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Abstract

Sequential elements, flip-flops, latches, and memory cells, are the most vulnerable com-
ponents to soft errors. Since state-of-the-art designs contain millions of bistables, it is not
feasible to protect all system bistables using hardening techniques that impose area, perfor-
mance, and power overhead. A practical approach is to rank system bistables based on their
contribution to the overall system vulnerability and protect the most problematic bistables.
This analysis is traditionally performed by fault injection and simulation methods which
are intractable for large designs and multi-cycle analysis. In this paper, we present an an-
alytical framework to analyze multi-cycle error propagation behavior and then rank system
bistables based on their effects on system-level soft error rate. The number of clock cycles
required for an error in a bistable to be propagated to system outputs is used to measure the
vulnerability of bistables to soft errors.

1 Introduction

As the aggressive technology scaling continues and exponentially more devices are in-
tegrated in the same chip, soft errors become the main reliability concern during lifetime
operation of digital systems. Soft errors, also called Single Fvent Upsets (SEU), are inter-
mittent malfunctions of the hardware that are not reproducible [11]. These errors, which
can occur more often than hard (permanent) errors [4], are caused from energetic particles,
namely neutrons from cosmic rays and alpha particles from packaging material. Soft Error
Rate (SER) for a device is defined as the error rate due to SEUs. SER depends on both
the particle flux and circuit characteristics. Device parameters that influence the error rate
include the amount of stored charge, the vulnerable cross-sectional area, and the charge
collection efficiency [14].

Soft error susceptibility per transistor remains roughly unchanged with technology scal-
ing [14]: reduction in the amount of the required charge to change the state of a transistor
is canceled by its reduced active area susceptible to particle strike. However, in the absence
of effective error correction schemes, the error rate will grow in direct proportion to the
number of devices on the chip. Thus, while Moore’s Law gives an exponential increase in
the transistor count, this growth comes at the cost of exponential increases in error rates
for unprotected chips [10].

Sequential components, namely flip-flops, latches, register files, and memory cells, are
the most vulnerable components to soft errors. Estimated soft error rate of typical designs
such as microprocessors, network processors, and network storage controllers shows that
sequential elements and unprotected SRAMs contribute to 49% and 40% of the overall soft



error rate, respectively [6]. Moreover, it is observed that the nominal soft error rate of
sequential elements increases with technology scaling [3].

Since memory arrays and register files have regular structures, they can be easily pro-
tected by popular redundancy techniques such as parity and error correcting codes (ECC).
The area and power overhead of these redundancy techniques is about 10-20% [15]. How-
ever, protection of system bistables (flip-flops and latches) is a major challenge. Since
these elements are scattered all over the physical layout, they cannot be protected by
array-based protection methods, such as parity or ECC. Soft error protection techniques
for system bistables come with extra area, performance, and power overhead [9, 17, 6]. As
state-of-the-art designs contain millions of bistables, it is not feasible to protect all bistables
using hardening techniques due to unacceptable overhead for the entire design.

While particle flux uniformly encounters the entire circuit, the probability that an SEU
event in a system bistable causes a system failure (i.e. the error appears at system out-
puts) changes for each bistable drastically. Due to this fact, soft error hardening and
protection across the chip should not be uniform. Therefore, a practical approach for soft
error protection of sequential elements is to rank system bistables based on their contri-
butions to the overall system vulnerability and only protect the most vulnerable bistables.
This bistable ranking is traditionally performed by fault injection and simulation methods.
However, since this analysis required multi-cycle simulations, the complexity of simulation-
based fault injection methods increases exponentially with the number of clock cycles to be
simulated. This makes simulation-based approaches impractical for industrial designs.

In this paper, we present an analytical framework to analyze multi-cycle error propaga-
tion behavior in sequential circuits to be used for ranking bistables based on their soft error
vulnerability. We exploit our previous work on combinational error propagation probabil-
ity (C-EPP) estimation to analyze bistable-to-bistable! error propagation behavior. Using
C-EPP values, we develop a mathematical formulation for sequential error propagation
probability (S-EPP) analysis. For each bistable, we compute the number of clock cycles
between an SEU event in that bistable and a system failure. This information is used as
the figure of merit for soft error vulnerability and bistable ranking.

The rest of this paper is organized as follows. In Sec. 2, the related work on soft
error estimation and protection is presented. In Sec. 3, the analytical SER estimation in
sequential circuits is described. In Sec. 4, the experimental results are presented. Finally,
Sec. 5 concludes the paper.

2 Related Work

Previous work on SER estimation can be classified into three categories, namely circuit
level [5, 12], gate level [7, 8, 11, 13|, and architectural level [10, 16]. Circuit level SER
estimation methods compute the probability of an SEU producing an error (glitch) on the
output of the gate hit by a particle. These techniques use SPICE simulations to obtain
these probabilities.

Gate-level SER estimation techniques try to compute the SER rate of a circuit node
by computing the SEU occurrence rate, the error propagation probability (EPP), and the
error latching probability. The work presented in [11] introduces logic and timing derating
factors and describes how these factors reduce the susceptibility of combinational logic to
soft errors. To compute the error susceptibility of a node to SEUS, it is required to compute

'In this paper, the terms “latch”, “flip-flop”, and “bistable” are used interchangeably.



the probability that the node is functionally sensitized by the input vectors to propagate
the erroneous value from the error site to system outputs [8]. Traditionally, several random
vectors are applied to the circuit inputs to determine the propagation probability of an
erroneous value from the struck node to the outputs [5, 7, 11, 12, 13, 14]. It is shown in [5]
that the size of simulated vectors should be around 1% of all possible input combinations to
achieve an acceptable (95%) accuracy. Therefore, simulation time increases exponentially
with the size of the circuit.

Shivakumar et. al. explored the effect of micro-architectural trends on the rate of soft
errors in CMOS memory and logic circuits [14]. Their analysis illustrates the effect of tech-
nology trends on electrical and latching-window masking, which provides combinational
logic with a form of natural protection against soft errors. Finally, in [10, 16], a modern-
processor’s error rate is computed at the architectural level. The notion of a structure’s
Architectural Vulnerability Factor (AVF) was introduced in [10], which expresses the prob-
ability that a fault in that particular structure will result in an error.

A flip-flop hardening technique against both dynamic and static SEUs has been presented
in [9] at the expense of 30% area, power, and delay overhead. Recently, a built-in soft
error resilience technique for protecting system bistables has been presented in [6]. In this
technique, scan cells with an additional level of latches which are originally used for debug
purposes, are reused for error checking.

In our prior work, we have presented an analytical combinational error propagation proba-
bility (C-EPP) computation approach to estimate SER in combinational circuits [1, 2]. This
approach uses the signal probabilities (SP) of all nodes and computes EPPs based on the
topological structure of the circuit by traversing the paths from struck node to reachable
outputs. The time complexity of this approach is linear to the size of the circuit, since
each gate along the path is examined only once in the topological order. Since SP is
widely used for power consumption analysis, by reusing calculated SP values from previous
design steps, the complexity of SER estimation approach will not increase. Experiments
show that the analytical C-EPP estimation technique is 4-5 order of magnitude faster than
simulation-based methods while more than 94% accurate.

3 SER Estimation in Sequential Circuits

3.1 Sequential Error Propagation

A typical synchronous circuit consists of combinational logic and flip-flops. Fig. 1 shows
the conventional representation of a sequential circuit. Primary Inputs (PIs) and the out-
puts of flip-flops (FF's) are inputs of combinational logic. Also, Primary Outputs (POs)
and the inputs of the flip-flops are outputs of the combinational logic.

Primary Inputs (P1) Primary Outputs (PO)
:> Combinational

Logic
Pl FF| |
| Flip-Flops 4_—| PO ¢

Figure 1. A typical block diagram of a synchronous sequential circu it




In a sequential circuit, error propagation from an error site (for example, a bit-flip in
a flip-flop) to primary outputs can happen several clock cycles after the SEU event. The
error can be first propagated to other flip-flops in some clock cycles and finally appears at
the primary outputs. The average number of clock cycles it takes before the error appears
at the primary outputs depends on the particular flip-flop the error originated from. A
flip-flop ¢ is considered more vulnerable to soft errors than flip-flop j if an error originated
in ¢ takes less time, in average, to appear at the outputs than an error originated in
j. The sequential error propagation probability (S-EPP) depends on combinational error
propagation probabilities of reachable flip-flops and primary outputs from an erroneous
flip-flop, as well as the sequential structure of the design.

In this section, we analyze how an erroneous value in a flip-flop can cause a system
failure in several clock cycles after the particle strike. We exploit our C-EPP estimation
method as a basis for sequential EPP analysis [1, 2]. Given a particular error site (such
as primary input, flip-flop output, or any internal node) and an observation point (such
as primary output or flip-flop input), we are able to accurately estimate the combinational
error propagation probability from the error site to the observation point.

For S-EPP analysis, we need to capture the sequential error propagation behavior of the
circuit. We define an n x n S-EPP matriz M where M;; is the probability of an error in flip-
flop F'F; given flip-flop F'F; is erroneous. The elements (m;;) of this matrix are obtained
using combinational-EPP estimation approach presented in [2] by setting flip-flop F'F; as
the error site and flip-flop F'F}; as the observation point.

Sequential error propagation probability (S-EPP) matrix M:

M;; = P(error appear in FF;|FF; is erroneous)

P(FFR|FF) P(FR|FF) ... P(FF,|FF)
y P(FF\|FF,) P(FF|FF,) ... P(FF,|FF)
P(FF\|FF,) P(FF|FF,) ... P(FF,|FF,)

Also, a system failure vector S is defined, where S; is the probability of system failure
(SF) given the content of F'F; is erroneous (i.e., S; = P(SF|FF;). In other words, it gives
the probability of a system failure in the same clock cycle that an SEU event occurs. This
vector is obtained by computing C-EPPs between each pair of system bistable and primary
output.

System failure probability vector S: S; = P(system failure|FF; is erroneous)

P(SF|FF)
P(SF|FF)

P(SF|FF,)

We use S-EPP matrix and system failure probability vector for our multi-cycle sequential
error propagation analysis. The following theorem is used as the basis of this analysis.



Theorem 1. The probability of a system failure at ¢ clock cycles after the SEU event in
FF; (i.e. given FF; is erroneous), P¢(SF|FF;), is calculated as follows:

P(SF at cycle c|FF; erroneous) = PS(SF|FF;) = i" element of M*™1S (1)

Proof. Assume that the content of F'F; is erroneous. The probability of a system failure
at the first clock equals to the i*" row of S, i.e. S; = P(SF|FF;), based on the definition
of S (the basis of induction). Error can be propagated to the output two clock cycles after
the SEU event if the error is propagated from F'F; to another flip-flop F'F} in the first clock
cycle, and then propagated from F'F}; to the output in the second clock cycle. Since F'F; can
be any flip-flop in the circuit and given the independent error propagation probabilities to
each flip-flop F'F};, we have to sum the probabilities for all F'F;. The following expressions
show the probability of a system failure at the second clock (¢ = 2) after the SEU event:

PX(SF|FF;,) = P(FR|FF)P(SF|FF)+---+ P(FF,|FF;))P(SF|FF,)

n
= MjSi+ MSs+ -+ + MinSy, =Y M;;S;
j=1
= [Mil Mig cee Mm]S = Rowi(M.S) (2)
Similarly, the probability of system failure at the third clock (¢ = 3) after bit-flip is
calculated as follows:

n
P3(SFIFF) = S(1)Y. P(FF|FF;)P(FF;|FF;)
7j=1

+5(2) En: P(FF,|FF,)P(FFj|FF,)
j=1

n
+---+58(n)Y_ P(FF,|FF;)P(FF;|FF))
7j=1

— Y S0, P(FRIFE)P(FF|FF)
= j=1
P3(SF|FF;) = Row;(M.M.S) = Row;(M?S) (3)

Based on the induction, it can be shown that the probability of system failure at ¢ clock
cycles after a bit-flip event in F'F; is computed as P¢(SF|FF;) = Row;(M¢~1S). Therefore,
the proof is complete Q.E.D.

After computation of system failure probabilities for any particular clock cycle ¢ after
the SEU event, the system failure probability for this period, i.e. from the clock cycle at
which the bit-flip occurs to ¢ clock cycles after that, is computed as follows:

P{(SF|FF;)) = PYSF|FF))+ (1— PYSF|FF;)) x P*(SF|FF))
+(1 — PYSF|FF)) x (1 — P*(SF|FF))) x P(SF|FF;) +

P(SFIFF) = i(P“(SF|FF»ﬁ(l—Pm<SF|Fm>>> (1)

n=1 m=1



Note that the complexity of the simulation-based method increases exponentially with
¢, making simulation-based analysis intractable for large sequential circuits. However, the
presented approach requires only a matrix multiplication to compute the system failure
rate in next clock cycles, and hence, its time complexity is linear to c.

It has to be mentioned that in the above theorem, independent probabilities of error
propagations between each pair of flip-flops have been considered. This results in over-
estimation of S-EPPs calculated based on this approach if C-EPPs are not independently
computed. However, the experiments presented in the next section show that this approach
is sufficiently accurate. Moreover, this accuracy of this method is adequate to rank system
bistables based on their soft error vulnerability.

3.2 Mean Time To Manifest Error

As a metric to compute the vulnerability of individual flip-flops to soft errors, we use the
concept of mean time to manifest error (MTTM). MTTM for a flip-flop is defined as the
average time (the number of clock cycles) from an SEU event in that flip-flop to a system
failure (error appearing at primary outputs) due to that bit-flip. Flip-flops with smaller
MTTM are more vulnerable to soft errors. Therefore, we use MTTM as a metric to rank
system bistables.

MTTM for each flip-flop can be computed based on Equation 4. MTTM for each flip-flop
F'F; is computed as the smallest number of clock cycles ¢ such that P{(SF|FF;) =1 but
P{Y(SF|FF;) < 1. In other words, MTTM is equal to the minimum number of clock
cycles that is required for a system failure with probability of one.

4 Experimental Results

We have used the approach presented in [1, 2] to compute C-EPPs for ISCAS’89 se-
quential circuits. Each row of S-EPP matrix can be computed in just one traversal of the
combinational part of the circuit starting from the corresponding flip-flop. Therefore in n
passes, where n equals to the number of system bistables, the entire matrix can be com-
puted. Table 1 shows S-EPPs for five representative flip-flops of some ISCAS’89 circuits in
twenty clock cycles after the SEU event. As can be seen in this table, the probability of
system failure increases in the subsequent clock cycles after the SEU event.

Figure 2 shows the MTTM distribution for some ISCAS’89 benchmark circuits. These
results are separated for small and large circuits. In smaller circuits, which have at most
21 flip-flops, majority of flip-flops have very low MTTM due to small depth of the combi-
national logic. However in larger circuits, which have up to 211 flip-flops, a small subset of
flip-flops have very low MTTM and hence, very vulnerable to SEUs. This figure shows that
MTTM is an effective metric to distinguish flip-flops based on their soft error vulnerability.
In other words, the range and distribution of MTTM values for different flip-flops in a
circuit is quite wide.

Figure 3 shows the average MTTM values (the average over all flip-flops in a circuit) for
these circuits. As can be seen in this figure, the average MTTM is very application-specific
and does not necessarily scale with the size of the circuit.

The accuracy of the analytical C-EPP estimation method presented in [2], which is the
basis of the flip-flop ranking technique presented in this paper, is more than 94% compared
to simulation-based method while 4-5 orders of magnitude faster. For smaller circuits in
which simulation-based multi-cycle analysis is feasible, we have computed simulation-based
MTTM values and compared them with the values obtained from our analytical method.



circuit/ 1st clock | 2nd clock | 3rd clock | 4th clock | 10th clock | 20th clock
number of FF's cycle cycle cycle cycle cycle cycle
s1423 0 0 0 0.0001 0.0039 0.0466
/74 FFs 0 0 0 0.0001 0.0032
0 0 0.0010 0.0042 0.1428 0.8673
0 0 0.0019 0.0079 0.2205 0.9400
0 0.0467 0.1428 0.2827 0.9933 1
s5378 0.1731 0.3163 0.4599 0.6138 1 1
/179 FFs 0.2953 0.5035 0.6503 0.7538 0.9709 1
0.2953 0.5035 0.6502 0.7537 0.9708 1
0.5774 0.8572 0.969249 | 0.998926 1 1
0 0 0 0.0004 0.0163 0.2800
s9234 0 0.02722 0.0861 0.1780 0.9284 1
/211 FFs 0 0.0135 0.0683 0.1903 0.9901 1
0 0 0 0 0 0.0011
0.0542 0.1415 0.2609 0.4169 1 1
0 0.0014 0.0048 0.0196 0.9072 1

Table 1. System failure probability vectors for five representative

mark circuits
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This experiment shows that the difference between these two methods is around 12%.
However, the flip-flop ranking obtained from both methods are exactly the same. In other
words, while the accuracy of the MTTM values achieved by our analytical method is within
12% of the simulation-based method, the flip-flop ranking is 100% accurate. Note that the
analytical method is 5-6 orders of magnitude faster than multi-cycle simulation methods.

5 Conclusions

Soft errors due to single event upsets are the main reliability threat for digital systems.
In particular, vulnerability of digital systems grows in direct proportion to the Moore’s law.
In this paper, we have presented an analytical approach for soft error rate estimation of
sequential elements, latch and flip-flops, in digital designs.

We have developed a mathematical framework for the estimation of system failure proba-
bility in multiple cycles after the SEU event. By computing combinational error propagation
probabilities between bistables we have devised a matrix formulation to represent the prob-
ability of error in each bistable or primary output at any given clock cycle. Based on this
formulation, we have computed mean time to manifest an error (MTTM) for each flip-flop.
Unlike simulation-based methods which have exponential time complexity, the complexity
of the presented approach is linear to the size of the circuit.

Using this analysis, we have been able to rank system bistables based on their soft error
vulnerabilities. This ranking can be used for selective protection of system bistables against
soft errors in order to maximize soft error suppression with bounded overhead.
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