A Simple and Practical Solution to the Rigid Body
Motion Segmentation Problem using a RGB-D
Camera

Samunda Perethand Nick Barnes
*CECS, The Australian National University, Canberra, ACDO2Australia
TNICTA, Canberra Research Laboratory, Canberra, ACT 26Qkstralia
{Samunda.Perera, Nick.Bari@nicta.com.au

Abstract—Motion segmentation with a moving camera has affine fundamental matrix, homography, etc. Here the sigcces
many applications in computer vision. This paper presents a depends on the probability of finding at least one all-inlier
novel method for rigid motion segmentation using a RGB-D gat from each of the model. Points from one motion act as
camera. The method estimates the lengths of edges in a Delayn - . o
graph of the feature points and observes any variation of thee pseUdo'OUﬂ'er‘Q_‘ to other mOt'Or?S ‘fmd henc? \_N'th 'n?reased
|engths_ Non_rigid edges in the graph are identified and pruad_ number Of motions Chances Of f|nd|ng an a||—ln|IeI’ setis IOW.
The resulting graph is then examined for connected componés Therefore the performance deteriorates with the incregasin
to find different motion groups. We present results which shor  number of motions since the sampling time increases rapidly
that the approach is able to correctly identify the number of 14 mitigate this issue, methods like local sampling (assgmi
motions and their memberships on real sequences taken from . . - .

a moving RGB-D camera. The method is fast and suitable for spatial coherer_mg of pomf[s belonging t9 the S"’_Ime mqtlon)
realtime applications. [4], [5] and guiding sampling based on information derived
from residual sorting [8] can be used. However the number

. INTRODUCTION of generated model samples can still be large and therefore

In image segmentation we are interested in segmentimgthods for clustering and pruning duplicates would be re-
different objects/parts which made up a scene. Likewisergivquired. Once candidate motions are generated, a subset is
an image sequencel/video, the motion segmentation proklersélected as the optimal motions based on the goodness of
to segment objects which undergo different motion patterrthe fit. However, as the most complex (general) model always
In the simplest case motion segmentation can mean extgactiits over a simpler model (e.g. fundamental matrix over affine
moving objects from a stationary camera e.g. [1], [2]. Ifundamental matrix) and more motions fits over a limited
general, the camera can also move which introduces tiember of motions, special information criteria which gasi
relative motion of the static background. Motion segméatat a cost depending upon the model complexity and number of
has numerous applications in computer vision and robotig®tions are required.
including video surveilance in security applications, #po Under an affine camera model feature point trajectories
scene analysis, road safety applications in intelligehicles, associated with each moving object lie in a low dimensional
augmented reality, etc. (2,3,4) linear subspace. Therefore, 3D motion segmenmntatio

In computer vision, this problem is formally referred to ag equivalent to clustering point trajectories into diffat
the Multibody Structure and Motion (MSaM). Given a set ofmotion subspaces. Factorization based methods [9], [10] ai
feature point trajectories the task is to cluster the ttajges to decompose the trajectory matrix into a motion matrix and
into different motion groups (i.e. determining motion mema block diagonal structure matrix by finding an unknown
berships), estimate each group’s motion parameters and peemutation matrix which groups trajectories into corcesp
3D structure of the points. In general, the number of motiomsg motions. However this requires the motion subspaces
is unknown. Identification of different motion groups re@si to be independent which does not always hold in practice.
the simultaneous estimation of motion parameters and moti@n the other hand GPCA (Generalized Principal Component
memberships. Due to this chicken-and-egg nature, the motidnalysis) [11] which is an algebraic method, can deal with
segmentation problem is inherently difficult and researshepartially dependent motions and missing data. Howevesi al
have made significant and continuing efforts to tackle theas drawbacks including sensitivity to outliers and thedifee
problem. a large number of feature points for an increased number of

The majority of existing work on MSaM can be groupednotions (of the orde©(n*) for n motions). Further, as noted
into four main methods, namely model selection, factorzat these are confined to an affine camera model.
based, algebraic and statistical methods. In the modedtemle  In statistical methods, the EM (Expectation Maximization)
method [3]-[6], the first step is to generate candidate moti@lgorithm for MSaM [12] iteratively alternates between mem
models using RANSAC [7] style sampling of the point sebership assignment (E-step) and motion parameter estimati
Different types of models may include fundamental matriXM-step) until convergence. It is sensitive to the initalkion



and can converge to a local minima instead of the global

minima.
Similar to MSaM for a single camera, motion segmentation

has been attempted with stereo cameras as well. However,
in the case of stereo or RGB-D determination of the 3D
structure of the feature points is straightforwhasd therefore

the motion segmentation problem only involves determamati

of the motion parameters and membership assignment.

The paper by Agrawal et al. [13] desribes a system that can
detect independently moving objects from a mobile platform
equipped with a stereo camera. Their system first randomly
samples and selects the dominant motion as the ego motion
of the camera. This is done by three point sampling, and
three point pose estimation [14] followed by scoring in the
disparity space. Next the regions that are incompatiblé Wigig 1. complete graph for a rigid body with vertices and"=1) edges
the ego motion are identified and grouped as independént 8)
moving objects. A pixel belonging to an independent motion
must move at least 2 pixels from its projected location (as ) o ) _

a stationary object). The paper gives results only for gingPoint N-view (V' > 4) rigidity constraint under perspective
independent motion. projection. We demonstrate that this method can segment

The set of rigid body motions lie on the matrix Lie grouppomts on separately moving objects in real sequences from

SE(3). In [15], [16], motion points onSE(3) are generated a commercial RGB-D camera, with minimal computational
by three point sampling and mean shift clustering is applieEiOSt'

Interestingly, this method returns the number of motions, 1. OUR APPROACH

motion parameters as well as the memberships. However, th
method requires that every input motion point to be conwierggt
to a local mode separately which can be considered a

§ accurate depth map computation is possible e.g. from
ructured light/active stereo as in [22], the 3D structofr@
Sp‘ﬂnt set relative to the camera frame can be readily obdaine
drawback. . However to express the points w.r.t. the world frame, it is

In ,[17] Rabg et a[. presenbense6D and VarllatlonaIGD . essential to have the pose of the camera in the world frame. On
algo_nthms which estimate the ‘?'ense 3D motion f|el_d USIfle other hand to recover the ego motion of the camera (e.g. as
spatial and te_mporal regL_JIarlz_atlon of stereo and opticaV fl from [14]) and then to estimate its pose, point correspooean
data_. The _estlmated motion field can pe used 1o segment g4 to be identified from the static background. Unfortelyat
moving Ob.JeCt.S' Hoyvever, these algor!thms are CompUt{?‘t'%is is not directly feasible and therefore we are unable to
ally intensive in which stereo and optical flow computationg,carve the movement of the 3D points in the world frame in
runs on a dedicated FPGA and a GPU respectively. a straight forward manner.

A related problem to MSaM is the non-rigid Structure ahough the 3D positions of points can not be determined
From Motion (NRSFM). Here the task is to recover the 3}, the world frame, the relative position between each pair
positions of observed points of a non-rigid object over time¢ hoints is the same in both camera and world frames. For
In [18], [19] factorization based methods have been appliegl set of points on a rigid object, the relative positions and

In [20] Salzmann et al. solves a system of quadratic equatiqince distances between each other are invariant over time.
involving distance constraints between nearby mesh @sticrhis can be visualized as a fully interconnected undirected
on a triangular mesh surface model. I.nterest.mgly the PaR§Gph (complete graph) with invariant edge lengths (Figure
by Taylor et al. [21] solves local 3-point N-viewN( > 4) 1) Therefore fom points on a rigid object we hava—1)
structure from motion problems independently for eachetip rigidity constraints. 2
and identify 3D tr_iangles consis_tent with near rigid_motion In the case of two points on two rigidly moving objects with
However the solution presented is for an orthographic Cam&{on_zero relative motidh the distance between them is not
model.. ) o invariant and changes over time. Therefore non-zero vaniat

In this paper we make an important contribution to multip¢ the distance acts as an indication of the different mation
Igod_y struc.ture from_ motlon_ estimation, a fast. algorithm foggte that for a point pair on different objects, the objectsld
finding pairs of points which are moving with the sam@aye relative rotation about the points without changirgjrth
motion. In contrast to the 3-point N-viewM > 4) affine rejative 3D length, hence 3D relative length preservaton i

motion problem [21], given the assumption that we havg necessary but not sufficient condition to conclude that two
metric depth from image pairs, our algorithm evaluates a 8bjects have no relative motion.

1The 3D reconstruction can still be noisy and therefore apagularization 2In motion segmentation, if two objects have no relative omtiwe can
may be required. consider them as a single entity.
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where (ug, vg) is the image plane centef, denotes the focal
length andk denotes the pixel size of the camera.

As noted the Delaunay triangulation essentially gives us
pairings of adjacent vertices;, z; on the image plane. The
corresponding edge length estimﬁfg is given by the 2-norm
of the vector(X; — X;) i.e. L;; = | X; — X/]|2. It is related to

Fig. 2. Graph formed by 2D Delaunay triangulation with—2—# triangles  the true edge length;; = | X; — Xj|» as

and3n — 3 — h edges where: is the total number of data points andis
the number of points on the convex hull € 8, h = 7)

Lij = Lij + ¢ 4)

Therefore we propose to measure the standard deviat%ﬂ?;]zsgcoums for the errors from image position and depth

o of the distances over time and to reason about diﬁere%%
motions. In practice as the point matches and depth estimati _
are noisy,c will have non-zero values even for two points orf>- Thresholding of Edge Lengths
the same rigid object. Howeverwill have considerably large

values for points undergoing different significant moti@msl sequence be;;. Assuminge is zero mean and independent
therefore a suitable threshold can be used. of L;; we get'

The rest of this section explains our motion segmentation
pipeline and is organised as follows. In II-A, we describe a . 5 5
technique utilized to reduce the number of rigidity coristra Tij = \/ 9 T O¢
evaluations. Subsection II-B details how changing edggthen

are found using a RGB-D camera. After non-rigid edges afd1€ré oi;, o are the standard deviations df;; and ¢
identified (11-C), subsection 1I-D explains the recovery of€SPectively. As noted if two points belong to the same rigid

motion groups. object theno;; = 0. Therefores;;" " = o,.

However if two points belong to different rigid bodies
undergoing relative motion theh;; would change over the
image sequence and therefarg > 0. We assumes. will
be small in co_mgarison to any large movement of points.

~ non—rigid ~ H
A 2D triangulation is a subdivision of the convex hull o enceai; 7 x 0. Therefore we compute;; using

a 2D point set in to triangles (2-simplices) such that any m@ij data over the image sequence and identify non-rigid edges

. . ; . using a practical threshold. Naturally small movemerilis w
triangular faces either have an empty intersection or share y gap y

- ; .bF difficult to differentiate from noisy observations. Thenn
edge or a vertex. The 2D Delaunay triangulation for a 2D point.. . e -

) ) . e : [@Id edges thus identified are pruned from the initial Dakay
set is such a triangulation where no point in the point set 1S oh
inside any triangle. In 2D the Delaunay triangulation proski grapn.
a graph with2n — 2 — h triangles and3n — 3 — h edges for

n data points withh points lying on the convex hull (Figure D- Connected Components

2). Therefore the number of edges in the graph and so therpe resulting graph after thresholding is examined to find
complexity of edge evaluation stage decreases f¥im’) 0 he connected components. We use the breadth-first search
O(n). algorithm to find the connected components. Starting at a

particular vertex the connected component i.e. set of casti

connected together by paths is extracted and the process is
B. Estimation of Edge Lengths repeated for the vertices which are not included in preWjous

found connected components. The final result of this stage

For a given image point; = (u,v) and depthz from a is the number of connected components and their individual

RGB-D camera we obtain an estimate = (X,Y, Z)T for vertices. This gives us the number of motion groups and the
the 3D position of a poinfX; from membership assignment for each group.

Let the standard deviation of each;; over the image

(5)

A. Delaunay Triangulation



Il. | MPLEMENTATION

A commercially available active stereo RGB-D camera was
interfaced with a laptop computer using the OpenNIl SDK
[23]. 24 bit RGB and 16 bit Depth (which provides depth
in millimeters) images were captured at 640x480 resolution
The Depth image was registered with the RGB image using
available API functions. Due to the difference in RGB and
Depth camera viewpoints, the effective size of the regster
Depth image was about 588x424 (see Figure 4). For pixels
with no depth information (e.g. due to registration, ocidns
etc.), a depth value of zero was returned. The camera param-
eters were obtained g&= 120 pixels, k = 0.20838 mm and
(’LLO, ’Uo) = (320, 240)

In an image sequence, each RGB image was convertggl 4. The Registered Depth Image corresponding to theifitage of3
to grayscale and SIFT [24] keypoints and descriptors wepgoks Image Sequence (Figure 3 (a))
extracted. The keypoints corresponding to points with nufe
information were thrown away. The descriptors were matche : -
across the sequence and only points that survived matching m[ﬁ*
all of the images were retained.

IV. EXPERIMENTAL RESULTS& DISCUSSION

We present results using three real image sequences c:
tured with the RGB-D camera. The sequences are derited
Books Box and Calender-Books

books moving away from each other (Figure 3). Here the ok
ject motions were predominantly translations with occaaio

slight rotations. The images were captured in differentetim
instants under varying camera viewpoints. A sample dept
image from this sequence is shown in Figure 4.

Fig. 5. Delaunay graph and edge length standard deviatmmthé 3 Books
Image Sequence

SIFT feature matching resulted in 27 point trajectories and
the Delaunay triangulation on the initial image resultedain
graph with 71 edges (Figure 5). The figure also shows the
standard deviation of edge length for each of the edges (best
viewed when on-screen and zoomed in).

A practical threshold ofocry = 20 mm was used to
identify the non-rigid edges. Figure 6(a) shows the edges th
identified marked in red. Clearly all the non-rigid edgesathi
separate the three moving objects were correctly identified
Three connected components were found (Section 1I-D) and
the resulting memberships are shown in Figure 6(b).

The Box image sequence consists of 5 images of a box
Fig. 3. 3 BooksImage Sequence moving under translation while the camera was also moved
parallel. The number of SIFT features and the edges in the




(b) Motion memberships (b) Motion memberships

Fig. 6. Results for th& BooksImage Sequence Fig. 7. Results for thdox Image Sequence

Delaunay graph were 67 and 185 respectively. Figure 7 shoWs a 18 mm mgrgin. In the_ misclassification plot_for the
the results for this sequences(z — 20 mm). As expected Box sequence (Figure 9(c)) rigid and non-rigid motions are

two motions were detected with correct memberships. separated by more than 50 mm margin. In cont@edender-

. . ?ooks sequence exibits zero misclassifications only in a
The Calender-Books sequence consists of 4 images o . . :
narrow region. However this is to be expected, since the

a stationary calendar and three books moving away from

. ative motion between the calender object and the nearby
each other (42 SIFT points). The Delaunay graph had 1 % : .
edges. The motion of the upper two books w.rt calend Wo books are small (This sequence was prepared to examine

. . . e limitations of separating small motions from noise).

was relatively small. Results of_motl_on §egmentatlon using Typical execution times for various stages of the processin

athresho!d Obry =5 mm gre glve_n_ln_Flgure 8_' . for each of the sequences are given in Table I. Here the
Identifying an edge as rigid/non-rigid is essentially admn . ntimes reported are based on an unoptimised MATLAB

classification problem. We define the binary test as#ls-  jmplementation running on single thread of a Corei7 1.6 GHz
org ?". Then Figure 9 shows how misclassifications vary W'tréptop computer.

the threshold for each of the three sequences. Here FP, RN, P,

stands for the counts of false positives (rigid edges idiediti V. CONCLUSION
as non-rigid), false negatives (unidentified non-rigid @j)g  We have presented a method to the rigid body motion
non-rigid edges and rigid edges respectively. segmentation which tests for the rigidity of 2-points in N-

In 3 BooksandBox sequences, object(s) undergo significamiews (V > 4). To the best of our knowledge this is the first
motion. For the3 Bookssequence, Figure 9(a) clearly showsme motion segmentation has been attempted with a RGB-
that there are zero misclassifications whepy € [8,26] D camera. The method is very fast and suitable for realtime
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Fig. 8. Results for the&€alender-BooksImage Sequence (b) Box
FP/N + FEN/P vs o
TABLE | 1 / '/ K

PROCESSINGTIMES

Time (ms) i
3 Books | Box | Calender-Books |
Delaunay & Edge extractior] 7 7 7 & '
Edge Length 2 4 2 E : |
Std. & Thresholding 12 21 16 + 0. 1
Connected Component 12 12 12 E ) i
(=

applications.

One limitation of the work is the use of a global thresholc
for rigity/non-rigidity testing. The scale of noise was asged o 1 20 pvs prS s 50
to be independent of the length of an edge. However, in yealil OTH
the error in edge length depends on the errors in the 3D
position estimates of the vertices. Unfortunately the remo
depth direction is currently unavailable for' the RGB-D came Fig. 9. FPIN + EN/P vesy (which is in mm) for the three Image Sequences
used. In future work we plan to model this error and thereQM%te; FP = no. of false positives, FN = no. of false negafies= no. of
use local threshold for each of the edges. Moreover the warnbo-rigid edges, N = no. of rigid edges)
in progress include incorporating a real time feature teack

(c) Calender-Books



instead of the SIFT feature matching which is relativelyslo [17] C. Rabe, T. Mller, A. Wedel, and U. Franke, “Dense, rdbumd

Further, we will extend our result to full MSaM.
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