault model implements a double-bit flip injection 
analysis, with the results serving as the ground truth used dur-
ing GNN training. Our analysis first performs Single Bit-Flip 
(SBF) injections using Vivado simulator, for all flip-flops 
(FFs) of the design exhaustively (e.g., in all clock cycles and 
all FFs). The time of the completion of the circuit’s operation 
is indicated by an output status signal (e.g., when the DONE 
signal is activated) present in the Vivado HLS-generated de-
signs. In order to retrieve the execution time, as well as the 
expected response, our flow first executes a fault-free simula-
tion with a specific test input (gold run). For the FI simulations 
(executed with the same specific test input), we capture the 
outputs of the two modules, as well as the state of the DONE 
signal at the completion time, defined in the gold run. We cat-
egorize the results of the FIs into the following cases: a)“Si-
lent” : Correct DONE and correct output in both redundant 



modules; the FI has no observable effect on the outputs, b) 
“Critical”: Correct DONE and both modules have produced 
the same erroneous output  c) “Detected”: Correct DONE and 
the outputs of the two modules are different, d)“Hang” : The 
FI has affected the DONE signal and the correctness of the 
output cannot be validated in either module.  

After completing the SBF campaign, we perform a post-
processing of the FI campaign results to deduce the Double 
Bit-Flip (DBF) fault model. Since the applied countermeasure 
is theoretically resilient to SBFs (i.e., assuming that the two 
replicas do not share resources, an SBF may affect only one 
replica), the DBF campaign is necessary for the evaluation. 
We examined all the combinations of two bit-flips; one bit-
flip is injected into the first redundant module and one into the 
second module, thus excluding cases where two faults fall in 
the same module. This DBF evaluation does not require any 
additional simulations. Instead, we examine the Critical and 
Detected cases of each design’s SBF FI campaign. Again, we 
take advantage of parallelization capabilities: We were able to 
perform multiple FI simulations at the same time, significantly 
speeding up the dataset generation.  

4) GNN Model Training 

 This subsection describes the prediction mechanism that 
we developed using Python and the PyTorch Geometric li-
brary. The initial training was performed using a set of 1022 
designs. Each design consists of the inputs necessary to 
GNNs: the adjacency matrix of each graph, the node feature 
vectors of the graph, transformed in one-hot encoding repre-
sentations (translating to 818 input nodes for the GNN). The 
training label of the GNN for each design is the ground truth 
value resulting from the DBF FI campaingns - namely the crit-
ical error rate (CER), the detected error rate (DER), the hang 
error rate (HER) and the silent error rate (SER). We chose to 
use separate models for the training of each graph label to gen-
erate the best model for each case. To overcome training is-
sues arising from the fact that the CERs of our target circuits 
range in a set of very small values (e.g., less than 1%), we used 
their logarithm instead of their actual value during training. 

 Our GNN model consists of three graph convolution lay-
ers, each followed by a ReLU activation function. After those, 
a global max pooling layer and a linear layer are used as the 
output layer. This scheme is presented in Fig. 2. As cost func-
tion during the training, we use the Mean Square Error (MSE), 
being the standard for regression problems. To optimize the 
training process, we incorporated a dynamic reduction of the 
learning rate, to overcome learning plateaus. If the loss func-
tion metric has stopped improving for 10 consecutive learning 
epochs, the mechanism lowers the learning rate parameter. 

The learning rate parameter controls how a model’s weights 
are updated in response to the loss function metric, and low-
ering it on plateaus results in finer training.  

 In order to efficiently train our GNN model, we resorted 
to k-fold cross validation. Essentially, k rounds of training 
(folds) are performed, resulting in k different models. For our 
case, k was empirically set to 5. Prior to the training process, 
we shuffled the dataset and saved 10% of the designs for a 
secondary evaluation (testing). The remaining 90% of the da-
taset was further split into 20% to be used for validation and 
80% for training. In each fold, different fractions of the eval-
uation set were considered. Each fold was trained for a maxi-
mum of 1000 epochs, with an early stop condition set in 100 
epochs after the minimum MSE loss regarding the validation 
set was observed. For that epoch, the fold’s model was saved 
and re-evaluated using the test set. 

There exist several graph network architectures that could 
be adopted in our approach regarding the convolution layer. 
The most prominent GNN types used in the literature are the 
Graph Convolutional Networks (GCN) [34] and attention-
enabled graphs (GATs) [35]. We performed the training 
process for both cases, as well as different hyperparameters 
settings regarding the number of hidden nodes per convolution 
layer (64 and 128). 

Table I presents the training results for all error rates. The 
results are for the Canright SBox used as a demonstration ve-
hicle in the paper and will be discussed in the Experimental 
Results section. We use the R-squared achieved by the best 
fold model on the test dataset (which has not participated in 
the training or the validation process, hence is new to the 
model). It is calculated by summing the squared difference of 
predictions and ground truths, deriving it with the squared 
difference of ground truths to their mean value. The resulting 
ratio is then subtracted from 1. The R-squared value demon-
strates the degree the learnable characteristics (in our case the 
node features) lead to the predicted graph error rate. The 
closer the R-squared to 1 is, the better the model predicts the 
actual error rates.  

B. GNN Graph Prediction Flow 

After deriving the best models for each error rate, we can 
use them as a prediction mechanism for the characterization 
of each diverse DMR design. In this case, our flow accepts as 
input the RTL netlist in EDIF format as depicted in Fig. 1. 
Then, the netlist information extraction is applied to each new 
design under test, followed by feature and graph adjacency 
matrix extraction, similar to the training flow. Instead of per-
forming fault injections this time, the trained model can be 
queried to provide the prediction for the error rate of interest.  

IV. DESIGN UNDER EVALUATION 

 For this study, we have used the high-level version of the 
Canright Sbox [17] as a test case. It is a well-known imple-
mentation of AES SubBytes transformation. Specifically, 
Canright SBox performs an inversion of a polynomial of 7th 
degree, with the use of the tower field approach. Furthermore, 

Table I. R-squared values for different settings, tested on test set 
Model CER DER HER SER 

CCN, 64 0.86 0.99 0.39 0.49 

GCN, 128 0.89 0.86 0.87 0.78 

GAT, 64 0.75 0.01 0.06 0.12 

GAT, 128 0.84 -2e11 0.24 0.09 

 

  
Figure 2. The GNN Model 

 



this specific implementation is readily available online and de-
scribed in platform-independent C code allowing result repro-
duction. The Canright SBox provides an adequate design 
space to explore the effects of HLS directives over the func-
tionality as well as a valid point of discussion over the need of 
fault resilience in cryptographic components. Module dupli-
cation was introduced as a countermeasure at the high-level C 
description. A wrapper function passes the 8-bit input into the 
two separate instances of SBox and merges their 8-bit result 
into a single 16-bit output. The outputs of the two SBoxes are 
compared externally to detect errors.  The comparison logic 
was not included in the wrapper; the errors in the checker do 
not affect the reliability evaluation of the HLS designs, which 
is the target of our approach. 

V. EXPERIMENTAL RESULTS 
In this section, we present and discuss the results of the 

training and the validation of the GNN.  

A. Ground Truth & Prediction Results Analysis 

First, we examine the quality of the high-level diverse 
DMR by means of the fault injection campaign results. Table 
II presents the CER metric for three designs: a) a simple 
DMR implementation, b) the design in our randomly gener-
ated dataset with the lowest CER (best) , and c) the design 
with the highest CER (worst). We focus on the CER metric 
since it’s a key indicator for the effect of the countermeasure. 
Observe that since the introduction of directives was executed 
in a random way, the flow produced both better and worse 
designs than the simple DMR in terms of CER for DBF. Re-
garding SBFs, the DMR countermeasure presents 0% CER in 
all cases, depicting the successful application of DMR 
through HLS. For DBFs, the flow produced designs with far 
better CER than the simple DMR – 0.0015% CER for the best 
design, compared to 0.02% CER for the simple DMR appli-
cation. The worst design of the dataset produced a CER of 
0.3%, an order of magnitude higher than the simple DMR. 

We further examined diversified DMR designs producing 
high CERs and noted that directives with the same or similar 
effect were applied to corresponding functions and loops of 
the two copies. That caused the elimination or reduction of 
diversity for those functions, worsening the CER even in 
comparison with the non-diversified DMR. For example, for 
the worst Diverse DMR case, we note the use of excessive 
inlining in the same code regions among the two replicas. In 
contrast, for the best Diverse DMR design generated by the 
flow, the inlining directives are mainly focused on one rep-
lica. Hence, specific directives need to be used under condi-
tions or be entirely avoided when fault tolerance is consid-
ered. Regarding the CER model’s prediction capabilities, for 
all cases, the difference between ground truth and prediction 
is less than 0.1%. Given the speedup achieved by the meth-
odology, as shown in the following section, this error margin 
can be considered acceptable. Even if statistical FI is used, 
achieving such error margin is computationally expensive. 
Furthermore, the use of this prediction mechanism leaves 
room for improvement, by extending the examination for dif-
ferent models and parameterizations. 

B. GNN Error Rate Predictions 

Referring to Table I, we demonstrate the successful train-
ing of the prediction mechanism on the test datasets. In all 
cases, the use of GCN was proved better than GAT. For the 
case of GCN using 128 hidden nodes among its hidden layers, 
all error rates approach R-squared values of 0.8, a value that 
empirically verifies the quality of the resulting models. The 
highest R-squared value among those cases was achieved by 
the model that predicts CER, with 0.89 and the lowest for the 
SER prediction, with 0.78. A notable case is the R-square 
value of DER achieved by a GCN model, set with 64 hidden 
nodes, which is equal to 0.99. 

C. Evaluation Flow Performance 

Lastly, we present results demonstrating the speedup 
achieved by our evaluation flow. All computations were per-
formed on an Intel® i7-9750H  6-core CPU, @2.60GHz. On 
average, the exhaustive SBF evaluation of each Canright 
SBox design took 20 minutes, while the calculation of the 
DBF rates took 1.5 minutes. We were able to parallelize the 
SBF FI campaigns by a factor of 4. A design space equal to 
the size of our dataset (1022) was evaluated using FI cam-
paigns in 91.73 hours. The PyTorch Geometric Python library 
allowed us to perform the training process on a GPU board 
(NVIDIA GTX 1660), with 6GB of dedicated memory. The 
mean k-fold cross evaluation time for each model training 
was 2.07 hours due to the early stop condition. Up to three 
parallel training processes were possible at the same time, as 
restricted by the platform’s memory size. Thus, sufficiently 
trained prediction models for the four error rates could be 
available in 95.87 hours (i.e., 91.73 hours for running the SBF 
experiments and calculating the DBF rates plus 2 x 2.07 hours 
for training the four GNN models). Afterwards, the prediction 
of all error rates for each design beyond the training set can 
be performed in ~ 4 ms.  

Based on the above execution times, we can estimate the 
speedup achieved by our approach compared to the tradi-
tional FI campaings and how it scales with the number of de-
signs under evaluation. For example, the time needed to per-
form the necessary fault injection simulations and train the 
model with 1k designs takes approximately 93.73 hours. A 
smaller dataset (i.e. 100 designs) may not be enough to 
achieve the expected prediction metrics. The prediction of the 
error rates for a dataset of 10k designs can be performed in 
an additional 0.01 hours (36 seconds) if 1000 of those designs 
are dedicated to model training. The efficiency of our meth-
odology becomes more prominent for larger numbers of de-
signs; assuming the case of 1 million designs, an evaluation 
through FI campaigns would last 374 days, while the predic-
tion of the error rates after the training process would only 
take an additional 6 minutes. The speedup achieved starts 
from 9.5x for 10k designs to 944.5x for 1 million designs for 
the given test case, as demonstrated in Table III. Lastly, it is 
worth noting that the design under examination is an optimis-
tic test case regarding the evaluation methodology using FI . 

 Table III. Comparison of traditional FI Campaigns with our 
methodology execution times (in minutes) & achieved speedup 

#Designs FI Cam-

paigns 

Training & 

Prediction 

Speedup 

100 8.96 - - 

1,000 89.58 93.73 - 

10,000 895.83 93.74 9.56 

100,000 8958.33 93.84 95.47 

1000000 89583.33 94.84 944.60 
 

Table II. SBF & DBF CER metrics for DMR protected and Di-
verse DMR protected Canright SBox 

Canright SBox  
Designs SBF CER DBF CER  Predicted 

DBF CER  

DMR 0 0.02 0.1 

Diverse DMR (best) 0 0.0015 0.0015 

Diverse DMR (worst) 0 0.3 0.21 

 



The examination of a more complex design (i.e. an AES hard-
ware module) would lead to an exponential increase in the 
duration of its exhaustive FI examination, giving a huge ad-
vantage in adopting the proposed GNN evaluation methodol-
ogy. 

VI. CONCLUSIONS & FUTURE WORK 

In this work, we present an evaluation methodology of the 
prediction of security properties of hardware designs using 
state-of-the-art GNNs. Our approach is motivated by the fact 
that traditional fault evaluation methodologies may add sig-
nificant overhead to the design and evaluation of hardware 
countermeasures. As a case study, we used an SBox imple-
mentation, enhanced with a diverse DMR countermeasure 
generated using HLS. We train the GNN model with the ac-
tual evaluation metrics extracted from exhaustive FI simula-
tions and show that GNNs are able to take advantage of the 
properties of the netlist structure. Our model managed to 
closely approximate the values of fault metrics, regarding 
critical, detected, hang and silent error rates. In addition, the 
methodology achieved considerable speedup compared to 
classical FI simulation evaluations. Most importantly, the 
evaluation flow can be easily generalized for other designs, 
countermeasures as well as different fault models. We aim to 
continue the research over the topic, by examining more ad-
vanced GNN frameworks to further enhance the prediction 
quality of security metrics. 
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