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Abstract—Data produced by on-chip sensors in modern SoCs
contains a large amount of information such as occurring faults,
aging status, accumulated radiation dose, performance charac-
teristics, environmental and other operational parameters. Such
information provides insight into the overall health of a system’s
hardware as well as the operability of individual modules. This
gives a chance to mitigate faults and avoid using faulty units,
thus enabling hardware health management. Raw data from
embedded sensors cannot be immediately used to perform health
management tasks. In most cases, the information about occurred
faults needs to be analyzed taking into account the history of the
previously reported fault events and other collected statistics.
For this purpose, we propose a special structure called Health
Map (HM) that holds the information about functional resources,
occurring faults and maps relationships between these. In addi-
tion, we propose algorithms for aggregation and classification
of data received from on-chip sensors. The proposed Health
Map contains detailed information on a particular system level
(e.g., module, SoC, board) that can be compiled into a summary
of hardware health status that in its turn enables distributed
hierarchical health management by using this information at a
higher level of system hierarchy, thus increasing the system’s
availability and effective lifetime.

Index Terms—SoC, MPSoC, on-chip sensor, health manage-
ment, fault management, health map, self-awareness

I. INTRODUCTION

Modern System-on-Chips (SoCs) and Multi-Processor
System-on-Chips (MPSoCs) frequently contain a wide array
of embedded on-chip sensors for monitoring the parameters
and faults in the system. They are used during manufactur-
ing for testing, measurement and adjustment of parameters,
programming, etc. Increasingly, the embedded sensors and
monitors (together called embedded instruments (EIs)) are
used over the lifetime of the system [1], [2]: for built-in self
test (BIST), parameter monitoring (e.g., to estimate aging) and
fault detection. On the one hand, the data collected from EIs
could be useful on its own (e.g., when a self-test has failed
and the system must restart). On the other hand, when this
data is collected and systematized, the statistics and trends
might provide valuable insight into the nature of the problems
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as well as the remaining ”health” of the system. This is espe-
cially important for complex systems with redundant resources
where the health management (HM) approach can provide
the possibility for graceful degradation, i.e., prolonging the
lifetime of the system despite the failure of some of its parts.
This approach becomes increasingly attractive for commercial
off-the-shelf (COTS) components being used more in harsh
environments (e.g., space radiation) [3], [4] due to higher
performance, lower cost and better efficiency when compared
to specialized components with classic protection mechanisms
such as triple modular redundancy (TMR). Moreover, when
the collected data is stored, analyzed and summarized, it can
be very useful in higher-level processes like the mapping of
tasks to available resources to ensure graceful degradation.
Another benefit is the possibility to provide the health status
information to the higher levels in a hierarchical system.

EIs in the scope of this paper are embedded specialized
modules built into the hardware of a SoC for collection of
the service data related to the dependability of the system.
For example, delay monitors can estimate the aging of a
semiconductor IC. A parity checker or a property checker can
detect incorrect operation (e.g., due to a bit flip resulting in
a soft error). EIs can be very numerous and typically some
test/service bus like IJTAG is used to access them [5], [6].
This allows to decouple the EIs from functional resources like
data buses, provide dedicated access to the EIs and implement
additional features like triple-modular redundancy to increase
the dependability or auxiliary asynchronous networks for fast
fault detection [7].

While EIs can quickly and efficiently detect faults or
other anomalies and measure parameters, the raw data from
embedded sensors and monitors cannot be immediately used
for the purposes like health management and prognostics. The
collected data has to be analyzed and the faults have classified
based on the context like previously collected statistics and the
location of the fault. With EIs and corresponding access busses
being separated from functional resources into a special layer,
there is a need to describe and track the relationship between
diagnostic and functional resources at the system level. The
accumulated health data must also be prepared to be useful
for active fault mitigation. The health status of functional
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resources has to be available to scheduling algorithm for
proper mapping of tasks to the available resources.

This paper details a special structure called Health Map
(HM) that holds detailed information about functional re-
sources, health information in terms of occurring faults and
operating parameters and maps the relationships between
these. In addition, we propose the algorithms for aggregation
of the data received from EIs in order to compile a summary
of hardware health status. This information can be then used
at local level for task scheduling as well as at higher levels of
system hierarchy for distributed hierarchical health manage-
ment. This structure is a part of the overall health and fault
management architecture (FMA) which is aimed at increasing
the availability of an MPSoC-based system [8].

II. RELATED WORK

Health data collection is implied by many works on the
topic of self-aware system and health/resource management in
SoCs, but it is barely discussed in detail. Several works which
are addressing on-chip fault handling ahd health/resource
management do not consider historical health data, only re-
lying on immediately detected faults [1], [9]. In many works
some approach to collection of historical data about system
health from embedded sensors and instruments is embedded
into the concept of health management and self-awareness,
however mostly it is only conceptually described [2], [10],
[11]. Hierarchical agent framework as a monitoring layer for
self-aware system is proposed in [11], but the authors do not
detail the collection of health data required for consistent self-
awareness. Hierarchical health management is also applied to
unmanned air vehicles (UAVs) [12], [13]. In [12] the health
management helps to evaluate the condition of UAVs and their
sub-parts, diagnose faults and predict the remaining life, but
the authors do not detail the accumulation of historical health
data.

III. HEALTH MAP

Raw data which is collected via embedded instrumentation
cannot be immediately used to perform health management.
In most cases, the information about occurred fault needs to
analysed in the context of the previously reported fault events.
For example, when a fault is detected by an instrument and
reported through IJTAG network [7], [14], it is not possible
to correctly classify it using only the data about that single
fault event. In order to classify the fault, analysis of previous
occurrences of the fault is essential.

For this purpose, a FMA maintains a centralized database,
called Health Map - HM, which holds the information about
functional resources, occurring faults and the relationship
between those two. HM preserves the statistics of fault oc-
currences, which can be used for fault classification and
better prediction of resource reliability. This analysis and
classification is performed by the software part of the FMA -
the Fault Manager (FM) [15].

Health Map is a collection of data structures that represent
several different types of entities (described below). The con-

nections between these entities define their actual relationships
(e.g. fault detected in a functional resource). An array of
similar entities is organized as a linked list.

Figure 1 shows a simple example of Health Map consisting
of the following entities: CPU cores with an FPU, faults and
fault detection events.

The main types of entities (and their corresponding data
structures) in HM are:

Functional hardware resources (modules)
Fault manager must understand which system hard-
ware resources the detected faults are related to.
An initial map of all system resources should be
provided together with the brand-new (undamaged)
hardware.

Diagnostic resources
In the FMA, main bulk of information about faults
is received from embedded instruments that monitor
functional resources in hardware. HM describes this
relationship. Hardware diagnostic resources always
belong to a certain functional hardware resource
in HM. Other diagnostic means (i.e. not related to
embedded instrumentation) can also be supported po-
tentially. For example, those are diagnostic methods
based on SBST or BIST techniques.

Faults
Whenever a fault is detected, all relevant data must
be captured and stored permanently in the HM.
This ensures that faults, patterns of their occurrence
(e.g. transient or intermittent) and other meta-data
can be analyzed and extracted at any time later.
Faults always belong to a certain functional hardware
resource in HM.

Fault detections
Since one and the same fault can be detected sev-
eral times and potentially by different diagnostic
resources, the information about the detections is
stored in an additional data structure. Fault detections
always belong to a fault in HM.

Dependency
In some cases it is required to describe a relationship
between two functional modules (system resources)
in form of dependency, i.e. when correct functioning
of a module depends on operation of another module
in a system. An example can be a peripheral con-
nected to a certain bus: if a bus or its part fails, then
this peripheral may become inaccessible (unusable).
For such purposes, a separate data structure is intro-
duced in HM. It provides a link to resource which is
dependant and the severity of that dependency.

A. Preparation and run-time

Health Map describes the functional and diagnostic re-
sources in a specific system and the initial map must be
prepared in advance based on the system’s specification. This
is done off-line before deploying FMA to the target system.
The proposed HM is initially described in XML format which



struct _diag_res CPU0.core0.FPU.slack
uint32_t id 1
uint8_t type INSTRUMENT
uint32_t ei_address 8
diag_resPtr pnext NULL

struct _module CPU0.core0.FPU
uint32_t id 1
modulePtr pnext NULL
modulePtr psubmodules NULL
diag_resPtr pdiag_res
faultPtr pfaults
uint8_t criticality HIGH
dependantPtr pdependants

struct _diag_res CPU0.core0.pc
uint32_t id 0
uint8_t type INSTRUMENT
uint32_t ei_address 5
diag_resPtr pnext NULL

struct _fault_detection
struct timespec first_timestamp <time>
uint32_t source_id 1
uint8_t corrected 0
uint32_t signature 0xdeadbeef
uint32_t counter 2
fault_detectionPtr pnext NULL

struct _fault
fault_classification classification
fault_detectionPtr pdetections
faultPtr pnext NULL

struct _module CPU0.core0
uint32_t id 0
modulePtr pnext
modulePtr psubmodules
diag_resPtr pdiag_res
faultPtr pfaults NULL
uint8_t criticality ZERO
dependantPtr pdependants

struct _healthMap
modulePtr pfirst

struct _fault_classification
uint8_t persistency TRANSIENT
uint8_t severity LOW
uint8_t criticality HIGH
uint8_t granularity SIGNAL

struct _module AHB
uint32_t id 2
modulePtr pnext NULL
modulePtr psubmodules …
diag_resPtr pdiag_res
faultPtr pfaults NULL
uint8_t criticality HIGH
dependantPtr pdependants

struct _dependant
modulePtr dep_module CPU0.core0
dependantPtr pnext NULL
uint8_t criticality HIGH

Fig. 1. Health Map example data structure

is human-readable, but allows machine handling and reuse
of modules, for e.g. multiple instances of identical resources.
This description is compiled into a binary form for efficient
handling by FM and storage in memory. Serialized HM binary
data structure is loaded to the non-volatile memory of the
target system.

During run-time FM code will handle the HM binary data
structure with the initial mapping of functional and diagnostic
and any existing faults. FM code and HM data must reside
in protected memory (e.g. by error-correcting code (ECC)) at
run-time in order to avoid health data corruption. FM code
must be executed inside a ”safety island” with dedicated
error-protected processing cores e.g., in dual lock-step or
TMR configuration. Many existing MPSoCs already have such
”safety islands” with protected cores. At start-up FM will
validate the HM binary data structure and load it into RAM for
fast access and modification. Upon addition of new fault data,
this can be efficiently appended and written back to the non-
volatile memory (see next subsection). The organization of
HM in RAM allows efficient access for fault classification and
preparing the summary of system’s health (see Section IV).

B. Serialized Health Map

In order to preserve HM with accumulated fault data, it is
necessary to store it in a non-volatile memory during system
shutdown. Direct copying of data from RAM is not useful due
to data structures with memory pointers, so a Serialized Health
Map (SHM) version is used instead. SHM occupies subsequent
uninterrupted memory region. This allows to save SHM as a
binary file or store it in EEPROM memory. Similarly it can be
read from a file or EEPROM and deserialized into run-time
RAM data structures.

SHM has specific layout in memory (shown in Figure 2)
that facilitates (de-)serialization and updating with new fault
data. It is largely divided into two parts. In the predefined
(constant) part, the header and information about system’s
resources are prepared off-line. This part would be the same
for all systems with identical hardware. Updated (dynamic)
part contains data about faults occurred throughout the system
lifetime. This data is unique for each individual physical
system. SHM is designed in a way that new data structures
are appended to the end of SHM. This allows to minimize
non-volatile memory erase and write operations. The header
of SHM contains checksums (CRC32 algorithm) to ensure the
integrity of the header as well as the whole data structure.

All memory offsets (shown as blue arrows above the layout
structure in Figure 2) are stored as absolute byte offsets
using the beginning of HM as the base address. This ensures
relocatability of HM: at any address in RAM, in a regular
file, in an EEPROM, etc. During deserialization, these offsets
are converted to usual memory pointers for fast access. The
opposite is done during serialization procedure.

Length of each part of SHM is shown in Figure 2. For
the header it is fixed, while for other parts it depends on the
number of entries of: M - modules; R - diagnostic resources;
D - dependencies; F - faults; FD - fault detections.

C. Health Map pruning

During prolonged system lifetimes and/or events which
cause many faults to occur and to be detected, HM can
accumulate a large number of fault detection entries. This
will increase the amount of memory required for the HM
data structure and the time required for statistical analysis of
the fault data. In order to avoid accumulation of unnecessary
data, two mechanisms are suggested for HM. Firstly, the fault
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Fig. 2. Serialized Health Map memory layout

detection entry has counter field which allows to register the
number of similar events without creating a separate entry.
Secondly, during system idle time, FM software can perform
HM pruning and combine several fault or fault detection
entries. This can be useful when, for example, an intermittent
fault happens at distinct occasions and separate fault detection
entries are created. It can be a policy of FMA to combine old
fault or fault detection entries in order to reduce the HM and
SHM memory footprints.

IV. RESOURCE MAP

Resource Map (RM) is a data structure in prepared by FM
at run-time that holds the information about current health
status of hardware resources. All modules defined in HM
could be added to RM together with the information about
worst severity and persistence of faults detected and attributed
to corresponding modules (see example in Table I). This
represents a quick summary of module’s current health status
and is used in calculating the mapping of software tasks to
hardware resources.

TABLE I
RESOURCE MAP EXAMPLE

Module name Worst
severity

Worst persis-
tence

Status

CPU LOW TRANSIENT PROPAGATED FAULT
CPU.C0 LOW TRANSIENT PROPAGATED FAULT
CPU.C0.FPU HIGH TRANSIENT OWN FAULT
CPU.C1 ZERO ZERO AVAILABLE
CPU.C1.FPU ZERO ZERO AVAILABLE
CPU.C2 ZERO ZERO AVAILABLE
CPU.C2.FPU ZERO ZERO AVAILABLE
CPU.C3 ZERO ZERO MAINTENANCE
CPU.C3.FPU ZERO ZERO MAINTENANCE

Module name
refers to module name in HM.

Worst persistence
stores worst persistence among all faults registered
for the module.

Severity
stores worst severity among all faults registered for
the module.

Status
indicates the current status of the module:

Available
Module is available, no faults registered.

Own fault
Module might have limited functionality
due to a detected fault.

Propagated fault
Module might have limited functionality
due to a fault detected in child modules.

Maintenance
Module is not available due to ongoing
maintenance (BIST, SBST etc).

A. Resource map data

In contrast to HM, Resource Map is available only during
run-time. It is populated with data by scanning HM and
searching for worst available persistence and severity levels
among all faults registered for a given module. During calcu-
lation, criticality is also taken into account to calculate the
propagation of faults to higher levels of module hierarchy
(from child to parent).

After the initialization procedure RM may be updated
whenever a new fault is detected. If its persistence and/or
severity levels are worse than those in RM, the latter should
be updated.

Each entry in RM corresponds to a module in HM and takes
just 7 bytes of RAM: module ID takes 4 and enumerations
(worst severity, worst persistence, status) take 1 byte each.

B. Resource map update algorithms

Algorithm 1 describes the operations needed for filling the
RM. It populates RM at initialization by scanning through the
whole HM for existing faults. In general, logic of the algorithm
can be described as follows:

1) For each module, iterate through all faults
2) For each fault of a module, check if its severity and

persistence is worse than previously found for the same
module

3) Write worst severity and persistence of the module to
Resource Map



4) If criticality of the module is not zero, calculate prop-
agated fault to parent module and update its entry in
Resource Map

In the algorithms below, s denotes severity: sRM
m is mod-

ule’s worst severity in RM and sf is the severity of a fault. The
same index rules apply for p (persistence) and c (criticality).
m is a module having a set Fm of faults f .

Algorithm 1: Resource map initialization algorithm

1 foreach m ∈ RM do
2 sworst = sRM

m ;
3 pworst = pRM

m ;
4 foreach f ∈ Fm do
5 sworst = max(sworst, sf );
6 pworst = max(pworst, pf );
7 end
8 sRM

m = sworst;
9 pRM

m = pworst;
10 stRM

m = own fault;
11 propagateFault(m);
12 end

When a new fault is detected, RM needs to be updated
using only the information of one given fault. This is done by
updateSingleFault procedure listed below.

Procedure updateSingleFault(m,sf ,pf ,stf )
Input: m - module which receives a new fault
Input: sf , pf - severity and persistence of the new

fault
Input: stf - status of new fault in RM

1 sRM
m = max(sRM

m , sf );
2 pRM

m = max(pRM
m , pf );

3 stRM
m = stf ;

4 propagateFault(m);

Fault propagation procedure is called in both cases and its
purpose is to take care of fault propagation through criticality
of modules. The procedure is recursive as the fault can
propagate to the parent of a parent module.

Procedure propagateFault(m)
Input: m - module with faults to be propagated

1 if cm ̸= zero then
2 sprop = min(sRM

m , cm);
3 mp = parent(m);
4 updateSingleFault(mp,sprop,pRM

m ,prop fault);

5 end

C. Health-aware task scheduling

CPU cores or processing cores are part of system’s hardware
resources, but of special type because from the operating

system (OS) perspective, they run the software tasks. In multi-
core systems, several programs can be run in parallel and each
of the latter is assigned to a certain processing core ID.

In the scope of FMA the faults are detected and attributed to
certain modules in HM. If the accumulated fault(s) rendered
the affected processing core unusable for some or all tasks,
it is important that the OS scheduler does not schedule
tasks to these cores anymore. It is essential that FM could
translate a particular processing core module in HM to core
ID understood by OS and instruct the OS scheduler not use
certain cores for certain tasks.

This is achieved by comparing the status of processing cores
in RM to the requirements of the tasks [8]. The requirements
can include sub-modules like e.g., FPU. Based on the result
of the comparison, FM fills a core affinity mask for each
task. Some OS schedulers (e.g. Linux) accept this information
without modification of the scheduler code [8].

V. HIERARCHICAL HEALTH MANAGEMENT

Many systems consist of several layers of hierarchy. For
example, an UAV would contain a data processing unit with
an MPSoC, and on-board computer with a CPU and a board
controller with a hardened microcontroller which monitors all
other modules and sends telemetry data to ground. In such
hierarchical system the health data should be summarized and
collected from the lower levels (e.g. sub-core modules) to
the upper levels (e.g. supervisor) in an hierarchical fashion,
as shown in Figure 3. Resource Map functionality fits very
well into this picture by providing the summary of system’s
modules health ready to be sent to the higher level of hierarchy.
The summarized health data from lower levels of hierarchy
become the input for a Health Map at higher level of hierarchy.
Data can be sent over any typical communication protocols in
a serialized fashion similar to SHR.

At the same time, control commands (not discussed in this
paper) are sent in the opposite direction, from higher to lower
levels of system hierarchy, as the controller at higher (global)
level has a better picture of overall system’s health and can
make high-level scheduling decisions accordingly.

VI. MEMORY FOOTPRINT ESTIMATION

Memory utilization of HM and RM data structures for
a particular system will depend on the required number of
entries of each type for storing the predefined and fault data.
In this section we make an attempt to roughly estimate the
number of entries in HM and RM for a typical system, as
well as the amount of memory they occupy. The latter will
be very similar for HM in RAM and SHM, except different
headers (32 bytes in SHM vs 4 bytes in HM).

In an MPSoC, we expect that the size of HM would tend
to correlate with the number of CPU cores and to have the
assumed relationship of quantities of HM entities listed in
Table II.

For example, if we assume an MPSoC with 8 cores then the
corresponding HM will have the quantities of data structures
listed in Table III.
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Fig. 3. Health map data in an hierarchical system

TABLE II
ESTIMATED SIZE OF HM FOR AN MPSOC

Entity Entity type Quantity
CPU core module C
Core sub-modules module 15C
Other modules module 5C
System module 10
Total (of the above) module M = 16C + 10
EIs diag. resource R = 3M
Dependencies dependency D = M
Faults fault F = 2D
Fault detections f. detection FD = 10F

The amount of memory required for RM (in case all
modules are included) is: 138 modules * 7 bytes = 966 bytes.

This estimation shows that even for a fairly large MPSoC
the amount of memory required by the corresponding HM
with fault data is in the order of 1E5 bytes, for RM it is in
the order of 1E3 bytes. This shall easily fit into RAM and

TABLE III
ESTIMATED NUMBER OF ENTITIES IN HM FOR AN MPSOC

Entity type Amount Size (bytes) Total (bytes)
Header (SHM) 1 32 32
Module 138 25 3450
Diag. resource 414 13 5382
Dependency 138 9 1242
Fault 276 12 3312
Fault detections 2760 25 69000
Total 82418

persistent memory of modern MPSoC-based systems.

CONCLUSION

In this paper we present and detail Health Map, a data
structure and related algorithms which play important roles in
health and fault management architecture for SoCs. Fault data
from on-chip sensors must be collected and analysed in order
to accumulate historical data for accurate fault classification
and health-aware resource usage. We show that the proposed
Health Map is well suited for health management in modern
SoCs by collecting and summarizing important information
about SoC health. This information can be used for health-
aware task mapping by OS as well as aggregation in higher
levels of system hierarchy. An estimation of memory footprint
shows that even for complex SoCs the overhead is minimal.
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