
Efficient Failure Detection in Pipelined Asynchronous Circuits

Song Peng and Rajit Manohar
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853, USA

{speng,rajit }@csl.cornell.edu

Abstract

This paper presents an efficient concurrent failure detection method for pipelined asynchronous
circuits. We first validate permanent and transient fault modeling in clockless systems. By augment-
ing the rails to each data channel and adding extra logic to each circuit module, we make pipelined
asynchronous circuits achieve fail-stop with respect to hard or soft errors. The experimental eval-
uations show this method incurs both reasonable hardware cost and low performance overhead.

1 Introduction

According to the definitions in [6], afault is a physical defect, imperfection, or flaw that occurs
within some hardware components, anerror is the manifestion of a fault, and afailure is the non-
performance of some action that is due or expected. Although a failure must be caused by some
fault(s), a fault does not necessarily cause a failure. Thus, we can say a system isfault tolerant
if that system can correct its abnormal behavior in the presence of failures (not necessarily all
faults). The first step to achieve the fault tolerance is to enable failure detection. In other words,
observable abnormal behavior must show up when any failure occurs. One way to implement such
observable abnormal behavior is to force system stop in the presence of failures, preventing further
error propagation (fail-safe [6]).

With higher clock frequency, decreased feature sizes and increased transistor counts, clock dis-
tribution and wire delays present a growing challenge to the designers of singly-clocked, globally
synchronous systems. It is becoming more and more difficult and expensive to distribute a global
clock signal with low skew throughout a processor die. On the other hand, asynchronous circuits do
not suffer such problem due to no global clock. This fact makes it more attractive for researchers
to eventually abandon singly-clocked globally synchronous systems in favor of asynchrony [17],
making asynchronous circuits be an important topic in future digital VLSI designs.

Quasi delay-insensitive (QDI) circuits, which are considered in this paper, are an important class
of asynchronous circuits that operate correctly regardless of gate delays. These circuits do not
use any clock signal for sequencing, as well as no logic gate timing assumption is required. They
are designed as a collection of concurrent hardware modules (calledprocesses) that communicate
atomic data items (calledtokens) with each other through one-to-one message-passing channels.
The message-passing channels usually consist of data and acknowledge rails. The notion of causal-
ity and event-ordering is implemented in terms of handshake protocols on those channels [10].

While there is a wealth of literature that examines concurrent failure detection in clocked logic,
little attention has been paid to QDI circuits. The absence of clock signals means that a faulty
asynchronous circuit might exhibit problems that would not normally arise in a clocked system,
making existing failure detection techniques for synchronous systems ineffective or inefficient [7].
For instance, it is non-trivial to apply duplication-based concurrent failure detection to QDI logic

1

without significant timing assumptions [4, 18]. Unlike clocked systems where outputs from both
replicas can be sampled at the same time and compared against each other, the lack of a global
synchronization in QDI circuits makes it unclear when those outputs are expected to match. More-
over, faults in QDI logic may prevent the result from appearing on the output, blocking comparison
procedure. Thus, efficient failure detection methods have to be explored for asynchronous circuits.

The goal of this paper is to develop an efficient concurrent failure detection method for pipelined
QDI circuits through achieving fail-stop with respect to permanent or transient errors. Specifically,
the following contributions are made in this paper: (1) We validate the modeling of a transient fault
as a momentary bit-flip in clockless circuits through transistor-level simulations (Section 2). (2) We
propose an effective method to force pipelined QDI circuits to deadlock in the presence of failures
by permanent or transient faults, with reasonable hardware cost and small performance overhead
(Section 3). (3) We present a systematic way of deadlock detection with the minimum cost in an
asynchronous system (Section 3). Section 4 shows the experimental results. We review the related
work in Section 5 and draw conclusions in Section 6.

2 Fault Modeling in Asynchronous Circuits

This section describes the fault modeling in asynchronous circuits. According to [6], faults
experienced by semiconductor devices can be either permanent or transient1.

2.1 Permanent faults

One standard fault model for permanent faults is single stuck-at fault (SSAF) model [6]. Accord-
ing to SSAF model, a circuit line is stuck-at one or zero if it is disconnected from any other circuits’
wires and connected to the power supply or ground respectively. Although SSAF model is simple
and cannot represent all possible fault cases, it can cover at least 70% of fabrication defects [1] as
well as many permanent faults and unrecoverable failures [12]. Consequently, techniques to de-
tect single stuck-at faults are expected to discover most permanent faults, making circuit achieve
high lifetime reliability. Since SSAF model has nothing to do with clocks, it can be applied to
asynchronous circuits without any change. Thus, we choose SSAF as hard error modeling for the
fail-stop asynchronous circuit construction.

2.2 Transient faults

The analog behavior of transient faults by particle strikes is very close to a double exponential
current injection [16]. A discrete model used to approximate the same behavior can be aglitch: a
voltage pulse with the chosen duration and amplitude for the transient current strength [16]. Like in
RAM cells, the glitch is usually further simplified to besingle event upset(a momentary bit-flip) in
synchronous logic, due to the fact that a transient change in the value of a logic circuit will not affect
the computation results unless it is sampled by a memory circuit such as a flip-flop [3]. However,
the absence of clock signals in asynchronous circuits changes the impact of a glitch. Although
there are equivalent memory circuits (state-holding elements) in asynchronous systems, which are
expected to convert a glitch into a bit-flip at the logic-level, it is possible for the glitch to propagate
in reality: an output pulse will be generated if the input glitch is weak enough not to accumulate
or remove sufficient charge at the output node. Thus, to model transient faults in asynchronous
circuits as single bit-flips has to be validated. Specifically, we should investigate: (1) What is the
probability for a glitch to propagate through state-holding element(s) in an asynchronous circuit;
(2) How can we reduce that probability.

Without considering logic masking effect (i.e., the gate output is completely decided by the
glitch-affected input), a state-holding element with different circuit topologies, can be modeled

1An intermittent fault is taken as either a permanent or a transient fault, depending on its behavior.

2

as a state-holding (dynamic) gate (shown as Figure 1) with a staticizer at the output (shown in the
dashed box).R1-R4 of Figure 1 represent the on-resistances of other transistors. Glitch propagation
is investigated as follows. Initially, the state-holding outputSo is set to logic low, and both pull-
up (N1) and pull-down (N2) transistors are turned off. A downward voltage pulse with a specific
duration (width)W and amplitude (height)H is generated on inputin1, and the outputsSo and
out are evaluated accordingly. For the input pulse with a givenW , it does not change the output
(i.e., inhibited) if the pulse is too weak (height≤ Hl(W)), and it will be converted into an output
bit-flip if the pulse is strong enough (height≥ Hh(W)). However, if the pulse is weak but not
too weak (Hl(W) < height < Hh(W)), a pulse will be generated at the state-holding output.
The region (Hl(W), Hh(W)) is calledglitch sensitive window with respect to input pulse width
W, which is represented bygsw(W). Let glitch sensitive window size|gsw(W)| be Hh(W) −
Hl(W). The probability of glitch propagation at input pulse widthW , gp(W), can be estimated as
|gsw(W)|/V dd, assuming the input pulse heights are uniformly distributed.

N2

N1 w

So out
R2

R3

R4

R1

in2

in1

Figure 1. State holding element.

Le/en

Rt

Rf

Lt
1

Lf
1

Lt
0

Lf
0

Lf
n

Lt
n

... C

(a)

 en

Re

en

Re

Lf
i

Rf

Lt
if tff

Rt

(b)

Figure 2. Precharge half buffer.

It should be clear thatgsw(W) is decided by input pulse width and circuit properties such as
transistor sizing, supply voltage, fabrication technology, etc. In the remaining of this section, we
examine the effects of all those factors respectively. The investigation of transistor sizing and supply
voltage effects help us find a systematic method to reduce the probability of glitch propagation,
while the study on feature size scaling allows us to sepculate the impact of future technology. We
used HSPICE to simulate the state-holding element in Figure 1. To make glitch to be transient
compared with circuit normal behavior, the maximum width of input voltage pulse is set to 100ns.
Given a circuit, pulses with different amplitudes and durations from 0V to Vdd and from 10ps to
100ns are generated at inputin1 to derive the curves ofgsw(W). The step sizes of input pulse width
and height are 10ps and 1mV respectively. Due to the symmetry of PMOS and NMOS transistors,
the simulation results for upward voltage pulses at inputin2 are similar.

Transistor sizing. Since the feedback inverter (the inverter labeled with‘w’ in Figure 1) of output
staticizer inhibits weak changes of output charge or maintains the flipped output voltage level, the
Hl(W) andHh(W) of gsw(W) are mostly decided by the relative driving strength of the feedback
inverter of staticizer to forward transistorsN1 andN2. Thus, the impact of transistor sizing is
evaluated by changing the transistor sizing ratio of the feedback inverter toN1 andN2 transistors in
Figure 1. HSPICE simulations used TSMC 0.18um CMOS technology with 1.8V supply voltage.
Figure 3(a) shows the curves ofHl(W) with respect to a feedback inverter with different relative
sizing. The ratio number represents the ratio ofN1 (or N2) transistor size to NMOS (or PMOS)
transistor size of the feedback inverter (a smaller number indicates stronger feedback inverter).
Figure 3(b) shows the probabilities of different glitch sensitive window sizes (|Hh(W)−Hl(W)|)
over all input pulse widths, given the transistor sizing ratio.

3

ratio − 2

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 100 1000 10000 100000

H
l

(m
V

)

Pulse Width (ps)

Hl(W) vs. Staticizer Sizing

ratio − 6
ratio − 5
ratio − 4
ratio − 3

 1000

(a)

ratio − 2

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

P
ro

b
ab

il
it

y

|gsw(W)| (mV)

Probability Distributions of Glitch Sensitive Window Size

ratio − 6
ratio − 5
ratio − 4
ratio − 3

 0

(b)

Vdd − 1.8V

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 100 1000 10000 100000

H
l

(m
V

)

Pulse Width (ps)

Hl(W) vs. Supply Voltage

Vdd − 1.0V
Vdd − 1.2V
Vdd − 1.4V
Vdd − 1.6V

 900

(c)

Vdd − 1.8V

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

P
ro

b
ab

il
it

y

|gsw(W)| (mV)

Probability Distributions of Glitch Sensitive Window Size

Vdd − 1.0V
Vdd − 1.2V
Vdd − 1.4V
Vdd − 1.6V

 0

(d)

350nm − 3.3V

 1000

 1500

 2000

 2500

 3000

 10 100 1000 10000 100000

H
l

(m
V

)

Pulse Width (ps)

Hl(W) vs. Technology Scaling

50nm − 0.7V
70nm − 0.9V

100nm − 1.2V
130nm − 1.5V
180nm − 1.8V
250nm − 2.5V

 500

(e)

350nm − 3.3V

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

P
ro

b
ab

il
it

y

|gsw(W)| (mV)

Probability Distributions of Glitch Sensitive Window Size

50nm − 0.7V
70nm − 0.9V

100nm − 1.2V
130nm − 1.5V
180nm − 1.8V
250nm − 2.5V

 0

(f)

Figure 3. Glitch sensitive window vs. staticizer, Vdd and technology.

Several observations can be made from Figure 3(a) and 3(b): (1) Input pulses with too short
durations cannot affect the output no matter what its amplitude is. (2) Larger pulse duration is
likely to decreaseHl, as there is more time to change the output charge. (3)gp(W) is small at
most pulse widths for all feedback inverters, due to the small|gsw(W)| (less than 10mV with at
least 90% probablity) compared with the full voltage swing (1.8V). (4) Staticizer with stronger
feeback inverter tends to increaseHl and decrease the averagegp(W) to be negligible (0.13%) by
reducing the glitch sensitive window size (i.e., smaller|gsw(W)| with higher probability), while
slowing down the circuit. We futher exhaustively examined the shapes of the generated output
pulses by setting input pulses into glitch sensitive windows, to check the possibility that those
pulses propagate through the following state-holding elements. The experiments showed that all
those output pulses escaped glitch sensitive windows. In other words, they are either inhibited
(20.4% on average) or turned into bit-flips (79.6% on average) at the next state-holding element.

4

Supply voltage. With the strongest feedback inverter in Figure 3(a), we investigated the impact of
supply voltage on glitch sensitive windows. HSPICE simulations used the same technolody (TSMC
0.18um) with varying supply voltages. Because the device threshold voltage is around 0.4V, the
minimum supply voltage is set to be 1.0V to guarantee that both PMOS and NMOS transistors can
be turned on with some noise margins. Figure 3(c) shows the curves ofHl(W) with respect to
different supply voltages. Figure 3(d) shows the corresponding probability distributions of glitch
sensitive window size.

The following observations can be made from Figure 3(c) and 3(d): (1) Lower supply voltage
tends to inbibit input glitches with longer duration no matter what its amplitude is. (2) Lower
supply voltage reduces bothHl(W) and |gsw(W)| of glitch sensitive windows, but only slightly
increases the averagegp(W) (e.g., 0.23% at 1.0V). We also exhaustively examined the shapes of the
generated output pulses by setting input pulses into glitch sensitive windows, and the experiments
showed that all those output pulses either are inhibited (31.2% on average) or become bit-flipped
(68.8% on average) at the next state-holding element.

Technology scaling. We constructed a set of SPICE Level 3 technology models corresponding to
the technology generations from the Semiconductor Industry Assocation Technology Roadmap [1].
Values for drawn gate length, typical supply voltage and oxide thickness are taken directly from
the roadmap. The remaining parameters are obtained using a scaling methodology developed by
McFarland [13] with calibration to TSMC 0.18um CMOS device parameters. The circuits simulated
also used the strongest staticizer in Figure 3(a). Figure 3(e) shows the curves ofHl(W) with respect
to different technologies and their typical supply voltages. Figure 3(f) shows the corresonding
probability distributions of glitch sensitive window size.

From Figure 3(e) and 3(f), we can draw several conclusions: (1) The glitch sensitive window
exists for short input pulses at smaller feature sizes. (2) Smaller feature size coupled with lower
supply voltage tends to reduce bothHl(W) and|gsw(W)|, andgp(W) may slightly increase due
to lower supply voltage but is still negligible (e.g., 0.15% at 50nm technology). We exhaustively
examined the shapes of the generated output pulses by setting input pulses into glitch sensitive
windows, and the experiments showed that all those output pulses either are inhibited or become
bit-flipped at the next state-holding element.

Summary. It is safe to draw the following conclusions. First, it is possible for a glitch to propagate
through a state-holding element (to produce an output pulse) but the probability (gp(W)) can be
neglected if we make the feedback inverter of staticizer strong. Second,gp(W) tends to increase
with lower supply voltage and smaller device feature size, but the increment is small with the
strong feedback inverter so thatgp(W) is still negligible. Third, all of the output pulses escape
the glitch sensitive windows, making them unlikely to propagate through the next state-holding
element. Therefore, it is reasonable to model a transient fault as a momentary bit-flip (single event
upset) in asynchronous circuits as long as there are state-holding elements. It should be noted that
this statement still holds even if the input pulse heights are not uniformly distributed, because the
third conclusion does not depend on that distribution assumption.

3 Failure Detection in Pipelined Asynchronous Circuits

In this section, we propose an efficient method of concurrent failure detection in a commonly-
used pipelined QDI circuit template. By augmenting the rails to each channel and adding extra logic
to that circuit, the asynchronous pipeline will deadlock in the presence of failures with respect to
the fault model. Failure detection is then achieved by deadlock recognition logic. Unlike previous
researches [2, 4, 14, 15, 18, 19], both permanent and transient faults can be detected by this method,
while no significant timing assumption is required. We first explain that widely-used QDI circuit
template, and then present the fault model based on the conclusions in Section 2. After that, we
describe the fail-stop design and show how to recognize deadlock with the minimum cost in an
asynchronous system.

5

3.1 Baseline Pipelined Asynchronous Circuits

An important pipelined QDI circuit template is half-buffer based computational block (called
Precharge Half Buffers (PCHB)) [8], and can be used to construct most of asynchronous logic. Due
to its high speed, this template has been widely used in many asynchronous designs [11]. Thus, to
achieve failure detection in PCHB circuits takes an important step toward fault tolerance in general
asynchronous systems.

In a PCHB circuit, an input/output variableX is usually implemented in terms of dual-rail en-
coded channel (Xf , Xt) with an explicit active-low acknowledge (Xe) [10]. Figure 2 shows the
general template for a PCHB circuit. Validity and neutrality of the inputs and the output are checked
in Figure 2(a), generating the acknowledge of all input channels as well as the enable signal to the
block of Figure 2(a), which computes (evaluates) or resets (precharges) the data outputs. The muller
C-element in Figure 2(a) is a state-holding element that waits for the inputs to be equal, and then
changes the output to be the same as the inputs. The behavior of a PCHB circuit can be described
with the Handshaking Expansion (HSE) language [10] as follows. The channel signals in a HSE
statement are calledhandshake signals.

∗[[Re ∧ L];R ⇑;Le ↓; [¬Re];R ⇓; [¬L];Le ↑] (1)

In this notation,[X] means wait for an eventX caused by the outside environment (either an
assertionX, or a de-assertion¬X). Y ↑ or Y ↓ represents the up or down transition initiated by the
circuit on signalY respectively. If the signal is one data rail of a channelZ with 1-of-N encoding,
Y ↑ or Y ↓ can be further denoted asZ ⇑ (data valid) orZ ⇓ (data reset) respectively. A semicolon
is used to indicate a sequence of events, and a comma is used to denote concurrent events. The∗
character implies that the process is repeated indefinitely.

3.2 Fail-Stop Pipelined Asynchronous Circuits

Since there are state-holding elements in a PCHB circuit, it is reasonable to model transient
faults as single upset events, according to the conclusions in Section 2. To consider both hard and
soft errors in failure detection, the asynchronous circuit should halt in the presence of any failure
by single stuck-at faults or single event upsets. Since the probability of multiple errors in a small
region is orders of magnitude lower than that of a single error [6], we assume that each PCHB
circuit can have either a single stuck-at fault or a single event upset (but not both). Although this
fault model cannot represent all fault cases, fail-stop circuit with respect to this model still has the
potential to achieve high reliability.

The authors in [2] and [19] proved that any single stuck-at fault in a PCHB-like circuit either
deadlocks the circuit or throws an illegally dual-rail encoded output (‘11’). By checking unaccept-
able data token on each output channel before receiving the incoming acknowledge, we can easily
make the circuit also deadlock in the presence of any illegally encoded output from current pro-
cess. However, a single event upset in a PCHB circuit may generate premature firings while the
system does not halt, causing wrong computation and illegal event-ordering [7]. In order to make
the PCHB circuit halt in the presence of any failure by a single event upset, extra rails and logic are
added (shown as Figure 4). We call the augmented PCHB circuitFS-PCHB.

Like the baseline PCHB circuit, a FS-PCHB circuit consists of two parts: control module (shown
as Figure 4(a)) and computational module (shown as Figure 4(b)). An extra railXv is added to
each input/output channelX to check the data validity, while the acknowledge rail is duplicated as
(Xa)1 and(Xa)2. An I-element is used to permanently block (unless system is reset) the incoming
acknowledges ((Ra)1, (Ra)2) if any illegally encoded data output shows up. Since theI-element
is close to the data outputs ((Rf), Rt) and much faster than other PCHB circuits, it is trivial to
guarantee that the incoming acknowledges become blocked before they precharges the circuit. The
following HSE statement describes the behavior of a FS-PCHB circuit.

6

(Le)2
Re1

Re2

Lt
n

Lf
n

Lt
0

Lf
0

Lf
1

Lt
1 ...

Rf

Rt

Lv
1

Lv
n

Rv

C

C

I

I

I

pR
≡

Rk2

(La)2

(La)1

Rk
Rf

Rt

(Ra)2

(Ra)1

(Le)1

Lv
0

...

en1

en2

Rk1

Rf

Rt

C

C

(a)

 f t

Rt

Rt

Lt
i

Rf

Rf

Lf
i

en1

en2

en1

en2

ff

Rv

en1

en2

en2

en1

Lv
i

∧

(b)

Figure 4. Fail-stop Precharge Half Buffer (FS-PCHB).

∗[([¬(Ra)1 ∧ ¬(Ra)2 ∧ L];R ⇑; (La)1 ↑), ([¬(Ra)1 ∧ ¬(Ra)2 ∧ Lv];Rv ↑; (La)2 ↑);
[(Ra)1 ∧ (Ra)2]; (R ⇓, Rv ↓); ([¬L]; (La)1 ↓), ([¬Lv]; (La)2 ↓)]

(2)

Claim 1 A FS-PCHB circuit achieves fail-stop with respect to a single stuck-at fault (SSAF).

Proof: According to the HSE statement (2), all signals in a FS-PCHB circuit other than those of
pull-down stacks in computational module and the inputs/outputs ofI-elements, must enable both
up and down transitions in order to complete the handshake sequence. If any of such signals get
stuck, the communication between current and neighbor pipeline stages cannot move forward and
the whole pipeline deadlocks.

If the computational module is in precharge state (i.e., data outputs are reset), any stuck-at fault
of the pull-down stacks (ff , f t, or ∧), is masked (i.e., no faulty handshake signal); If the com-
putational module is in evaluation state (i.e., data outputs are valid), a single stuck-at fault of the
pull-down stacks will cause at most one data output (Rf , Rt or Rv) to be wrong: (1) IfRv is wrong,
the next pipeline stage will not consume the token due to the crosscheck withRf andRt and the
pipeline deadlocks. (2) IfRf or Rt is wrong, the resulting data-rail encoding ofRfRt must be
either ‘00’, which stalls pipeline due to no valid token sent to the next pipeline stage, or ‘11’, which
blocks the incoming acknowledges ((Ra)1, (Ra)2) through theI-element and makes the circuit
deadlock in evaluation state.

If the output of anI-element (Rk1 or Rk2) becomes stuck, the fault either is masked (if stuck-at-
1), or deadlocks the pipeline by blocking an incoming acknowledge (if stuck-at-0); If an input of an
I-element becomes stuck, the fault either is masked (if stuck-at-0), or makes the pipeline deadlock
when the other input becomes high (if stuck-at-1).

Thereafter, a SSAF deadlocks a FS-PCHB circuit if any failure occurs.

For a single event upset (SEU), the flipped signal may be changed back to its original logic value
when the transient source disappears. Therefore, we say a circuitfail-stop with respect to a SEUif
the circuit either deadlocks when failure occurs or stalls temporarily but resumes correctly after the
transient source disappears.

Claim 2 A FS-PCHB circuit achieves fail-stop with respect to a single event upset (SEU).

Proof: For each input channel (X) in Figure 4(a),Xv crosschecks (Xf , Xt), and(Xa)1 cross-
checks(Xa)2. A counterpart can be found for each of the rest signals in Figure 4(a) (e.g.,(Re1,
Re2), (en1, en2)). Consequently, a flipped signal in the control module can change at most one

7

control output ((La)1/2 or en1/2) due to the full crosschecking, and the computational module still
holds current state (precharge or evaluation state).

A flipped signal in a pull-down stack of computational module causes at most one data output
(Rf , Rt or Rv) to be wrong, only when the module is in evaluation state. A single event upset is
always masked if it flips one enable signal (en1 or en2). Thus, a flipped signal in computational
module can change at most one data output ofRf , Rt or Rv.

With the above analysis, it should be clear that a single event upset in a FS-PCHB circuit cannot
switch precharge/evaluation state, and only causes at most one data output (Rf , Rt or Rv) and/or
at most one acknowledge output ((La)1 or (La)2) to be faulty. However, one faulty acknowledge
output(La)1 (or (La)2) cannot change the handshake state due to the crosschecking with its coun-
terpart(La)2 (or (La)1). As long as no illegally dual-rail encoded data output (RfRt = ‘11′) is
generated, one faulty data output will not change the handshake state either, becauseRv crosschecks
with (Rf , Rt). The FS-PCHB circuit only stalls temporarily when those faults occurs, but resumes
correctly after the transient source disappears. If any illegally encoded data output is generated, it
will be immediately captured by the localI-element, which deadlocks the FS-PCHB circuit.

Thereafter, a SEU deadlocks a FS-PCHB circuit in the presence of any failure.

With Claim 1 and 2, it is safe to conclude that a FS-PCHB circuit achieves fail-stop with respect
to a SSAF or SEU. Compared with the duplication-based failure detection method [4, 18], the FS-
PCHB circuit does not require any significant timing assumption, no component has to be fault-free,
and smaller hardware cost as well as less power overhead is expected. Since most of the extra logic
in the FS-PCHB circuit works in parallel, small performance overhead is also anticipated.

3.3 Deadlock Detection

System deadlock is recognized by deadlock monitor, which checks handshake activity. A dead-
lock monitor works in the following way. At any time, if a transition occurs on the data channel,
a timer is started (implemented as a delay line [9]). The deadlock detector waits for the next valid
protocol state to occur. If it does not occur for a large amount of time (in terms of microseconds or
milliseconds), it assumes that the circuit has deadlocked. Note that there are some states where the
circuit can wait for its environment. In these states, a timer is not set.

It is not necessary to apply a deadlock detector to every channel between different hardware
processes. Say channelX dominateschannelY when any switching activity occurs onY only if X
is switching. ChannelX reciprocally dominateschannelY if X both dominates and is dominated
by Y . An equivalent dominator setis a set of channels and they reciprocally dominate each other.
A top equivalent dominator setis an equivalent dominator set and each channel in this set is not
dominated by any channel other than the channels in this set. It should be clear that an asynchronous
system must deadlock if and only if a channel of one top equivalent dominator set deadlocks.
Therefore, system deadlock can be detected if a deadlock detector is assigned to one channel of
each top equivalent dominator set. For an asynchronous system without independent modules,
there is only one top equivalent dominator set and thus one deadlock detector is required.

4 Experimental Evaluation

We evaluated the FS-PCHB circuit in terms of hardware cost, performance and power consump-
tion. Power overhead should be almost the same as the hardware overhead, because most of the
extra transistors are switching. The amount of hardware is estimated in terms of transistor count.

Since full adder is the most common datapath operator, we applied FS-PCHB design to an asyn-
chronous full adder of different sizes, and evaluated the corresponding overheads. Strong feedback
inverters are applied to these FS-PCHB circuits to reduce glitch sensitive window size. We used

8

HSPICE to simulate the circuits with TSMC 0.18um technology at 1.8V supply voltage to get the
throughput and power consumption numbers. Table 1 shows the normalized results.

Experimental data in the table shows that the fail-stop augmentation logic increases hardware
cost by a constant of 92%, compared with the baseline adder. Throughput is reduced by around
30% on average and power consumption is increased by around 80% on average. Since our fail-
stop design does not duplicate everything of baseline PCHB circuit, the incurred hardware overhead
is usually less than 100%. Compared with the previous failure detection methods in asynchronous
circuits [4, 18] which can also detect both hard and soft errors but requires full duplication and con-
servative time window, our design incurs small performance penalty, reasonable hardware/power
overhead and good scalability for different circuit sizes.

Table 1. Normalized metrics of fail-stop asynchronous adder
Adder Size HW Cost Throughput Power

8-bit 1.92 0.61 1.79
16-bit 1.92 0.67 1.81
32-bit 1.92 0.70 1.80
64-bit 1.92 0.69 1.81

Because less transistors are required for data validity (Rv) generation than those for computa-
tional data outputs (Rf andRt), the hardware overhead of FS-PCHB circuits decreases with more
complicated computational logic (i.e., more transistors in pull-down stacks of Figure 2(b)). Conse-
quently, the hardware overhead of our fail-stop design depends on the logic function implemented,
and those numbers reported by full adder are pessimistic for many computational modules, due
to the simplicity of add function. As an example, the hardware overhead of a 4-input (2 data-
inputs + 2 control-inputs) FS-PCHB function bock is only 71% with throughput reduction of 32%
and power increase of 65%, while that overhead of a 6-input (4 data-inputs + 2 control-inputs)
FS-PCHB function block is further reduced to 54% with throughput reduction of 35% and power
increase of 50%. Thus, we can merge the computations of neighbor pipeline stages, resulting in
coarser-grained pipeline and more complicated computational logic in one FS-PCHB circuit, which
significantly reduces the hardware overhead as well as extra power consumption.

5 Related Work

Although there is a lot of research conducted on concurrent failure detection in synchronous
logic [6], only a little work has been done for asynchronous circuits. Rennels et.al. [15] designed a
checker circuit to compare signal pairs from self-timed Differential Cascode Voltage Switch Logic
to detect errors with high probability. Piestrak et.al. [14] developed a self-testing code-disjoint com-
pletion checker for QDI circuits to report error by internal single stuck-at faults. David et.al. [2] and
Yang [19] investigated stuck-at fault detection in dynamic asynchronous circuits, and proposed the
self-checking clockless designs with respect to hard errors. Hyde et.al. [4] presented concurrent er-
ror detection in a micropipeline-based asynchronous RISC processor by applying both duplication-
based method and Dong’s code, while with significant gate delay assumptions. Verdel et.al. [18]
used duplications to achieve concurrent error detection in asynchronous circuits with synchronized
comparison and monitor functions, which incurs both conservative time window and large hardware
overhead. LaFrieda et.al. [7] investigated some fault detection and isolation techniques to improve
the reliability of QDI circuits. Jang et.al. [5] proposed several SEU-tolerant QDI circuit designs
which cause the circuits three times larger and twice slower. However, none of the aforementioned
methods can be applied to QDI circuits to guarantee fail-stop with respect to both permanent and
transient faults, while at reasonable hardware cost and with small performance overhead.

9

6 Conclusion

In this paper, we developed an efficient concurrent failure detection method for QDI circuits,
providing the basis for the construction of reconfigurable fault-tolerant QDI systems. Compared
with previous researches, this method can achieve fail-stop with respect to both hard and soft er-
rors in the asynchronous system, no significant timing assumption is required and no hardware
has to be fault-free. The experimental evaluations showed that this method incurs both reasonable
hardware cost and low performance overhead. Moreover, we investigated the transient pulse propa-
gation in asynchronous logic, and validated the transient fault modeling in clockless circuits through
transistor-level simulations. In addition, we presented a systematic way of deadlock detection with
the minimum cost in an asynchronous system.

References

[1] International Technology Roadmap for Semiconductors. Semiconductor Industry Association, 2004.

[2] I. David, R. Ginosar, and M. Yoeli. Self-timed is self-checking.Journal of Electronic Testing: Theory
and Applications, 6(2), 1995.

[3] P. E. Dodd and L. W. Massengill. Basic mechanisms and modeling of single-event upset in digital
microelectronics.IEEE Transactions on Nuclear Science, 50(3), 2003.

[4] P. D. Hyde and G. Russell. A comparative study of the design of synchronous and asynchronous self-
checking RISC processors. InProceedings of IEEE International On-Line Testing Symposium, 2004.

[5] W. Jang and A. J. Martin. SEU-tolerant QDI circuits. InProceedings of International Symposium on
Asynchronous Circuits and Systems, 2005.

[6] B. W. Johnson.Design and Analysis of Fault Tolerant Digital Systems. Addison Wesley, 1989.

[7] C. LaFrieda and R. Manohar. Robust fault detection and tolerance in quasi delay-insensitive circuits.
In Proceedings of International Conference on Dependable Systems and Networks, 2004.

[8] A. Lines. Pipelined asynchronous circuits. Master’s thesis, 1995.

[9] N. R. Mahapatra, A. Tareen, and S.V. Garimella. Comparison and analysis of delay elements. In
Proceedings of the 45th Midwest Symposium on Circuits and Systems, 2002.

[10] A. J. Martin. Synthesis of asynchronous VLSI circuits. Technical Report CS-TR-93-28, 1993.

[11] A. J. Martin, M. Nystr̈om, and C. G. Wong. Three generations of asynchronous microprocessors.IEEE
Design and Test of Computers, 20(6), 2003.

[12] E. J. McCluskey and C. W. Tseng. Stuck-fault tests vs. actual defects. InProceedings of International
Test Conference, 2000.

[13] G. McFarland. CMOS Technology Scaling and Its Impact on Cache Delay. PhD thesis, Stanford
University, August 1997.

[14] S. J. Piestrak and T. Nanya. Towards totally self-checking delay-insensitive systems. InProceedings of
International Symposium on Fault-Tolerant Computing, 1995.

[15] D. A. Rennels and H. Kim. Concurrent error detection in self-timed VLSI. InProceedings of Interna-
tional Symposium on Fault-Tolerant Computing, 1994.

[16] G. L. Ries, G. S. Choi, and R. K. Iyer. Device-level transient fault modeling. InProceedings of
International Symposium on Fault-Tolerant Computing, 1994.

[17] I. E. Sutherland and J. Ebergen. Computers without clocks.Scientific American, 2002.

[18] T. Verdel and Y. Makris. Duplication-based concurrent error detection in asynchronous circuits: Short-
comings and remedies. InProceedings of IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, 2002.

[19] J. L. Yang, C. S. Choy, C. F. Chan, and K. P. Pun. Design for self-checking and self-timed datapath. In
Proceedings of IEEE VLSI Test Symposium, 2003.

10

