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Abstract—Motion segmentation with a moving camera has
many applications in computer vision. This paper presents a
novel method for rigid motion segmentation using a RGB-D
camera. The method estimates the lengths of edges in a Delaunay
graph of the feature points and observes any variation of these
lengths. Non-rigid edges in the graph are identified and pruned.
The resulting graph is then examined for connected components
to find different motion groups. We present results which show
that the approach is able to correctly identify the number of
motions and their memberships on real sequences taken from
a moving RGB-D camera. The method is fast and suitable for
realtime applications.

I. I NTRODUCTION

In image segmentation we are interested in segmenting
different objects/parts which made up a scene. Likewise given
an image sequence/video, the motion segmentation problem is
to segment objects which undergo different motion patterns.
In the simplest case motion segmentation can mean extracting
moving objects from a stationary camera e.g. [1], [2]. In
general, the camera can also move which introduces the
relative motion of the static background. Motion segmentation
has numerous applications in computer vision and robotics
including video surveilance in security applications, sports
scene analysis, road safety applications in intelligent vehicles,
augmented reality, etc.

In computer vision, this problem is formally referred to as
the Multibody Structure and Motion (MSaM). Given a set of
feature point trajectories the task is to cluster the trajectories
into different motion groups (i.e. determining motion mem-
berships), estimate each group’s motion parameters and the
3D structure of the points. In general, the number of motions
is unknown. Identification of different motion groups requires
the simultaneous estimation of motion parameters and motion
memberships. Due to this chicken-and-egg nature, the motion
segmentation problem is inherently difficult and researchers
have made significant and continuing efforts to tackle the
problem.

The majority of existing work on MSaM can be grouped
into four main methods, namely model selection, factorization
based, algebraic and statistical methods. In the model selection
method [3]–[6], the first step is to generate candidate motion
models using RANSAC [7] style sampling of the point set.
Different types of models may include fundamental matrix,

affine fundamental matrix, homography, etc. Here the success
depends on the probability of finding at least one all-inlier
set from each of the model. Points from one motion act as
pseudo-outliers to other motions and hence with increased
number of motions chances of finding an all-inlier set is low.
Therefore the performance deteriorates with the increasing
number of motions since the sampling time increases rapidly.
To mitigate this issue, methods like local sampling (assuming
spatial coherence of points belonging to the same motion)
[4], [5] and guiding sampling based on information derived
from residual sorting [8] can be used. However the number
of generated model samples can still be large and therefore
methods for clustering and pruning duplicates would be re-
quired. Once candidate motions are generated, a subset is
selected as the optimal motions based on the goodness of
the fit. However, as the most complex (general) model always
fits over a simpler model (e.g. fundamental matrix over affine
fundamental matrix) and more motions fits over a limited
number of motions, special information criteria which assigns
a cost depending upon the model complexity and number of
motions are required.

Under an affine camera model feature point trajectories
associated with each moving object lie in a low dimensional
(2,3,4) linear subspace. Therefore, 3D motion segmentation
is equivalent to clustering point trajectories into different
motion subspaces. Factorization based methods [9], [10] aim
to decompose the trajectory matrix into a motion matrix and
a block diagonal structure matrix by finding an unknown
permutation matrix which groups trajectories into correspond-
ing motions. However this requires the motion subspaces
to be independent which does not always hold in practice.
On the other hand GPCA (Generalized Principal Component
Analysis) [11] which is an algebraic method, can deal with
partially dependent motions and missing data. However it also
has drawbacks including sensitivity to outliers and the need for
a large number of feature points for an increased number of
motions (of the orderO(n4) for n motions). Further, as noted
these are confined to an affine camera model.

In statistical methods, the EM (Expectation Maximization)
algorithm for MSaM [12] iteratively alternates between mem-
bership assignment (E-step) and motion parameter estimation
(M-step) until convergence. It is sensitive to the initialization



and can converge to a local minima instead of the global
minima.

Similar to MSaM for a single camera, motion segmentation
has been attempted with stereo cameras as well. However,
in the case of stereo or RGB-D determination of the 3D
structure of the feature points is straightforward1 and therefore
the motion segmentation problem only involves determination
of the motion parameters and membership assignment.

The paper by Agrawal et al. [13] desribes a system that can
detect independently moving objects from a mobile platform
equipped with a stereo camera. Their system first randomly
samples and selects the dominant motion as the ego motion
of the camera. This is done by three point sampling, and
three point pose estimation [14] followed by scoring in the
disparity space. Next the regions that are incompatible with
the ego motion are identified and grouped as independent
moving objects. A pixel belonging to an independent motion
must move at least 2 pixels from its projected location (as
a stationary object). The paper gives results only for single
independent motion.

The set of rigid body motions lie on the matrix Lie group
SE(3). In [15], [16], motion points onSE(3) are generated
by three point sampling and mean shift clustering is applied.
Interestingly, this method returns the number of motions,
motion parameters as well as the memberships. However, the
method requires that every input motion point to be converged
to a local mode separately which can be considered as a
drawback.

In [17] Rabe et al. presentDense6D and Variational6D
algorithms which estimate the dense 3D motion field using
spatial and temporal regularization of stereo and optical flow
data. The estimated motion field can be used to segment the
moving objects. However, these algorithms are computation-
ally intensive in which stereo and optical flow computations
runs on a dedicated FPGA and a GPU respectively.

A related problem to MSaM is the non-rigid Structure
From Motion (NRSFM). Here the task is to recover the 3D
positions of observed points of a non-rigid object over time.
In [18], [19] factorization based methods have been applied.
In [20] Salzmann et al. solves a system of quadratic equations
involving distance constraints between nearby mesh vertices
on a triangular mesh surface model. Interestingly the paper
by Taylor et al. [21] solves local 3-point N-view (N ≥ 4)
structure from motion problems independently for each triplet
and identify 3D triangles consistent with near rigid motion.
However the solution presented is for an orthographic camera
model.

In this paper we make an important contribution to multi-
body structure from motion estimation, a fast algorithm for
finding pairs of points which are moving with the same
motion. In contrast to the 3-point N-view (N ≥ 4) affine
motion problem [21], given the assumption that we have
metric depth from image pairs, our algorithm evaluates a 2-

1The 3D reconstruction can still be noisy and therefore spatial regularization
may be required.

Fig. 1. Complete graph for a rigid body withn vertices andn(n−1)
2

edges
(n = 8)

point N-view (N ≥ 4) rigidity constraint under perspective
projection. We demonstrate that this method can segment
points on separately moving objects in real sequences from
a commercial RGB-D camera, with minimal computational
cost.

II. OUR APPROACH

If accurate depth map computation is possible e.g. from
structured light/active stereo as in [22], the 3D structureof a
point set relative to the camera frame can be readily obtained.
However to express the points w.r.t. the world frame, it is
essential to have the pose of the camera in the world frame. On
the other hand to recover the ego motion of the camera (e.g. as
from [14]) and then to estimate its pose, point correspondances
need to be identified from the static background. Unfortunately
this is not directly feasible and therefore we are unable to
observe the movement of the 3D points in the world frame in
a straight forward manner.

Although the 3D positions of points can not be determined
in the world frame, the relative position between each pair
of points is the same in both camera and world frames. For
a set of points on a rigid object, the relative positions and
hence distances between each other are invariant over time.
This can be visualized as a fully interconnected undirected
graph (complete graph) with invariant edge lengths (Figure
1). Therefore forn points on a rigid object we haven(n−1)

2
rigidity constraints.

In the case of two points on two rigidly moving objects with
non-zero relative motion2, the distance between them is not
invariant and changes over time. Therefore non-zero variation
of the distance acts as an indication of the different motions.
Note that for a point pair on different objects, the objects could
have relative rotation about the points without changing their
relative 3D length, hence 3D relative length preservation is
a necessary but not sufficient condition to conclude that two
objects have no relative motion.

2In motion segmentation, if two objects have no relative motion, we can
consider them as a single entity.



Fig. 2. Graph formed by 2D Delaunay triangulation with2n−2−h triangles
and 3n − 3 − h edges wheren is the total number of data points andh is
the number of points on the convex hull (n = 8, h = 7)

Therefore we propose to measure the standard deviation
σ of the distances over time and to reason about different
motions. In practice as the point matches and depth estimation
are noisy,σ will have non-zero values even for two points on
the same rigid object. Howeverσ will have considerably large
values for points undergoing different significant motionsand
therefore a suitable threshold can be used.

The rest of this section explains our motion segmentation
pipeline and is organised as follows. In II-A, we describe a
technique utilized to reduce the number of rigidity constraint
evaluations. Subsection II-B details how changing edge lengths
are found using a RGB-D camera. After non-rigid edges are
identified (II-C), subsection II-D explains the recovery of
motion groups.

A. Delaunay Triangulation

A 2D triangulation is a subdivision of the convex hull of
a 2D point set in to triangles (2-simplices) such that any two
triangular faces either have an empty intersection or sharean
edge or a vertex. The 2D Delaunay triangulation for a 2D point
set is such a triangulation where no point in the point set is
inside any triangle. In 2D the Delaunay triangulation produces
a graph with2n − 2 − h triangles and3n − 3 − h edges for
n data points withh points lying on the convex hull (Figure
2). Therefore the number of edges in the graph and so the
complexity of edge evaluation stage decreases fromO(n2) to
O(n).

B. Estimation of Edge Lengths

For a given image pointxi = (u, v) and depthz from a
RGB-D camera we obtain an estimatêXi = (X̂, Ŷ , Ẑ)T for
the 3D position of a pointXi from

X̂ =
k(u − u0)z

f
(1)

Ŷ =
k(v − v0)z

f
(2)

Ẑ = z (3)

where(u0, v0) is the image plane center,f denotes the focal
length andk denotes the pixel size of the camera.

As noted the Delaunay triangulation essentially gives us
pairings of adjacent verticesxi, xj on the image plane. The
corresponding edge length estimatêLij is given by the 2-norm
of the vector(X̂i − X̂j) i.e. L̂ij = |X̂i − X̂j|2. It is related to
the true edge lengthLij = |Xi − Xj |2 as

L̂ij = Lij + ǫ (4)

whereǫ accounts for the errors from image position and depth
estimates.

C. Thresholding of Edge Lengths

Let the standard deviation of eacĥLij over the image
sequence beσ̂ij . Assumingǫ is zero mean and independent
of Lij we get

σ̂ij =
√

σ2
ij + σ2

ǫ (5)

where σij , σǫ are the standard deviations ofLij and ǫ

respectively. As noted if two points belong to the same rigid
object thenσij = 0. Thereforeσ̂ij

rigid = σǫ.
However if two points belong to different rigid bodies

undergoing relative motion thenLij would change over the
image sequence and thereforeσij > 0. We assumeσǫ will
be small in comparison to any large movement of points.
Henceσ̂ij

non−rigid ≈ σij . Therefore we computêσij using
L̂ij data over the image sequence and identify non-rigid edges
by using a practical threshold. Naturally small movements will
be difficult to differentiate from noisy observations. The non-
rigid edges thus identified are pruned from the initial Delaunay
graph.

D. Connected Components

The resulting graph after thresholding is examined to find
the connected components. We use the breadth-first search
algorithm to find the connected components. Starting at a
particular vertex the connected component i.e. set of vertices
connected together by paths is extracted and the process is
repeated for the vertices which are not included in previously
found connected components. The final result of this stage
is the number of connected components and their individual
vertices. This gives us the number of motion groups and the
membership assignment for each group.



III. I MPLEMENTATION

A commercially available active stereo RGB-D camera was
interfaced with a laptop computer using the OpenNI SDK
[23]. 24 bit RGB and 16 bit Depth (which provides depth
in millimeters) images were captured at 640x480 resolution.
The Depth image was registered with the RGB image using
available API functions. Due to the difference in RGB and
Depth camera viewpoints, the effective size of the registered
Depth image was about 588x424 (see Figure 4). For pixels
with no depth information (e.g. due to registration, occlusion,
etc.), a depth value of zero was returned. The camera param-
eters were obtained asf = 120 pixels,k = 0.20838 mm and
(u0, v0) = (320, 240).

In an image sequence, each RGB image was converted
to grayscale and SIFT [24] keypoints and descriptors were
extracted. The keypoints corresponding to points with no depth
information were thrown away. The descriptors were matched
across the sequence and only points that survived matching in
all of the images were retained.

IV. EXPERIMENTAL RESULTS& D ISCUSSION

We present results using three real image sequences cap-
tured with the RGB-D camera. The sequences are denoted3
Books, Box andCalender-Books.

The3 Booksimage sequence consists of six images of three
books moving away from each other (Figure 3). Here the ob-
ject motions were predominantly translations with occasional
slight rotations. The images were captured in different time
instants under varying camera viewpoints. A sample depth
image from this sequence is shown in Figure 4.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. 3 Books Image Sequence

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Fig. 4. The Registered Depth Image corresponding to the firstimage of3
Books Image Sequence (Figure 3 (a))

0.9

1.0
1.5

64.1

60.5

2.4

0.8

59.3

0.8

0.9

52.5

62.7

67.8
71.3

49.2

77.6

54.1

58.3

56.8

0.5

0.5

0.4

0.8

0.9

0.6

0.8

0.3

0.7
0.5 2.2

38.2

1.4

0.40.5

1.3

32.626.6

1.1

1.6

2.1
0.6

1.5

1.50.7
1.3
0.91.2

1.8
1.1
1.5

1.6

2.7
2.3

0.7

38.4

1.6
1.3

1.9

5.9

35.4
34.3

1.1

2.1
0.3
1.1

3.8

1.9

1.0
7.2
5.6

7.8

Fig. 5. Delaunay graph and edge length standard deviations for the3 Books
Image Sequence

SIFT feature matching resulted in 27 point trajectories and
the Delaunay triangulation on the initial image resulted ina
graph with 71 edges (Figure 5). The figure also shows the
standard deviation of edge length for each of the edges (best
viewed when on-screen and zoomed in).

A practical threshold ofσTH = 20 mm was used to
identify the non-rigid edges. Figure 6(a) shows the edges thus
identified marked in red. Clearly all the non-rigid edges which
separate the three moving objects were correctly identified.
Three connected components were found (Section II-D) and
the resulting memberships are shown in Figure 6(b).

The Box image sequence consists of 5 images of a box
moving under translation while the camera was also moved
parallel. The number of SIFT features and the edges in the



(a) Edges classified as rigid (blue) & non-rigid (red)

(b) Motion memberships

Fig. 6. Results for the3 Books Image Sequence

Delaunay graph were 67 and 185 respectively. Figure 7 shows
the results for this sequence (σTH = 20 mm). As expected
two motions were detected with correct memberships.

The Calender-Books sequence consists of 4 images of
a stationary calendar and three books moving away from
each other (42 SIFT points). The Delaunay graph had 112
edges. The motion of the upper two books w.r.t calender
was relatively small. Results of motion segmentation using
a threshold ofσTH = 5 mm are given in Figure 8.

Identifying an edge as rigid/non-rigid is essentially a binary
classification problem. We define the binary test as “Isσ >

σTH ?”. Then Figure 9 shows how misclassifications vary with
the threshold for each of the three sequences. Here FP, FN, P,N
stands for the counts of false positives (rigid edges identified
as non-rigid), false negatives (unidentified non-rigid edges),
non-rigid edges and rigid edges respectively.

In 3 BooksandBox sequences, object(s) undergo significant
motion. For the3 Bookssequence, Figure 9(a) clearly shows
that there are zero misclassifications whenσTH ∈ [8, 26]

(a) Edges classified as rigid (blue) & non-rigid (red)

(b) Motion memberships

Fig. 7. Results for theBox Image Sequence

i.e. a 18 mm margin. In the misclassification plot for the
Box sequence (Figure 9(c)) rigid and non-rigid motions are
separated by more than 50 mm margin. In contrastCalender-
Books sequence exibits zero misclassifications only in a
narrow region. However this is to be expected, since the
relative motion between the calender object and the nearby
two books are small (This sequence was prepared to examine
the limitations of separating small motions from noise).

Typical execution times for various stages of the processing
for each of the sequences are given in Table I. Here the
runtimes reported are based on an unoptimised MATLAB
implementation running on single thread of a Corei7 1.6 GHz
laptop computer.

V. CONCLUSION

We have presented a method to the rigid body motion
segmentation which tests for the rigidity of 2-points in N-
views (N ≥ 4). To the best of our knowledge this is the first
time motion segmentation has been attempted with a RGB-
D camera. The method is very fast and suitable for realtime



(a) Edges classified as rigid (blue) & non-rigid (red)

(b) Motion memberships

Fig. 8. Results for theCalender-Books Image Sequence

TABLE I
PROCESSINGT IMES

Time (ms)

3 Books Box Calender-Books

Delaunay & Edge extraction 7 7 7

Edge Length 2 4 2

Std. & Thresholding 12 21 16

Connected Component 12 12 12

applications.
One limitation of the work is the use of a global threshold

for rigity/non-rigidity testing. The scale of noise was assumed
to be independent of the length of an edge. However, in reality
the error in edge length depends on the errors in the 3D
position estimates of the vertices. Unfortunately the error in
depth direction is currently unavailable for the RGB-D camera
used. In future work we plan to model this error and thereby
use local threshold for each of the edges. Moreover the work
in progress include incorporating a real time feature tracker
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Fig. 9. FP/N + FN/P vsσTH (which is in mm) for the three Image Sequences
(Note: FP = no. of false positives, FN = no. of false negatives, P = no. of
non-rigid edges, N = no. of rigid edges)



instead of the SIFT feature matching which is relatively slow.
Further, we will extend our result to full MSaM.
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