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Abstract
Scale is a widely used notion in image analysis that evolved in the form of scale-space theory
where the key idea is to represent and analyze an image at various resolutions. Recently, we have
introduced a local morphometric scale using an ellipsoidal model that yields a unified
representation of structure size, orientation, and anisotropy. In our previous works, tensor scale
was described using an algorithmic approach and a precise analytic definition was missing. Here,
we formulate an analytic definition for tensor scale in n-dimensional (n-D) images and present an
efficient computational solution in 2- and 3-D. Finally, we present an application of tensor scale in
medical image filtering. Results of new tensor scale computation algorithm are presented. Also,
the performance of tensor scale based image filtering is compared with various approaches of
diffusive filtering and the results found are very promising.
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I. Introduction
Scale [1–3] may be thought of as the spatial resolution, or, more generally, a range of
resolutions needed to ensure a sufficient yet compact representation of target information.
Scale plays an important role in determining the optimum trade-off between noise
smoothing and perception/detection of structures. Also, scale is helpful in breaking a
computer vision and image-processing task into a hierarchy of tasks where tasks at higher
levels deal with larger structures. Although, scale-space image representations have
provided significant insight, it is not obvious – (1) how to unify the information from images
at different scales, and (2) how to identify the optimal scale at each individual image point.
A knowledge of “local scale” may allow us to spatially tune the neighborhood size in
different processes leading to selection of small neighborhoods in regions containing fine
detail or near an object boundary, versus large neighborhoods in deep interiors [4]. Also,
local scale is useful in developing an effective space-variant parameter controlling strategies
[5].

The notion of local morphometric scale was introduced by Saha and Udupa using a spherical
model [4, 5] and was applied to different image processing algorithms; see [6] for a survey
on local scale. Recently, we have introduced a new local morphometric scale, called “tensor
scale” using an ellipsoidal model which provides a unified local parametric representation of
structure size, orientation, and anisotropy and its applications have been demonstrated [6–8].
However, previous approaches lack a precise analytic definition for tensor scale and its
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computational solution in three- or higher-dimensional images is, often, infeasible. In this
paper, we introduce a new analytic approach to defining tensor scale in n-dimensional (n-D)
images and present an efficient computational solution using several new algorithms relating
gray-scale distance transform and differential geometry. Also, we demonstrate an
application of the new tensor scale in image filtering. Weickert et al. [9] introduced the
notion of structure tensor using a partial differential equation (PDE) Gaussian convolution
approaches image intensity and demonstrated its applications in image filtering [9] and
adaptive image morphological analysis [10]. Although, structure tensor is a useful concept,
it primarily captures information derived from local gradient field and may not directly
relate to local structure geometry. For example, in a homogeneous region, structure tensor
may not carry meaningful information related to local structure. Here, we formulate tensor
scale from a geometric perspective where, at each image point, the tensor captures
information related to local structure geometry.

II. Theory and Algorithms
Here, we introduce a new analytic approach to define a local morphometric scale using
tensor model. In our previous works, tensor scale was described using an algorithmic
approach and its usefulness in several imaging applications have been demonstrated [6–8].
However, a precise analytic definition on tensor scale has been missing and also, previous
algorithmic framework is unrealistic for three- and higher-dimensional images due to high
computational complexity. In the following, we analytically define tensor scale. Let us
consider an image in ℝn | ℝ is the set of real numbers, where multiple objects are defined as
partitions by M (n − 1)-D manifolds, say, ml, m2,⋯, mM; we refer to these manifolds as
partitioning hyper-surfaces. Now, let us consider a point p ∈ ℝn and an ordered sequence of
i orthogonal vectors τ1 (p), τ2 (p), …, τi (p). An (n − i)-D image is formed over the
orthogonal complement  of the subspace Wi defined by τ1 (p), τ2 (p), …, τi (p) with p as
the origin where partitioning hyper-surfaces are (n − i − l) -D manifolds

. Let us refer to this image as orthogonal complement
image of τ1 (p), τ2 (p), …, τi (p) at p. Tensor scale T (p) at a point p ∈ ℝ n is defined as an
ordered sequence of orthogonal vectors τ1 (p), τ2 (p), …, τn (p) inductively defined as
follows:

1. τ1 (p) is the vector from p to the closest point on partitioning hyper-surfaces.

2. Given the first i orthogonal vectors, τ1 (p), τ2 (p), …, τi (p), τi+1 (p) is defined as
the vector from p to the closest point on partitioning hyper-surfaces in the
orthogonal complement image of τ1 (p), τ2 (p), …, τi (p) at p.

We refer to τ1 (p), τ2 (p), and τ3 (p) as primary, secondary, and tertiary tensor vectors of p.
The notion of tensor scale defined as above is schematically described in Fig. 1 using a 3-D
representation of a rabbit femur bone surface m1 segmented via µCT imaging; here,
cancellous bone and marrow regions are filled in for illustration purpose. As illustrated in
the figure, tensor scale T (p) at a spel p (red dot) in a 3-D image is an ordered sequence τ1
(p), τ2 (p), τ3 (p) of three orthogonal vectors. The first vector τ1 (p) (red) defines the
direction and distance to the closest point on the femur surface. The orthogonal complement
plane  and the 1-D separating manifold  on  are shown in the figure; note that
the 1-D separating manifold (cyan) is essentially the intersection between the plane 
(blue) and the partitioning surface m1 (the femur bone surface) in the 3-D image. The
secondary tensor vector τ2 (p) (yellow) is defined by the point on  that is closest to
p. Once τ1 (p) and τ2 (p) are found, the line (dotted green) on which the tertiary tensor
vector τ3 (p) (green) lie is confirmed; the final direction and the length of τ3 (p) is defined
by finding the closest point on the separating surface along the line. It may be noted that
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projections of the two dotted lines (yellow and green) on m1 along the primary tensor vector
τ1 (p) provides two principal directions on m1 where it meets τ1 (p); this observation is used
in our computational solution in 3-D.

A. Algorithms
In the previous section, we have presented an analytic definition for tensor scale. However, a
direct algorithmic realization of the above definition faces two major hurdles – (1) object
partitions are not known in real images and (2) computational complexities in three- or
higher-dimensions. Here, we present an efficient algorithmic solution for 2- and 3-D images
involving edge detection, distance transform, and differential geometric approaches. In an
image, we don’t know partitioning hyper-surfaces or manifolds used to define tensor scale.
However, we may realistically assume that detected edge points in an image lie on these
manifolds. Also, because of the fact that these edge points are dense samples on these
manifolds, the distance transform from these edge points is a close approximation of
distance transform from partitioning manifolds. With this understanding, tensor scale may
be computed by using gradient analyses and computational geometric approaches to the
distance transform map from edge points in an image.

In this paper, we confine ourselves to 2- and 3-D images, although, the method generalizes
to n-D images. We use ℤ2 and ℤ3|ℤ is the set of integer, to represent a digital space in 2- and
3-D, respectively; we use ℤn to denote either ℤ2 or ℤ3. An n-D digital image may be defined
by its intensity function f: ℤn → ℤ. Each element of a digital space is referred to as a spel
(an abbreviation of “spatial element”) whose position is denoted by Cartesian coordinates
(x1, x2) or (x1, x2, x3), where x1, x2, x3 ∈ ℤ. For any two spels p, q ∈ ℤn, |p−q| denotes the
Euclidean distance between the two spels. For any vector v in ℝn, |v| denotes its magnitude.
Let E ⊂ ℝn denote the set of all edge points in an image; note that a point in E lie on a
partitioning manifold of the image. Here, we have adopted an edge detection approach
combining both Laplacian of Gaussian (LoG) and Derivative of Gaussian (DoG) operators.
Specifically, an edge is located at a zero crossing of LoG if absolute value of its DoG
exceeds a threshold. A gray scale distance transform is defined as a function GDT:ℤn → ℝ,
where, GDT (p)|p ∈ ℤn yields Euclidean distance from p to its closest point in E. As argued
earlier, GDT:ℤn → ℝ may be considered as an approximate distance transform map from
partitioning manifolds. Our tensor scale computation algorithm is primarily based on
analyzing this distance transform map.

At a spel p, the gradient of the distance transform map GDT provides the direction to the
nearest partitioning hyper-surface, i.e., τ1 (p)/|τ1 (p)| while the magnitude of distance
transform determines the distance from the hyper-surface or |τ1 (p)|, i.e.,

and, in 2-D,

in 3-D,
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where, k is the scalar normalization factor term and it is precisely defined by the magnitude
of τ1 (p) and that of the gradient. Here, we have used the Sobel gradient operator. Once, the
primary tensor vector τ1 (p) is determined, computation of the secondary tensor vector τ2 (p)
in 2-D is straightforward because the vector lies on the straight line Lp perpendicular to τ1
(p). Thus, τ2 (p) may be computed by locating the closest separating curve along the straight
line Lp. Along a straight line, a partitioning manifold is located when the value of GDT is
smaller than ‘1’ and its rate of change along the line is close to ‘−1’.

Computation of the secondary tensor vector τ2 (p) is more challenging in 3-D as compared
to 2-D. The primary reason behind the difficulty is that, the determination of τ1 (p) narrows
down τ2 (p) onto a plane P perpendicular to τ1 (p); however, it may lie along any direction
on the plane. This problem may be solved using a differential geometric approach.
Specifically, the direction of τ2 (p) is determined using the principal direction with
maximum curvature at the location r where τ1 (p) meets the nearest separating hyper-surface
(see Fig. 1). However, it is not obvious how to compute the principal direction at r because
we don’t know analytic expressions for separating surfaces; rather, we have discrete sample
points (edge locations) on these surfaces. Here, we present a new algorithm to compute the
principal direction that works for surfaces represented by discrete sample points. The basic
idea here is as follows – first, find the primary tensor vector τ1 (q) for points in the
neighborhood of the candidate spel p. Over a sufficiently small neighborhood, the point of
intersection between τ1 (q) and the separating surface falls in the neighborhood of r (see Fig.
2). More importantly, the angular inclination between τ1 (q) and the plane P changes more
rapidly along the direction of maximum principal curvature and it changes most slowly
along the direction of minimum principal curvature. In other words, the projection of the
normalized vector τ1 (q)/|τ1 (q)| on P takes larger values for qs along the direction of
maximum principal curvature and it takes smaller values along the direction of minimum
principal curvature. Although our method is primarily based on this theory, to reduce effects
of noise and discretization, we compute directions of the two principal curvatures using
principal component analysis (PCA) of projections of normalized vector τ1 (q)/|τ1 (q)| on P
as follows. Let q1, q2, …, qm be m points in the neighborhood of p and let  (green
vectors on Fig. 2(b,c)) be the projection vector of τ1 (q)/|τ1 (q)| onto the plane P. It may be

noted in Fig. 2(c) that, primarily, the vectors  may fall on one side of the central point.

An axial symmetry is imposed to this vector system by adding  (gray) for each

original vector . Finally, a PCA of all points represented by these vectors is applied to
compute the two principal directions; the eigenvector corresponding to larger eigen value
gives the direction for maximum principal curvature while the other eigenvector provides
the direction for minimum curvature. Projections of these principal directions on the
separating surface are illustrated in Fig. 2(d).

B. Application to image filtering
Tensor scale based diffusive filtering is primarily based on the theory of anisotropic
diffusion originally proposed by Perona and Malik [11] and subsequently, studied by others
[5, 12]. Anisotropic diffusion [11] was originally described to encourage diffusion within a
region (characterized by low intensity gradients) while discouraging it across object
boundaries (characterized by high intensity gradients). The anisotropic diffusion process at
any spel p may be defined as follows:
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where f is image intensity function; t is time variable; “div” is divergence operator; V = GF
is diffusion flow vector; G is diffusion conductance function; F is intensity gradient vector;
Δτ is the volume enclosed by the surface s surrounding p; and ds = u ds where u is a unit
vector which is orthogonal and outward-directed with respect to the infinitesimal surface
element ds. The key idea of anisotropic diffusion [11] is to spatially vary the conductance
function as a nonlinear and non-increasing function of gradient magnitude, e.g. G = exp(−|
F|2/2σ2) where σ is the controlling parameter.

Although, in conventional diffusive filtering methods [11, 12], diffusion process adapts to
local structure orientation using gradient information, the diffusion parameter σ is kept fixed
that limits the fine control on and adaptivity to local image structural properties. Weickert et
al. [9] introduced the notion of structure tensor to control this parameter and demonstrated
its use in along-structure smoothing. The motivation of our work is to use geometric tensor
information of local structures in filtering that facilitates along-structure smoothing while
preserving boundary sharpness. Specifically the controlling parameter σ is determined by
local tensor scale in a space- and orientation-variant manner using the ellipsoidal model
defined by τ1 (p), τ2 (p), and τ3 (p) as follows:

where, χ is a monotonically non-decreasing function, σψ is the overall noise level in the
image, and ζ (p, q) is the radial length of the ellipsoid Γ (p) along pq where Γ (p) is defined
by three tensor vectors τ1 (p), τ2 (p), and τ3 (p) being its semi axes.

III. Results and Discussion
The new tensor scale computation method has been applied on several 2-D and 3-D images.
Here, we present the result of application of the method on a 2-D image slice selected from
MR brain data available at http://mouldy.bic.mni.mcgill.ca/brainweb/. The image data was
downloaded with the following parameters – in plane resolution: 181×217; slice-thickness:
1mm; noise: 3% and intensity non-uniformity: 20%. 2-D tensor scale computation algorithm
was applied to an image slice randomly selected from mid-brain region and the result is
presented in Fig. 3 (a–c). Results of edge location and gray scale distance transformation are
presented in Fig. 3(b). Displaying a tensor scale image may not be straight forward. In 2-D,
tensor scale at a spel p essentially represents an ellipse Γ (p) with its semi axes as τ1 (p) and
τ2 (p). We have adopted a color coding scheme to represent 2-D tensor scale where the hue
component of color represents orientation of Γ (p) and its saturation and intensity denote
anisotropy and thickness of Γ (p). The color coding scheme at maximum intensity is
presented in Fig. 3(d). Results of application of 3-D tensor scale on a pulmonary CT image
are presented in Fig. 3(e–g). 3-D tensor scale at a spel p essentially represent an ellipsoid Γ
(p) with three semi-axes τ1 (p), τ2 (p), and τ2 (p). Using three components of color, we can
only display an ellipse. Therefore, we display the intersection between Γ (p) and display
plane which forms an ellipse. Results of both 2-D and 3-D tensor scale computation are
visually satisfactory. Using a 2.53 GHz Intel(R) Xeon(R) CPU running under Linux OS,
tensor scale computation for a 2D image of size 256×256 takes approximately 1 seconds
while it takes approximately 20 minutes for a 3D image of size 256×256×256.
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Results of application of different filtering methods are presented in Fig. 4 and Fig. 5. Fig.
4(a) shows a photographic image of a fish and coral reefs. Different 2D diffusive filtering
algorithms including the structure tensor based method were applied on the gray scale image
and results presented in Fig. 4(b–e). Zoomed images of the rectangular region (marked in
(a)) for (a–e) are presented in (f–j), respectively, to illustrate the performance of different
methods over regions containing elongated structures. Overall, the method structure tensor
based method has outperformed the gradient and curvature based diffusive filtering
methods. However, the new tensor scale based method has shown remarkable improvements
over all three methods in preserving boundary sharpness of individual structures. None of
the methods except the tensor scale based diffusion succeeded to preserve the separation of
two branches near the center of red circle.

Fig. 5 (a) shows an original image slice from a pulmonary CT data which was corrupted by
white Gaussian noise (Fig. 5(b)). The corrupted 3-D image was subjected to gradient- and
curvature-based [13] diffusive filtering and tensor scale based filtering and the results of
matching slice are presented in Fig. 5(c–e), respectively. We used the ITK implementation
for gradient- and curvature-based diffusive filtering and their recommended values for
parameters. As visually appears, both gradient- and curvature-based diffusive filtering
algorithms have reduced some noise although, it has blurred some fine structures and also
the residual noise is visually apparent. On the other hand, the tensor scale based filtering
algorithm has successfully cleaned noise while preserving almost every fine structure visible
in Fig. 5(a). To quantitatively evaluate the performance of different methods, we degraded
the original 3-D CT data by different levels of Gaussian noise. All three filtering methods
were applied on each of these degraded images and the performance in terms of residual
noise was computed. Results of this experiment are presented in Table 1. Here, G-, C-, and
T-diffusion indicate gradient-, curvature- and tensor scale-based diffusive filtering methods.
Original noise was computed by dividing the standard deviation of noise with the mean
image intensity. Residual noise was computed as the average absolute pixel-by-pixel
difference between filtered and the original image (i.e., prior to adding noise) which was
normalized by mean image intensity. Here the original image is considered as the ground
truth and the noise within the image is ignored. As may be noted from these results, at all
noise levels, the tensor scale-based method has significantly outperformed the other two
methods.

In this paper, we have formulated an analytic definition for tensor scale in n-D images and
have presented an efficient computational solution in 2- and 3-D. Our computational
solution is based on new methods for gray scale distance transform and computation of local
principal curvature directions on the closest separating hyper-surface represented by discrete
edge points. Application of tensor scale in medical image filtering is described and its
performance is compared with gradient-based diffusive filtering. Both qualitative and
quantitative results have demonstrated major improvements in image filtering using tensor
scale as compared to state-of-art methods.
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Fig. 1.
An illustration of tensor scale using a rabbit femur bone surface (dark off-white) forming a
2-D manifold m1. The candidate spel p is shown as a red dot; the point on m1 closest to p
gives the primary tensor vector τ1 (p) (red). The orthogonal complement plane  and the
1-D manifold  are shown in blue and cyan, respectively. Secondary tensor vector τ2

(p) is defined by the point on  closest to p; finally, τ3 (p) is given by the closest
point on  along the line orthogonal to τ2 (p). It may be noted that projections of the
two lines (dotted yellow and green) on m1 along τ1 (p) provide principal directions of m1 at
r, the meeting location with τ1 (p); this idea is used in our computational solution in 3-D.
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Fig. 2.
Illustration of the computation of secondary tensor vector τ2 (p) in 3-D. (a) A separating
surface with primary vector τ1 (p) (black) and τ1 (q) (green) for several qs in the

neighborhood of p (black dot). (b) Projections vectors  (green) of normalized vectors τ1
(q)/|τ1 (q)| on P along with the curve at the intersection of P and the separating surface. (c)

Computation of principal directions (dotted lines) using  (green) and  (gray), (d)
Projection of principal directions onto separating surfaces.
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Fig. 3.
Results of tensor scale computation. (a) A 2-D image slice from MR brain data. (b)
Computed edge locations (red) and gray scale distance transform. (c) Color coded
illustration of tensor scale. (d) Color coding scheme at full intensity. (e–f) Same as (a–c) but
for 3-D tensor scale computation. Results are shown on one image slice. See text for
explanation.
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Fig. 4.
Results of 2D image filtering. (a) Original image. (b–e) Results of smoothing using gradient
(b), curvature (c), structure tensor (d) and tensor scale (e) based diffusive filtering. (f–j)
Zoomed images of the marked region for (a–e) respectively.
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Fig. 5.
Results of image filtering. (a) An original image slice from a pulmonary CT image of a
patient. (2) Degraded image after adding Gaussian white noise. (c–e) Results of 3-D image
filtering using gradient-based (c), curvature-based (d) and tensor scale-based diffusion (e).
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TABLE I

Results of quantitative comparison among three different methods in terms of residual noise after filtering.

Original
noise(%)

Residual noise(%)

G-diffusion C-diffusion T-diffusion

15.0 11.7 9.3 7.0

12.0 9.5 9.0 5.9

10.0 7.7 7.6 5.3

8.0 7.5 6.6 4.4
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