
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

On the Prediction of Hardware Security Properties
of HLS Designs Using Graph Neural Networks

Amalia-Artemis Koufopoulou (1), Athanasios Papadimitriou (1) (2), Aggelos Pikrakis (1), Mihalis Psarakis (1) and David Hely(3)

(1) Dept. of Informatics, University of Piraeus, Piraeus, Greece
(2) Dept. of Digital Systems, University of the Peloponnese, Sparta, Greece

(3) Univ. Grenoble Alpes, F-26000 Valence, France
amaliakoufopulou@gmail.com, a.papadimitriou@uop.gr, mpsarak@unipi.gr, pikrakis@unipi.gr, david.hely@lcis.grenoble-inp.fr

Abstract—High-level synthesis (HLS) tools have provided
significant productivity enhancements to the design flow of dig-
ital systems in recent years, resulting in highly-optimized cir-
cuits, in terms of area and latency. Given the evolution of hard-
ware attacks, which can render them vulnerable, it is essential
to consider security as a significant aspect of the HLS design
flow. Yet the need to evaluate a huge number of functionally
equivalent designs of the HLS design space challenges hardware
security evaluation methods (e.g., fault injection - FI cam-
paigns). In this work, we propose an evaluation methodology of
hardware security properties of HLS-produced designs using
state-of-the-art Graph Neural Network (GNN) approaches that
achieves significant speedup and better scalability than typical
evaluation methods (such as FI). We demonstrate the proposed
methodology on a Double Modular Redundancy (DMR) coun-
termeasure applied on an AES SBox implementation, enhanced
by diversifying the redundant modules through HLS directives.
The experimental results show that GNNs can be efficiently
trained to predict important hardware security metrics con-
cerning fault attacks (e.g., critical and detection error rates), by
using regression. The proposed method predicts the fault vul-
nerability metrics of the HLS-based designs with high R-
squared scores and achieves huge speedup compared to fault in-
jection once the training of the GNN is completed.

Keywords—Hardware Security, High-level Synthesis (HLS),
Graph Neural Networks (GNN), Regression, Fault Injection (FI)
Attacks, Countermeasures

I. INTRODUCTION
Over the last decades, High-level Synthesis (HLS) has

been proven a significant ally in developing quality designs
targeting hardware platforms [1]. The methodology allows the
coding of complex functionalities in widely accessible high-
level languages and automatically generates their register
transfer-level (RTL) equivalent. This revolutionizes the de-
sign flow in terms of productivity and democratizes the do-
main of developing hardware to non-experts [2]. Modern HLS
tools offer optimization and design exploration capabilities
within their flow, through compilation directives that can han-
dle architectural considerations related to the design specifi-
cations [3]. The HLS paradigm role within the Electronic De-
sign Automation (EDA) flow can be proved crucial, consider-
ing the increasing demand for acceleration, enabled by mod-
ern hardware platforms [2]. Thus, the advantages of HLS can
significantly assist developers to respond to the strict time-to-
market needs by implementing high-quality designs.

 In many cases, hardware accelerators perform computa-
tions on sensitive data, as is the case of cryptographic [4] and
Machine Learning [5] applications. Therefore, an additional
important design aspect of these accelerators is their security
level against attacks. Hardware attacks form a powerful threat
against the security of these circuits and include fault and side-
channel attacks [6]. For instance, the injection of faults into
the operation of a hardware accelerator can severely affect its
security and reliability, as studied in [7].

 One way to increase the resilience of accelerators against
such attacks is the integration of the appropriate countermeas-
ures [8]. Though such countermeasures can be integrated at

any level of abstraction (HLS, RTL, Gate, Layout), the most
convenient and efficient level is the higher level used to de-
scribe the functionality of the accelerator. Lower abstraction
levels might need to be used in case the countermeasure re-
quires lower-level information, to be implemented efficiently
[9], at the cost of additional complexity and effort. In [10] and
[11], countermeasures were applied outside of the HLS flow
to avoid any optimization that could reduce the expected lev-
els of security. While such a methodology can assure that the
HLS flow will not affect security properties, at the same time
it loses all the advantages HLS offers.

 Since HLS tools and optimizations do not consider hard-
ware security properties, it becomes imperative to perform
evaluations and search the HLS design space to find the opti-
mal solutions concerning security [12][13]. Yet, traditional
evaluation methods, such as fault injection (FI) campaigns
[14] for evaluating fault detection countermeasures, require
considerable time and computational efforts. Emulation and
simulation techniques need to be employed to inject large
numbers of faults, making these methods non-scalable, espe-
cially for complex circuits. As a compromise, statistical ap-
proaches are usually applied, at the cost of reduced accuracy.
Statistical FI [15] inherently involves a margin of error and
confidence level depending on the number of fault samples of
the campaign.

In this work, we present a methodology based on state-of-
the-art Graph Neural Networks (GNN) [16] proposing an ac-
celerated approach to evaluate the HLS design space, i.e., all
the functionally equivalent different implementations of the
“protected” hardware accelerator that can be produced by the
HLS design flow, against such attacks. We take advantage of
the ability to represent any design’s RTL netlist as a graph, so
as to provide to a GNN the structure of the circuit. Once the
GNN is trained to evaluate the efficiency of a countermeasure
(e.g., the error detection coverage of a scheme that protects
against fault attacks), it is able to predict error rate metrics in
a small fraction of the time needed to perform a FI campaign.
We study our proposed flow using an on-the-fly AES SBox
high-level description [17] protected against fault attacks us-
ing double modular redundancy (DMR) [18]. In addition, we
utilize the HLS synthesis directives to introduce a level of
functional diversity [19], in an attempt to further enhance the
fault detection capability of the DMR countermeasure against
multiple (e.g., double)-fault attacks. The use of HLS synthesis
directives to diversify the DMR replicas allowed us to gener-
ate a large number of functionally equivalent designs, assist-
ing with the creation of a dataset for our model’s training. The
proposed approach can be integrated into the HLS design flow
in order to evaluate the resilience of large quantities of HLS
design space solutions. This way, it is possible to approximate
the error detection capability of many HLS-generated diversi-
fied DMR schemes and, thus, to avoid the need to perform
time-consuming FI campaigns. The experimental results
showed that our proposed approach speeds up the evaluation

mailto:mpsarak@unipi.gr

by several orders of magnitude (depending on the total num-
ber of designs, with a small loss of accuracy).

The methodology and tools described in the current work
will be published with an open-source license to the following
link: https://github.com/********

The paper is organized as follows. Section II presents the
necessary background on the topics of GNNs and hardware
fault tolerance, the efforts of introducing reliability in HLS
flows and the concept of diversity as a fault tolerance counter-
measure. Section III describes the methodology we followed
to generate the designs under test. Section IV presents the de-
sign space under test. In Section V we present our results and
lastly, in Section VI we provide our conclusions and potential
future directions.

II. RELATED WORK

A. Graph Neural Networks for Security

Learning-based approaches have already been developed
to leverage the information of graph-like structures. Previ-
ously explored methods include Recurrent Neural Networks
(RNNs) [20] and Convolutional Neural Networks (CNNs),
which are, however, limited to regular structures (e.g., im-
ages) [21]. Graph Neural Networks (GNNs) can be viewed as
a generalization of CNNs, extending their use for irregular
structures, for applications mainly related to social networks
and biochemical components [22].

Recent approaches apply GNNs as a tool for assisting ei-
ther the design or the evaluation of circuits [23]. Regarding
the use of GNNs for circuit evaluation, in [24], the authors
rely on them to perform reverse engineering by classifying
subcircuits depending on their functionalities. In [25] and
[26], the authors use GNNs as an alternative to FI-based reli-
ability evaluation. They train GNNs by means of FIs to the
same circuit so as to model fault tolerance metrics of individ-
ual flip-flops. Therefore, their flow uses GNNs to perform
tasks characterizing the nodes of the graph. In the current
work we present a graph-oriented approach, resulting in a
global metric.

To the best of our knowledge, no work exists on GNN-
based graph-oriented prediction of the security or reliability
(e.g., error detection) metrics of countermeasures integrated
at the HLS. The graphs used for training the GNNs originate
from the circuit’s RTL netlist, allowing faster evaluations

(compared to gate-level evaluations) and analysis at the ab-
straction level following HLS. This way, the evaluation takes
into account the effects of HLS on the integrated counter-
measures, without the impact of the synthesis flow following
RTL. So far, mainly gate-level graphs are used in literature to
provide the GNNs with more accurate information at a lower
level of abstraction.

B. Countermeasures against fault attacks

Hardware redundancy is a well-established fault detection
method [18] that replicates the protected component into sev-
eral copies. Typically, these copies are executed in parallel,
and comparison logic (either a comparator or a majority selec-
tion voter) is used to detect - and potentially correct - the er-
rors. Hardware redundancy provides stronger protection
against fault attacks than other, less resource intense redun-
dancy techniques, such as temporal or information redun-
dancy.

The concept of diversity is applied to enhance the error
detection capabilities of the hardware redundancy tech-
niques.Such countermeasures are designed to compute the
same result in a different manner [27]. This way, the redun-
dant modules cannot be easily affected in the same way. Di-
versity can be applied at the algorithmic level [19] by using
different algorithms to produce the same results.

C. Fault Tolerance in HLS

Attempts to introduce those countermeasures automati-
cally in the context of an HLS flow have been proposed in the
literature. In [10], the authors apply partial Triple Modular Re-
dundancy (TMR) at the RTL output of HLS implementations.
In order to determine the logic which needs to be triplicated,
they use information from the HLS flow. Their approach leads
to the minimization of the area overhead and also avoids the
cross-optimizations between redundant modules. In [11], the
authors apply hardware duplication to the control logic, which
is considered a critical part of the circuit, by taking advantage
of the access to the code’s intermediate representation created
at the beginning of the HLS flow.

Techniques to develop error-resilient circuits can also be
directly integrated into the HLS flow. In [28], the authors treat
fault tolerance as a design constraint and examine it, during
the HLS flow, in parallel to the traditional constraints of area
and latency. Works such as [29] explore the notion of a relia-
bility-aware HLS design space, achieving better results than
applying post-HLS TMR. In both cases, the authors quantify

Figure 1. GNN Training & Prediction Flow

the fault tolerance by performing a theoretical analysis instead
of actual FI campaigns, an approach that may lead to inaccu-
rate results.

When combined with hardware redundancy, it is well-
known that diversity significantly improves fault tolerance
rates [30]. Thus, it is important to quantify diversity, espe-
cially in an early design stage, and possibly avoid costly FI
simulations. To the best of our knowledge, the following three
methods exist in literature. D-metric [30] examines the prob-
ability of double faults affecting the outputs of a diverse DMR
implementation in the same way, so that the modules produce
the same erroneous output. The methodology requires the ex-
haustive simulation of all possible faults (time and location of
faults), for all possible inputs of the design under evaluation.
Hence, even for relatively small designs, this approach is not
scalable for the majority of existing fault models. Another
metric presented in the literature is the Diversity Metric based
on circuit Path analysis (DIMP) [31]. In this case, the metric
seeks the same patterns of gates among computational paths
of the redundant modules of a countermeasure, yet the authors
only present its use against timing attacks. Both methodolo-
gies require the examination of the circuit either at RTL or
gate-level, with the latter achieving higher accuracy. In [32],
the authors develop a predictive model, trained with the HLS
reports containing high-level characteristics (e.g., latency,
number of FFs, LUTs, etc.) of multiple DMR designs, and
their corresponding gate-level D-metric. After the completion
of the training phase, the model is used to predict the diversity
of a design. Their model presents better results compared to
DIMP and RTL D-metric.

However, this approach may lead to misleading results.
Specifically, in order to maximize diversity (i.e., by using a
genetic algorithm), the methodology will attempt to differen-
tiate as much as possible high-level properties (e.g., resources
and timing/latency), resulting in sub-optimal designs, while
better choices might exist in the HLS design space. Addition-
ally, the approach in [32] is limited to a diversity-oriented
countermeasure. Instead, our methodology can be generalized
to examine any fault-tolerance countermeasure.

III. EVALUATION FLOW

The evaluation methodology and tools we propose are de-
picted in Fig. 1. The flow is separated into the GNN training
flow and the GNN prediction flow. The following sub-sec-
tions detail each of these flows.

A. GNN Training Flow

Given a high-level description (in C language) of a dupli-
cated hardware accelerator, we apply a random selection of
Vivado HLS directives set to each redundant module in order
to diversify them. A random synthesis directive is generated
for each function and loop existing in the two modules.

1) Generation of Random Directives and HLS Synthesis

Firstly, the high-level input code is parsed to derive the
names of the functions and loops included. Afterwards, a set
of directives is applied, selected randomly from the collec-
tions of the function directives and the loop directives. Re-
garding functions, the collection includes the limitation of al-
location in modules and/or operational units, imposing ex-
pression balancing, inlining and pipelining. For loops, we se-
lect the application of a dataflow directive, pipelining or un-
rolling. Each of these directives can be differentiated through

various synthesis options; for example, unrolling can be per-
formed by a different factor (in our flow, it can be set to 2, 3,
5 or 7). Our aim is to be able to choose from a generic and
broad pool of designs, and thus, there may exist cases that a
directive has no actual effect on the function/loop (i.e., a di-
rective may impose the limitation of shifter logic on functions
that do not contain any). In addition, the application of a di-
rective in one replica does not prohibit the use of the same
directive in another replica. In that case, the same directive
could be applied in the corresponding functions/loops of two
replicas and not diversify them. This would result in designs
with different degrees of diversity.

Since Vivado HLS seeks optimization opportunities, the
tool will enforce the two modules to operate sequentially, in
order to perform resource sharing. Essentially, the counter-
measure will serve as temporal rather than hardware redun-
dancy, which was the initial goal. To remedy this behavior,
an additional directive, #pragma HLS INTERFACE
ap_ctrl_hs register port=return, was added to the top function
of each DMR replica. The input code, along with the gener-
ated directive file, compose a solution of the implementation.
We generate as many solutions as we need. Solutions are syn-
thesized, producing the HDL functional equivalents. The
HDL files are added to a Vivado project, from where the RTL
netlists, as well as the registers for the FI evaluation, are ex-
tracted for each design.

2) Netlist Information Extraction

In order to extract the graph from each RTL netlist, as well
useful information to annotate the graph elements, we use the
SPYDRNET framework [33]. Using the EDIF netlist of each
design as input, the framework allows us to extract the infor-
mation that we consider relevant to the graph prediction task.
GNN models require the use of the graph adjacency matrix as
an input, in order to obtain the interconnectivity of nodes. The
nodes of the input graphs can be enhanced with features to
characterize their role in the graph. For our purposes, we have
chosen the following features: a) the number of input and out-
put connections to other nodes, b) the node’s type (e.g., AND
gate, multiplexer, etc.), and c) the number of connections to
the primary inputs and outputs of the graph, if any exist. These
features create vectors for each node, which are transformed
into one-hot encoding representations to assist the model
training.

3) Simulation and Evaluation of FI

At the same time, our automated flow proceeds to the eval-
uation of the countermeasure through FI campaigns. The
adopted fault model implements a double-bit flip injection
analysis, with the results serving as the ground truth used dur-
ing GNN training. Our analysis first performs Single Bit-Flip
(SBF) injections using Vivado simulator, for all flip-flops
(FFs) of the design exhaustively (e.g., in all clock cycles and
all FFs). The time of the completion of the circuit’s operation
is indicated by an output status signal (e.g., when the DONE
signal is activated) present in the Vivado HLS-generated de-
signs. In order to retrieve the execution time, as well as the
expected response, our flow first executes a fault-free simula-
tion with a specific test input (gold run). For the FI simulations
(executed with the same specific test input), we capture the
outputs of the two modules, as well as the state of the DONE
signal at the completion time, defined in the gold run. We cat-
egorize the results of the FIs into the following cases: a)“Si-
lent” : Correct DONE and correct output in both redundant

modules; the FI has no observable effect on the outputs, b)
“Critical”: Correct DONE and both modules have produced
the same erroneous output c) “Detected”: Correct DONE and
the outputs of the two modules are different, d)“Hang” : The
FI has affected the DONE signal and the correctness of the
output cannot be validated in either module.

After completing the SBF campaign, we perform a post-
processing of the FI campaign results to deduce the Double
Bit-Flip (DBF) fault model. Since the applied countermeasure
is theoretically resilient to SBFs (i.e., assuming that the two
replicas do not share resources, an SBF may affect only one
replica), the DBF campaign is necessary for the evaluation.
We examined all the combinations of two bit-flips; one bit-
flip is injected into the first redundant module and one into the
second module, thus excluding cases where two faults fall in
the same module. This DBF evaluation does not require any
additional simulations. Instead, we examine the Critical and
Detected cases of each design’s SBF FI campaign. Again, we
take advantage of parallelization capabilities: We were able to
perform multiple FI simulations at the same time, significantly
speeding up the dataset generation.

4) GNN Model Training

 This subsection describes the prediction mechanism that
we developed using Python and the PyTorch Geometric li-
brary. The initial training was performed using a set of 1022
designs. Each design consists of the inputs necessary to
GNNs: the adjacency matrix of each graph, the node feature
vectors of the graph, transformed in one-hot encoding repre-
sentations (translating to 818 input nodes for the GNN). The
training label of the GNN for each design is the ground truth
value resulting from the DBF FI campaingns - namely the crit-
ical error rate (CER), the detected error rate (DER), the hang
error rate (HER) and the silent error rate (SER). We chose to
use separate models for the training of each graph label to gen-
erate the best model for each case. To overcome training is-
sues arising from the fact that the CERs of our target circuits
range in a set of very small values (e.g., less than 1%), we used
their logarithm instead of their actual value during training.

 Our GNN model consists of three graph convolution lay-
ers, each followed by a ReLU activation function. After those,
a global max pooling layer and a linear layer are used as the
output layer. This scheme is presented in Fig. 2. As cost func-
tion during the training, we use the Mean Square Error (MSE),
being the standard for regression problems. To optimize the
training process, we incorporated a dynamic reduction of the
learning rate, to overcome learning plateaus. If the loss func-
tion metric has stopped improving for 10 consecutive learning
epochs, the mechanism lowers the learning rate parameter.

The learning rate parameter controls how a model’s weights
are updated in response to the loss function metric, and low-
ering it on plateaus results in finer training.

 In order to efficiently train our GNN model, we resorted
to k-fold cross validation. Essentially, k rounds of training
(folds) are performed, resulting in k different models. For our
case, k was empirically set to 5. Prior to the training process,
we shuffled the dataset and saved 10% of the designs for a
secondary evaluation (testing). The remaining 90% of the da-
taset was further split into 20% to be used for validation and
80% for training. In each fold, different fractions of the eval-
uation set were considered. Each fold was trained for a maxi-
mum of 1000 epochs, with an early stop condition set in 100
epochs after the minimum MSE loss regarding the validation
set was observed. For that epoch, the fold’s model was saved
and re-evaluated using the test set.

There exist several graph network architectures that could
be adopted in our approach regarding the convolution layer.
The most prominent GNN types used in the literature are the
Graph Convolutional Networks (GCN) [34] and attention-
enabled graphs (GATs) [35]. We performed the training
process for both cases, as well as different hyperparameters
settings regarding the number of hidden nodes per convolution
layer (64 and 128).

Table I presents the training results for all error rates. The
results are for the Canright SBox used as a demonstration ve-
hicle in the paper and will be discussed in the Experimental
Results section. We use the R-squared achieved by the best
fold model on the test dataset (which has not participated in
the training or the validation process, hence is new to the
model). It is calculated by summing the squared difference of
predictions and ground truths, deriving it with the squared
difference of ground truths to their mean value. The resulting
ratio is then subtracted from 1. The R-squared value demon-
strates the degree the learnable characteristics (in our case the
node features) lead to the predicted graph error rate. The
closer the R-squared to 1 is, the better the model predicts the
actual error rates.

B. GNN Graph Prediction Flow

After deriving the best models for each error rate, we can
use them as a prediction mechanism for the characterization
of each diverse DMR design. In this case, our flow accepts as
input the RTL netlist in EDIF format as depicted in Fig. 1.
Then, the netlist information extraction is applied to each new
design under test, followed by feature and graph adjacency
matrix extraction, similar to the training flow. Instead of per-
forming fault injections this time, the trained model can be
queried to provide the prediction for the error rate of interest.

IV. DESIGN UNDER EVALUATION

 For this study, we have used the high-level version of the
Canright Sbox [17] as a test case. It is a well-known imple-
mentation of AES SubBytes transformation. Specifically,
Canright SBox performs an inversion of a polynomial of 7th
degree, with the use of the tower field approach. Furthermore,

Table I. R-squared values for different settings, tested on test set
Model CER DER HER SER

CCN, 64 0.86 0.99 0.39 0.49

GCN, 128 0.89 0.86 0.87 0.78

GAT, 64 0.75 0.01 0.06 0.12

GAT, 128 0.84 -2e11 0.24 0.09

Figure 2. The GNN Model

this specific implementation is readily available online and de-
scribed in platform-independent C code allowing result repro-
duction. The Canright SBox provides an adequate design
space to explore the effects of HLS directives over the func-
tionality as well as a valid point of discussion over the need of
fault resilience in cryptographic components. Module dupli-
cation was introduced as a countermeasure at the high-level C
description. A wrapper function passes the 8-bit input into the
two separate instances of SBox and merges their 8-bit result
into a single 16-bit output. The outputs of the two SBoxes are
compared externally to detect errors. The comparison logic
was not included in the wrapper; the errors in the checker do
not affect the reliability evaluation of the HLS designs, which
is the target of our approach.

V. EXPERIMENTAL RESULTS
In this section, we present and discuss the results of the

training and the validation of the GNN.

A. Ground Truth & Prediction Results Analysis

First, we examine the quality of the high-level diverse
DMR by means of the fault injection campaign results. Table
II presents the CER metric for three designs: a) a simple
DMR implementation, b) the design in our randomly gener-
ated dataset with the lowest CER (best) , and c) the design
with the highest CER (worst). We focus on the CER metric
since it’s a key indicator for the effect of the countermeasure.
Observe that since the introduction of directives was executed
in a random way, the flow produced both better and worse
designs than the simple DMR in terms of CER for DBF. Re-
garding SBFs, the DMR countermeasure presents 0% CER in
all cases, depicting the successful application of DMR
through HLS. For DBFs, the flow produced designs with far
better CER than the simple DMR – 0.0015% CER for the best
design, compared to 0.02% CER for the simple DMR appli-
cation. The worst design of the dataset produced a CER of
0.3%, an order of magnitude higher than the simple DMR.

We further examined diversified DMR designs producing
high CERs and noted that directives with the same or similar
effect were applied to corresponding functions and loops of
the two copies. That caused the elimination or reduction of
diversity for those functions, worsening the CER even in
comparison with the non-diversified DMR. For example, for
the worst Diverse DMR case, we note the use of excessive
inlining in the same code regions among the two replicas. In
contrast, for the best Diverse DMR design generated by the
flow, the inlining directives are mainly focused on one rep-
lica. Hence, specific directives need to be used under condi-
tions or be entirely avoided when fault tolerance is consid-
ered. Regarding the CER model’s prediction capabilities, for
all cases, the difference between ground truth and prediction
is less than 0.1%. Given the speedup achieved by the meth-
odology, as shown in the following section, this error margin
can be considered acceptable. Even if statistical FI is used,
achieving such error margin is computationally expensive.
Furthermore, the use of this prediction mechanism leaves
room for improvement, by extending the examination for dif-
ferent models and parameterizations.

B. GNN Error Rate Predictions

Referring to Table I, we demonstrate the successful train-
ing of the prediction mechanism on the test datasets. In all
cases, the use of GCN was proved better than GAT. For the
case of GCN using 128 hidden nodes among its hidden layers,
all error rates approach R-squared values of 0.8, a value that
empirically verifies the quality of the resulting models. The
highest R-squared value among those cases was achieved by
the model that predicts CER, with 0.89 and the lowest for the
SER prediction, with 0.78. A notable case is the R-square
value of DER achieved by a GCN model, set with 64 hidden
nodes, which is equal to 0.99.

C. Evaluation Flow Performance

Lastly, we present results demonstrating the speedup
achieved by our evaluation flow. All computations were per-
formed on an Intel® i7-9750H 6-core CPU, @2.60GHz. On
average, the exhaustive SBF evaluation of each Canright
SBox design took 20 minutes, while the calculation of the
DBF rates took 1.5 minutes. We were able to parallelize the
SBF FI campaigns by a factor of 4. A design space equal to
the size of our dataset (1022) was evaluated using FI cam-
paigns in 91.73 hours. The PyTorch Geometric Python library
allowed us to perform the training process on a GPU board
(NVIDIA GTX 1660), with 6GB of dedicated memory. The
mean k-fold cross evaluation time for each model training
was 2.07 hours due to the early stop condition. Up to three
parallel training processes were possible at the same time, as
restricted by the platform’s memory size. Thus, sufficiently
trained prediction models for the four error rates could be
available in 95.87 hours (i.e., 91.73 hours for running the SBF
experiments and calculating the DBF rates plus 2 x 2.07 hours
for training the four GNN models). Afterwards, the prediction
of all error rates for each design beyond the training set can
be performed in ~ 4 ms.

Based on the above execution times, we can estimate the
speedup achieved by our approach compared to the tradi-
tional FI campaings and how it scales with the number of de-
signs under evaluation. For example, the time needed to per-
form the necessary fault injection simulations and train the
model with 1k designs takes approximately 93.73 hours. A
smaller dataset (i.e. 100 designs) may not be enough to
achieve the expected prediction metrics. The prediction of the
error rates for a dataset of 10k designs can be performed in
an additional 0.01 hours (36 seconds) if 1000 of those designs
are dedicated to model training. The efficiency of our meth-
odology becomes more prominent for larger numbers of de-
signs; assuming the case of 1 million designs, an evaluation
through FI campaigns would last 374 days, while the predic-
tion of the error rates after the training process would only
take an additional 6 minutes. The speedup achieved starts
from 9.5x for 10k designs to 944.5x for 1 million designs for
the given test case, as demonstrated in Table III. Lastly, it is
worth noting that the design under examination is an optimis-
tic test case regarding the evaluation methodology using FI .

 Table III. Comparison of traditional FI Campaigns with our
methodology execution times (in minutes) & achieved speedup

#Designs FI Cam-

paigns

Training &

Prediction

Speedup

100 8.96 - -

1,000 89.58 93.73 -

10,000 895.83 93.74 9.56

100,000 8958.33 93.84 95.47

1000000 89583.33 94.84 944.60

Table II. SBF & DBF CER metrics for DMR protected and Di-
verse DMR protected Canright SBox

Canright SBox
Designs SBF CER DBF CER Predicted

DBF CER

DMR 0 0.02 0.1

Diverse DMR (best) 0 0.0015 0.0015

Diverse DMR (worst) 0 0.3 0.21

The examination of a more complex design (i.e. an AES hard-
ware module) would lead to an exponential increase in the
duration of its exhaustive FI examination, giving a huge ad-
vantage in adopting the proposed GNN evaluation methodol-
ogy.

VI. CONCLUSIONS & FUTURE WORK

In this work, we present an evaluation methodology of the
prediction of security properties of hardware designs using
state-of-the-art GNNs. Our approach is motivated by the fact
that traditional fault evaluation methodologies may add sig-
nificant overhead to the design and evaluation of hardware
countermeasures. As a case study, we used an SBox imple-
mentation, enhanced with a diverse DMR countermeasure
generated using HLS. We train the GNN model with the ac-
tual evaluation metrics extracted from exhaustive FI simula-
tions and show that GNNs are able to take advantage of the
properties of the netlist structure. Our model managed to
closely approximate the values of fault metrics, regarding
critical, detected, hang and silent error rates. In addition, the
methodology achieved considerable speedup compared to
classical FI simulation evaluations. Most importantly, the
evaluation flow can be easily generalized for other designs,
countermeasures as well as different fault models. We aim to
continue the research over the topic, by examining more ad-
vanced GNN frameworks to further enhance the prediction
quality of security metrics.

ACKNOWLEDGMENT

This research has been financed by the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No 895937.

REFERENCES

[1] Coussy, Philippe, et al. "An introduction to high-level synthesis." IEEE
Design & Test of Computers 26.4 (2009): 8-17.

[2] Nane, Razvan, et al. "A survey and evaluation of FPGA high-level
synthesis tools." IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 35.10 (2015): 1591-1604.

[3] Cong, Jason, et al. "High-level synthesis for FPGAs: From prototyping
to deployment." IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 30.4 (2011): 473-491.

[4] Chang, Jed Kao-Tung, et al. "Hardware-assisted security mechanism:
The acceleration of cryptographic operations with low hardware
cost." International Performance Computing and Communications
Conference. IEEE, 2010.

[5] Mittal, Sparsh. "A survey of FPGA-based accelerators for
convolutional neural networks." Neural computing and
applications 32.4 (2020): 1109-1139.

[6] Pilato, Christian, et al. "Securing hardware accelerators: A new
challenge for high-level synthesis." IEEE Embedded Systems
Letters 10.3 (2017): 77-80.

[7] Selmke, Bodo, Johann Heyszl, and Georg Sigl. "Attack on a DFA
protected AES by simultaneous laser fault injections." Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC). IEEE, 2016.

[8] Kastensmidt, Fernanda Lima, Luigi Carro, and Ricardo Augusto da
Luz Reis. Fault-tolerance techniques for SRAM-based FPGAs. Vol. 1.
Dordrecht: Springer, 2006

[9] Papadimitriou, Athanasios, et al. "A multiple fault injection
methodology based on cone partitioning towards RTL modeling of
laser attacks." 2014 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2014.

[10] Lee, Ganghee, et al. "TLegUp: A TMR code generation tool for
SRAM-based FPGA applications using HLS." 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2017.

[11] Fleming, Shane T., and David B. Thomas. "StitchUp: Automatic
control flow protection for high level synthesis circuits." 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). 2016.

[12] Koufopoulou, Amalia-Artemis, et al. "Security and Reliability
Evaluation of Countermeasures implemented using High-Level
Synthesis." 2022 IEEE 28th International Symposium on On-Line
Testing and Robust System Design (IOLTS). IEEE, 2022.

[13] Pundir, Nitin, et al. "Analyzing security vulnerabilities induced by
high-level synthesis." ACM Journal on Emerging Technologies in
Computing Systems (JETC) 18.3 (2022): 1-22.

[14] Kooli, Maha, and Giorgio Di Natale. "A survey on simulation-based
fault injection tools for complex systems." 2014 9th IEEE
International Conference on Design & Technology of Integrated
Systems in Nanoscale Era (DTIS). IEEE, 2014.

[15] Leveugle, Régis, et al. "Statistical fault injection: Quantified error and
confidence." 2009 Design, Automation & Test in Europe Conference
& Exhibition. IEEE, 2009.

[16] Alrahis, Lilas, et al. "Embracing Graph Neural Networks for Hardware
Security." Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design. 2022.

[17] Canright, David. "A very compact S-box for AES." International
Workshop on Cryptographic Hardware and Embedded Systems.
Springer, Berlin, Heidelberg, 2005.

[18] Morgan, Keith S., et al. "A comparison of TMR with alternative fault-
tolerant design techniques for FPGAs." IEEE transactions on nuclear
science 54.6 (2007): 2065-2072.

[19] Reviriego, Pedro, Chris J. Bleakley, and Juan Antonio Maestro.
"Diverse double modular redundancy: A new direction for soft error
detection and correction." IEEE Design and Test of Computers 30.2
(2013): 87-95.

[20] Taheri, Aynaz, Kevin Gimpel, and Tanya Berger-Wolf. "Learning
graph representations with recurrent neural network
autoencoders." KDD Deep Learning Day (2018).

[21] Gama, Fernando, et al. "Graphs, convolutions, and neural networks:
From graph filters to graph neural networks." IEEE Signal Processing
Magazine 37.6 (2020): 128-138.

[22] Zhou, Jie, et al. "Graph neural networks: A review of methods and
applications." AI Open 1 (2020): 57-81.

[23] Alrahis, Lilas, Johann Knechtel, and Ozgur Sinanoglu. "Graph neural
networks: A powerful and versatile tool for advancing design,
reliability, and security of ICs." Proceedings of the 28th Asia and South
Pacific Design Automation Conference. 2023.

[24] Alrahis, Lilas, et al. "Gnn-re: Graph neural networks for reverse
engineering of gate-level netlists." IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2021).

[25] Balakrishnan, Aneesh, et al. "Composing graph theory and deep neural
networks to evaluate seu type soft error effects." 9th Mediterranean
Conference on Embedded Computing (MECO). IEEE, 2020.

[26] Lu, Li, et al. "A Methodology for Identifying Critical Sequential
Circuits with Graph Convolutional Networks." 2022 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). IEEE, 2022.

[27] Borges, Gabriel de M., et al. "Diversity tmr: Proof of concept in a
mixed-signal case." 11th Latin American Test Workshop. IEEE, 2010.

[28] Tosun, Suleyman, et al. "Reliability-centric high-level
synthesis." Design, Automation and Test in Europe. IEEE, 2005.

[29] Zhu, Zhiqi, Farah Naz Taher, and Benjamin Carrion Schafer.
"Exploring design trade-offs in fault-tolerant behavioral hardware
accelerators." Proceedings of the 2019 on Great Lakes Symposium on
VLSI. 2019.

[30] Mitra, Subhasish, Nirmal R. Saxena, and Edward J. McCluskey. "A
design diversity metric and analysis of redundant systems." IEEE
Transactions on Computers 51.5 (2002): 498-510.

[31] Alcaide, Sergi, et al. "DIMP: A low-Cost Diversity Metric based on
circuit Path analysis." Proceedings of the 54th Annual Design
Automation Conference 2017. 2017.

[32] Taher, Farah Naz, Anjana Balachandran, and Benjamin Carrion
Schafer. "Learning-Based Diversity Estimation: Leveraging the Power
of High-Level Synthesis to Mitigate Common-Mode Failure." IEEE
37th International Conference on Computer Design (ICCD), 2019.

[33] Skouson, Dallin Mark. "SpyDrNet-An Open-Source Python Netlist
Representation for Analysis and Transformation." (2022).

[34] Kipf, Thomas N., and Max Welling. ‘Semi-Supervised Classification
with Graph Convolutional Networks’. International Conference on
Learning Representations, 2017.

[35] Velickovic, Petar, et al. "Graph attention networks." stat 1050.20
(2017): 10-48550.

