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Abstract

Human action recognition can be approached by combin-
ing an action-discriminative feature set with a classifier.
However, the dimensionality of typical feature sets joint
with that of the time dimension often leads to a curse-of-
dimensionality situation. Moreover, the measurement of
the feature set is subject to sometime severe errors. This
paper presents an approach to human action recognition
based on robust dimensionality reduction. The observa-
tion probabilities of hidden Markov models (HMM) are
modelled by mixtures of probabilistic principal compo-
nents analyzers and mixtures oft-distribution sub-spaces,
and compared with conventional Gaussian mixture mod-
els. Experimental results on two data sets show that di-
mensionality reduction helps improve the classification
accuracy and that the heavier-tailedt-distribution can help
reduce the impact of outliers generated by segmentation
errors.

1 Introduction

Automated recognition of human actions has garnered in-
creasing interest in recent years for its potential usefulness
in video surveillance systems, human-computer interac-
tion, multimedia annotation and other applications. A
single, encompassing definition of “human action” is not
possible since human actions entail varied levels of com-
plexity and different semantics, from basic gestures up to
articulated, composite actions. A noticeable trend in hu-
man action recognition research has been that of focusing

on the recognition ofprimitive actions such as running,
jumping, waving and similar basic actions which can be
used as a dictionary for the modelling of more complex
actions. Many data sets have been publicly released and
intensely utilised for research, including Weizmann [5],
KTH [16], HumanEva [17] and, more recently, MuHAVi
[9].

The first step for recognition consists of extracting an
action-discriminative feature set. Typical feature sets con-
sist of either global o local features [14]. Global rep-
resentations imply the localization of the actor(s) and
their subsequent representation based on shapes, silhou-
ettes, edges, splines or other. Local representations de-
tect spatio-temporal interest points and use local patches
around these points to compute local descriptors [10].
Since the number of local features in each frame and se-
quence is variable, histograms are used to convert the
extracted local features to fixed-length feature sets (his-
togram of oriented spatial gradient (HOG), histogram of
optical flow (HOF) etc) suitable for use with statistical
classifiers [11]. A single histogram may be computed
over the entire frame sequence, or the frame sequence
may be partitioned with a temporal grid and a histogram
computed over each temporal segment. Local represen-
tations have gained momentum in recent years for their
strong recognition performance [11, 14].

Once the feature set for the sequence is available, the
classification problem can be solved by direct classifica-
tion (using conventional classifiers such as nearest neigh-
bours, support vector machine or any others), or by tem-
poral state models which assume that the joint probability
of the measurements can be simplified by use of latent-
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state dynamics. In a temporal state model, each state rep-
resents a phase of the action and the transitions between
states are governed by the assumed dynamics; at their
turn, measurements are explained by state-conditional
likelihoods. Temporal state models have been criticised
in various ways as either being too rigid or unrealistic.
However, one can see that they capture the full temporal
nature of the action better than any other approaches since
the feature set is measured at every frame rather than once
for the entire sequence or over a grid of arbitrary size.
Nevertheless, a challenge to these classifiers is posed by
the combined dimensionality of the feature set, say,P ,
and that of the number of frames,T , leading to a possible
curse-of-dimensionality situation. For instance, for an ac-
tion instance occurring over 10 seconds, with a frame rate
of 25 fps and a feature set withP = 100 dimensions, the
joint dimensionalityT · P is equal to 25,000. As much
as conditional independences may be assumed along both
the feature space and time, the actual dimensionality re-
mains huge. As an additional problem, the chained eval-
uation typical of temporal state models may fail in the
presence of outliers.

In this work, we stress the importance of designing ef-
fective state-conditional observation likelihoods to over-
come the aforementioned problems. We propose to use
dimensionality reduction techniques to overcome overfit-
ting of observation likelihoods. Robustness to outliers
is added by using heavy-tailed distributions such as the
Student’st. While previous work exists utilising dimen-
sionality reduction in time-series classifiers [13, 7], to
the best of our knowledge this is the first work attempt-
ing a comparative analysis in the field of human action
recognition. In this paper, we use the well-known hid-
den Markov model (HMM) as the time-series classifier
and we compare the classification accuracy achievable
with various models for the observation likelihoods. In
addition to the usual Gaussian mixture model (GMM),
we have used dimensionally-reduced models, namely the
mixture of probabilistic principal component analyzers
(MPPCA) and the mixture oft-distribution sub-spaces
(Mt-ss) [19, 6, 2]. Results show that dimensionality re-
duction helps improve the classification accuracy and that
heavy-tailed distributions are effective against typicalout-
liers. The rest of the paper is organised as follows: Sec-
tion 2 describes time-series classification and the hidden
Markov model, with sub-sections addressing dimension-

ality reduction and the selected techniques. Section 3 de-
scribes the data set and the experimental set-up, while
Section 4 presents and discusses the results. Eventually,
conclusive remarks are addressed relating to this work and
its current extensions.

2 Classification of time series

Statistical properties of multivariate time series such as
O = {o1, ..., ot, ..., oT } can be described by probability
density functionp(O) = p(o1, ..., ot, ..., oT ). Yet, such
a joint probability of all the observations (each, in turn,
being aP -dimensional random variable) is regarded as
intractable or impractical. Therefore, the joint probabil-
ity is often factorised into smaller terms, and conditional
independencies between observations are explored. How-
ever, conditional independencies between observations
are hard to model in general and alternative models based
on the notion of latent, or hidden, states have been pre-
ferred. Common models are based on two assumptions:
1) observations are mutually independent if conditioned
on the states that have “generated” them, and 2) dynamics
of the model is explained by the transitions between states
alone, often under first-order Markov hypotheses. In ad-
dition, for action recognition, models where the states are
discrete random variables with few state values are com-
monly adopted as they simplify analysis.

The hidden Markov model (HMM) is a prototypical ex-
ample where statesQ = {q1, ..., qt, ..., qT } are posited,
each in correspondence with an observation. Eachqt, t =
1...T is a discrete random variable taking values over a
finite set,S = {s1, ..., sk, ..., sN}. The parameters of
the model consist of 1) the state transition probabilities,
A = {aij = P (qt = sj |qt−1 = si)}, i, j = 1...N , 2)
the observation probabilities,B = {bi(o) = p(o|qt =
si)}, i = 1...N , which for our case of continuous obser-
vations are actually probability density functions, and 3)
the initial state probabilities,πi = {P (q1 = si)}, i =
1...N . Given that the model is stationary,A andB are the
same for anyt. The three groups of parameters together,
λ = {A,B, π}, define the HMM completely. The obser-
vation probability density functions (pdfs) are often mod-
elled by Gaussian mixture models with a pre-determined
number of components,M , as in:



bi(o) =

M∑
l=1

αilN (o|µil,Σil), i = 1..N. (1)

whereαil is the mixing parameter, or prior, of thel-th
component andµil, Σil are its mean and covariance.

The two problems we are interested in addressing with
HMM are learning and evaluation. Learning of an HMM
provides a set of parameters,λ, from a set ofE training
examples,Oe, e = 1..E. The most common algorithm
used for this step is the Baum-Welch algorithm which
belongs to the broad family of expectation-maximisation
(EM) algorithms. Given a model,λ, evaluation pro-
vides a density value for sequenceO, p(O|λ), efficiently
computed by forward-backward algorithms. Maximum-
likelihood classification can therefore be provided based
on p(O|λ): given a number of trained models,λc, c =
1..C, one for each of theC classes of interest, the
maximum-likelihood class is given by

cML = argmax
c

(p(O|λc)), c = 1..C. (2)

The above can be easily adjusted to maximum-a-
posteriori or minimum Bayesian risk by addition of ap-
propriate priors and weights.

2.1 Dimensionality reduction

In the case of high-dimensional spaces, density estimation
is challenged by the relative scarcity and possible sparse-
ness of the training data. The resulting models often suf-
fer from little generalization capability over unseen data.
A common solution to this problem is offered by dimen-
sionality reduction techniques. Amongst them, principal
component analysis (PCA) is a term of reference. PCA
maps ay sample from a highP -dimensional space to a
pointx = WT (y − ȳ) in aD-dimensional space, withD
typically<< P . Fromx, an approximated reconstruction
of y is obtained as̃y = Wx + ȳ, with the reconstruc-
tion error defined asǫ = ỹ − y. The parameters of PCA
are theP x D transformation matrix,W , and offsetȳ.
Both parameters are learned based on a given set of train-
ing data,Y = {yi} , i = 1..Ny: W is given by theD
“largest eigenvectors” (the eigenvectors corresponding to
the largest eigenvalues) of their sample covariance andȳ
by their sample mean. This choice forW has the effect of

minimising the total squared reconstruction error over the
training set. Correspondingly, it maximises the sample
covariance inx-space, hoping to retain useful informa-
tion. However, PCA models cannot be learned with max-
imum likelihood or other fuller Bayesian methods due to
their incomplete probabilistic formulation.

Probabilistic PCA (PPCA) amends the limitations of
PCA by proposing a full probabilistic model that can be
trained with maximum likelihood. PPCA assumes the ex-
istence of a latent, low-dimensional space where a point,
x, is in correspondence with ay sample in the original
space. The relationship between samples and latent points
is given by:

y = Wx+ µ+ ǫ (3)

whereW is aP x D matrix describing a linear trans-
formation andǫ is an additive noise component. Bothx
and ǫ are treated as random variables and assumed nor-
mally distributed, withp(x) = N (x|0, I) and p(ǫ) =
N (ǫ|0, σ2

I), and independent. It follows immediately
thatp(y) = N (y|µ,C), with C = WWT + σ2

I [20].
As Gaussian models are highly sensitive to outliers dur-

ing training, longer-tailed distributions such as the Stu-
dent’st-distribution have been used for robust modelling
[12]. To join robustness with dimensionality reduction, a
sub-space version of thet-distribution was proposed in
[8]. The sub-spacet-distribution uses the same model
of PPCA with the addition of a further random variable
called ascaling u. Probabilities forx andǫ are given as
conditional densities onu, p(x|u) = N (x|0, I/u) and
p(ǫ|u) = N (ǫ|0, σ2

I/u), andp(u) is assumed equal to
Gamma(ν/2, ν/2) whereν is the number of degrees of
freedom of thet-distribution.

It is relatively straightforward to combine multiple
dimensionally-reduced models into a mixture model. The
rationale for this is to obtain locally-linear models which
can approximate a nonlinear manifold. When mixtures
of M component distributions are considered, the single-
component pdf easily extends toM individual compo-
nents with mixing parameters,αl, l = 1..M [4]:

p(y) =

M∑
l=1

αlpl(y) (4)

Given that closed-form solutions for the direct maxi-
mization of the likelihood are either impossible or simply



less practical, EM algorithms are commonly used for pa-
rameter estimation of mixtures [4].

Several other models for dimensionality reduction over
manifolds have also been proposed such as local linear
embedding and ISOMAP [15, 18]. Compared to mixture
models, they have the advantage of not needing a pre-
determined number of components and being more flex-
ible in the modelling of the manifold. However, they do
not suit this work since they to do not define proper den-
sities, do not obviously extend outside their training set
[3] and therefore cannot be easily plugged-in in tempo-
ral state models. In the rest of this paper we focus on the
mixture of PPCA and the mixture oft-distribution sub-
spaces (Mt-ss) as observation probabilities of HMM, and
compare their performance with that of the usual GMM-
based HMM. The next two sub-sections sketch the basics
of these two dimensionality reduction techniques.

2.2 Mixture of probabilistic principal com-
ponents analyzers

Mixture of principal component analyzers are Gaussian
mixtures (1) whose covariance matrix is restricted to de-
scribe aD-dimensional sub-space. Like for a general
Gaussian mixture, the E step of EM requires computing
the component posteriors, orresponsibilities, for each it-
erationk:

p(l|yi, µ
(k)
l , C

(k)
l ) =

α
(k)
l N (yi|µ

(k)
l , C

(k)
l )∑M

h=1 α
(k)
h N (yi|µ

(k)
h , C

(k)
h )

(5)

The M step of EM needs to maximise the expectation
of the complete data log-likelihood over the components’
parameters. The mixing parameters and means are pro-
vided by the following re-estimation formulas:

α
(k+1)
l =

1

N

N∑
i=1

p(l|yi, µ
(k)
l , C

(k)
l ) (6)

µ
(k+1)
l =

∑N
i=1 yip(l|yi, µ

(k)
l , C

(k)
l )∑N

i=1 p(l|yi, µ
(k)
l , C

(k)
l )

(7)

The formulas for the update ofαl andµl are the same
as those of a standard Gaussian mixture model (more cor-
rectly, (7) should include a term proportional to the ex-

pected value of the latent low-dimensional variable; how-
ever, such a term would tend to nullify along the itera-
tions). Tipping and Bishop in [19] showed that matrix
Wl and the noise varianceσ2

l can be determined from
the responsibility-weighted covariance matrix,Sl, (8) by
standard eigen-decomposition in the same fashion as for
single PPCA (10):

S
(k+1)
l =

ΣN
i=1(yi − µ

(k+1)
l )(yi − µ

(k+1)
l )T p(l|yi, µ

(k)
l , C

(k)
l )∑N

i=1 p(l|yi, µ
(k)
l , C

(k)
l )

(8)

σ
2(k+1)
l =

1

P −D

P∑
h=D+1

λhl (9)

W
(k+1)
l = U

(k+1)
l (L

(k+1)
l − σ

2(k+1)
l I)1/2R (10)

C
(k+1)
l = W

(k+1)
l W

(k+1)T
l + σ2(k+1)

I (11)

whereL(k+1)
l is a DxD diagonal matrix with theD

largest eigenvalues ofS(k+1)
l , U (k+1)

l is a PxD matrix
whose columns are given by theD corresponding eigen-
vectors, andλhl note the discarded eigenvalues.R is an
arbitraryDxD rotation matrix since the model can only
be identified up to an arbitrary rotation (an irrelevant de-
tail for its use as a probability density function).

2.3 Mixture of t-distribution sub-spaces

The principal drawback of MPPCA is its sensitivity to
outliers during parameter estimation, particularly for co-
variances. In order to mollify this problem, the mixture
of t-distribution sub-spaces (Mt-ss), also known as mix-
ture of robust probabilistic principal component analyz-
ers, was introduced [6, 2]. Its main advantage is that thet-
distribution is heavier-tailed than the Gaussian and there-
fore more robust. Parameterν in the t-distribution con-
trols the “thickness” of the tails permitting coping with
outliers without translatingµ or expandingΣ. The t-
distribution pdf is given by:

St(y|µ,Σ, ν) =
Γ( ν+P

2 )|Σ|−1/2

Γ( ν2 )(νπ)
P/2

(1 +
∆2

ν
)−

(ν+P )
2 (12)



where Γ() is the Gamma function,ν > 0 are the
“degrees of freedom”,P is the dimensionality ofy and
∆2 = (y − µ)TΣ−1(y − µ).

Liu and Rubin in [12] demonstrated that the maximum-
likelihood parameters of at-distribution can be obtained
with EM based on the following equality:

St(y|µ,Σ, ν) =

∫
∞

0

N(y|µ,
Σ

u
)G(u|

ν

2
,
ν

2
)du (13)

whereu, called thescaling, is a latent variable permit-
ting reformulation of thet distribution as an infinite mix-
ture of Gaussians over which a Gamma prior is imposed.
The Gamma prior overu depends only onν so that:

G(u|
ν

2
,
ν

2
) ∝ u

ν

2−1e
ν

2 u (14)

Thet-distribution can be extended to accommodate for
dimensionality reduction in a similar way to probabilis-
tic PCA. First, p(x) is defined as the prior of theD-
dimensional latent variable,x:

p(x) = St(x|0, I, ν) (15)

Second, conditional distributionp(y|x) is defined as:

p(y|x) = St(y|Wx+ µ, σ2
I, ν) (16)

where σ2 is the variance not captured by the low-
dimensional vectors and the mean ofy depends onx
through thePxD-dimensional matrixW .

Finally, multiplet-distribution sub-spaces can be com-
bined in a mixture model by a tailored EM algorithm.
We implemented the equations for iterative computation
of the responsibilities and maximisation inαl, µl, νl, Wl

andσ2
l (l = 1..M ) derived by Archambeauet al in [2].

3 Experiments

For the accuracy evaluation and comparison of the three
proposed action classifiers (HMM with Gaussian mixture
model, MPPCA and mixture oft-distribution sub-spaces
as observation probabilities), we have conducted experi-
ments over two data sets, Weizmann [5], and a version of
Weizmann corrupted by segmentation errors. The data
sets are briefly described in this section alongside the

main results, discussing the advantages and drawbacks of
each classifier.

3.1 Data Sets

The Weizmann institute dataset [5] consists of 9 differ-
ent actors performing 10 primitive actions each. The 90
sequences have a size of 180x144, de-interlaced from 50
fps. The actions carried out are ’Bend’, ’Run’, ’Walk’,
’Skip’, ’Jumping Jack’, ’Jump Forward On Two Legs’,
’Jump In Place On Two Legs’, ’Gallop Sideways’, ’Wave
With Two Hands’ and ’Wave With One Hand’. The data
set provides the original 2D human shapes or masks. Fig-
ure 1 shows 20 frames of an action’s shape masks from
the data set.

Figure 1: Weizmann actions’ masks examples for one
of the actors (’daria’). From first row: ’Bend’, ’Run’,
’Walk’, ’Skip’, ’Jumping Jack’, ’Jump Forward On Two
Legs’, ’Jump In Place On Two Legs’, ’Gallop Sideways’,
’Wave With Two Hands’ and ’Wave With One Hand’. All
the masks were resized to 16x16.

The masks are resized to 16x16 pixels by re-sampling
(Figure 1 shows the resized 16x16 images). While the
masks are binary, the resized images are mildly in grey-
level from the interpolation of binary pixels. In the next
step, we construct a single 256x1 feature vector per frame
by concatenating the columns of each 16x16 image. De-
spite its simplicity, this feature set enjoys the properties of
being a) of a fixed size for all frames, b) partially invariant
to antropometry, and c) independent of the subject’s loca-



tion in the scene. As we conducted both training and test-
ing from a fixed view, view invariance was not an issue in
this work. However, this feature set is highly dimensional
as it consists ofP=256 features and is expected to cre-
ate dimensionality issues. Subsequently, for each frame
sequence we join its 256x1-dimensional vectors in time-
frame order into an array of 256xT elements, beingT the
length of the sequence. The result is the input data for our
HMMs. An example is shown in Figure2 from a sequence
of 20 frames (T=20) of action ’Jumping Jack’. To follow
the evolution of a specific pixel during an action instance,
one can select the corresponding row in the 256xT array.

Figure 2: The picture above shows a sequence of length
20 frames (T=20) for the ’Jumping Jack’ action. For ev-
ery frame, a 256x1-column vector is built by concate-
nating each of the columns of the images. The picture
shows the corresponding 256x1-column vector for each
mask image.

Nonetheless, Weizmann presents ideal and clean data,
leaving no space for outliers. In a real application, one
expects segmentation errors to repeatedly occur due to
the varying appearance of the actor and the variable back-
ground and illumination. Therefore, in order to obtain a
more suitable benchmark for testing the performance oft-
distribution over other models in the presence of outliers,
we artificially created a noisy dataset from the original
Weizmann. An 8x8noisy square corresponding to 25%

of the image area is intertwined every 3 frames at a ran-
dom position. The pixels within thisnoisy square switch
their values from 0 to 255 or from any value different from
0 to 0. This process simulates well the typical segmenta-
tion errors of foreground extraction and makes the dataset
much more realistic. Figure3 shows the results of adding
noise to the original data set.

Figure 3: Noisy Weizmann actions’ masks examples for
one of the actors (’daria’). An 8x8noisy square is in-
tertwined every 3 frames at a random position. From
first row: ’Bend’, ’Run’, ’Walk’, ’Skip’, ’Jumping Jack’,
’Jump Forward On Two Legs’, ’Jump In Place On Two
Legs’, ’Gallop Sideways’, ’Wave With Two Hands’ and
’Wave With One Hand’. All the masks were resized to
16x16.

3.2 Experimental set-up

The experiments consist of training HMMs with the
three different probability density functions as observa-
tions probabilities: GMM, MPPCA and mixture oft-
distribution sub-spaces (Mt-ss). In addition, the HMM-
GMM is trained for the cases of full, diagonal and spher-
ical covariance matrices. We used HMMs with 5 hidden
states, 2 components per mixture, 15 training iterations,
andν=5 and 3 (reported in this order since the heaviness
of the tails increases) for the case of thet-distribution.
For both MPPCA and Mt-ss we tested with reduced di-
mensions ofD = 200 andD = 150. Lower values for
D were tested, but not reported in the following as they



generally led to worse results. The remaining parameters
are initialized as follows:

• The initial,π, and transition,A, probabilities are ini-
tialized uniformly random.

• The mean,µ, of each component distribution is cho-
sen randomly from within the set of training samples.

• Theα weights are randomly initialized.

• All covariances for the GMM are initialized with the
identity matrix,I. In the case of the MPPCA and Mt-
ss, covariancesC = WWT+σ2I for all components
are initialized asW = U(L − σ2I)1/2I whereU
is a PxD matrix whose columns are given by the
D eigenvectors of the training data covariance,L is
a diagonal matrixDxD with the correspondingD
eigenvalues andσ2

l = 1
P−D

∑P
h=D+1 λhl , with λhl

corresponding to the discarded eigenvalues.

We carried out aleave-one-actor-out cross-validation
so that the same actor will not be used for training and val-
idation. Every actor in turn is used for validation. In ad-
dition, we repeat the whole cross-validation 5 times from
different random starts in order to partially marginalise
the randomness of the HMM parameters’ initialisation.

Weizmann data set [5]
ACCURACY (%) STD

GMM
Σ=full 94.0 ±0.61
Σ=diag. 94.2 ±1.45
Σ=spher. 93.3 ±0.79

MPPCA
D=200 96.9 ±1.45
D=150 96.0 ±1.27

Mt-ss(ν=5)
D=200 95.6 ±1.11
D=150 95.6 ±0.79

Mt-ss(ν=3)
D=200 94.7 ±1.45
D=150 95.8 ±0.93

Table 1: Average accuracy (%) and standard deviation for
five rounds on the Weizmann data set with HMM observa-
tion probabilities: GMM (full, diagonal, spherical), MP-
PCA andt-distribution sub-spaces (Mt-ss). The reduced
dimensions areD = 200 andD = 150.

Noisy Weizmann data set [5]
ACCURACY (%) STD

GMM
Σ=full 94.7 ±1.45
Σ=diag. 93.1 ±0.93
Σ=spher. 91.3 ±0.93

MPPCA
D=200 95.6 ±0.79
D=150 95.6 ±1.11

Mt-ss(ν=5)
D=200 96.2 ±0.99
D=150 95.6 ±1.11

Mt-ss(ν=3)
D=200 96.0 ±0.61
D=150 95.8 ±0.93

Table 2: Average accuracy (%) and standard deviation for
five rounds on thenoisy Weizmann data set with HMM
observation probabilities: GMM (full, diagonal, spheri-
cal), MPPCA andt-distribution sub-spaces (Mt-ss). The
reduced dimensions areD = 200 andD = 150.

4 Discussion

Results for the original Weizmann and thenoisy Weiz-
mann are reported in Table1 and Table2, respectively.
With the original dataset (Table1), HMM with MPPCA
proved the best classifier in all cases, with 96.9% (D=200)
and 96.0% (D=150) average accuracy. Yet, the differ-
ences in accuracy between a full-parameter models such
as full GMM (94.0%) and MPPCA were not so remarked.
This was surprising to a degree as we were expecting a
full GMM to experience greater difficulties in training ef-
fectively over a 256-dimensional space, especially in the
scarcity of training samples. However, results with diago-
nal and spherical GMMs were better or equivalent, prov-
ing that the degrees of freedom of a full Gaussian model
were redundant. Thet-distribution sub-spaces proved to
obtain higher performance than any GMM model, yet did
not outperform MPPCA in any case (with performances
in the interval of 94.7% and 95.8%). Since longer tails
tend to “diffuse” class boundaries, this may be the cause
for the increased misclassifications compared to MPPCA.
We also care to add that the standard Weizmann dataset is
a somehow “easy” dataset over which other authors have
reported 100% accuracy in the past [1]. However, results
in Table1 are important to prove the point of this work.

When we analyse the results for thenoisy Weizmann



dataset presented in Table2, HMM with t-distribution
sub-spaces instead obtained the best performance, with a
maximum of 96.2% (D=200 andν=5),comparable to the
best results on the clean dataset. Therefore,t-distribution
sub-spaces proved to provide a more suitable probabil-
ity density model in the presence of outliers. Conversely,
MPPCA and the restricted GMMs achieved remarkably
worse results. In particular, the change in trend between
Mt-ss and MPPCA gives evidence to the robustness of the
former against the outliers.

From the experimental results, we can conclude
that HMM observation probabilities based on low-
dimensional manifolds can help increase accuracy of hu-
man action recognition and that longer-tailed distribution
can increase robustness if the dataset is likely to contain
outliers. Nonetheless, the number of reduced dimensions
must be carefully chosen to secure the desired results. In
addition, thet-distribution can amend the Achilles’ heel
of sequential classifiers i.e. the risk that the entire chained
evaluation collapse to zero in the presence of even only
one significant outlier. This is particularly true in high
dimensions where normalised densities take on very low
values and tend to underflow.

A final consideration goes to the feature set used in this
work: this simple feature set was chosen as it lends it-
self to immediate pictorial description and intuitive anal-
ysis. Local representations such as spatio-temporal in-
terest points [10] enjoy a number of advantages over sil-
houettes and pixel masks. However, in multiple-actor
scenarios, the problem of associating sets of extracted
spatio-temporal interest points with specific actors along
the frame sequence (data association/correspondence) is
obvious also for this type of descriptors. It is reasonable
to expect that outliers be present regardless of how the
feature set is chosen.

5 Conclusions and future work

In this paper, we have proposed performing human ac-
tion recognition by HMM with dimensionally-reduced
observation probabilities. Experiments have been con-
ducted on two datasets (Weizmann andnoisy Weizmann)
comparing various probability models, including the con-
ventional Gaussian mixture model (GMM), the mixture
of probabilistic principal component analyzers (MPPCA)

and the mixture oft-distribution sub-spaces (Mt-ss). The
experimental results showed that, in the presence of out-
liers, t-distribution sub-spaces achieved the highest ac-
curacy (96.2± 0.99% vs 95.6± 0.79% of the runner-
up method, MPPCA) while in the absence of signifi-
cant outliers MPPCA proved to obtain the best perfor-
mance ((96.9± 1.45% vs 95.8± 0.93% of the runner-up
method,t-distribution sub-spaces). These results prove
that dimensionality reduction can be effective at increas-
ing recognition accuracy and that thet-distribution is a
more suitable density when the dataset contains segmen-
tation outliers which is always likely the case in real ap-
plications. Given that the Weizmann dataset is small in
size, in the immediate future we plan to extend these re-
sults to KTH and MuHAVi [16, 9], and experiment with
other feature sets including histograms of special interest
points.
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