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Abstract—In this paper, we seek to expand the use of direct

methods in real-time applications by proposing a vision-based

strategy for pose estimation of aerial vehicles. The vast ma-

jority of approaches make use of features to estimate motion.

Conversely, the strategy we propose is based on a MR (Multi-

Resolution) implementation of an image registration technique

(Inverse Compositional Image Alignment ICIA) using direct

methods. An on-board camera in a downwards-looking configu-

ration, and the assumption of planar scenes, are the bases of the

algorithm. The motion between frames (rotation and translation)

is recovered by decomposing the frame-to-frame homography

obtained by the ICIA algorithm applied to a patch that covers

around the 80% of the image. When the visual estimation is

required (e.g. GPS drop-out), this motion is integrated with the

previous known estimation of the vehicles’ state, obtained from

the on-board sensors (GPS/IMU), and the subsequent estimations

are based only on the vision-based motion estimations. The

proposed strategy is tested with real flight data in representative

stages of a flight: cruise, landing, and take-off, being two of those

stages considered critical: take-off and landing. The performance

of the pose estimation strategy is analyzed by comparing it with

the GPS/IMU estimations. Results show correlation between the

visual estimation obtained with the MR-ICIA and the GPS/IMU

data, that demonstrate that the visual estimation can be used

to provide a good approximation of the vehicle’s state when

it is required (e.g. GPS drop-outs). In terms of performance,

the proposed strategy is able to maintain an estimation of the

vehicle’s state for more than one minute, at real-time frame rates

based, only on visual information.

I. INTRODUCTION
Image information has been used for different purposes in

the field of aerial vehicles: collision avoidance [1], surveil-
lance [2][3], autonomous vision-based landing tasks [4][5],
or SLAM (Simultaneous Localization and Mapping) [6][7],
among others. In all of these applications, the visual infor-
mation has been used as a main or complementary sensor to
improve the vehicle’s capabilities.

A common UAV system uses GPS position to correct IMU
(Inertial Measurement Unit) data from drift in order to obtain
the UAV’s state. That is why any loss of GPS signal will
cause serious problems in the UAV operation. Nonetheless,

visual odometry approaches have been proposed to solve
the problems that arise when the GPS information becomes
unavailable or is unreliable (e.g. when flying close to obstacles,
or during GPS dropouts).

The different approaches presented in the literature that
make use of vision as an additional or complementary sensor
to estimate the UAV’s state can be classified according to the
type of information that is recovered to estimate the vehicles’
position and orientation. Two categories can be identified: the
approaches that use features to obtain the UAV state, and those
that use the pixels’ information (direct methods).

On the other hand, an additional characterization can arise
from the motion estimation method used to extract the vehi-
cle’s motion. When the scene is planar or can be assumed
planar, and the intrinsic parameters of the camera are known,
homography decomposition techniques are commonly used in
monocular systems to extract the camera displacement.

In [8], an algorithm for estimating the position and orien-
tation of aerial vehicles assuming planar scenes is presented.
Matched corner features are used to calculate a frame-to-frame
homography, and the homography decomposition technique is
used to estimate the motion. Another system is presented in
[9]. This method offers a drift-free estimation when GPS signal
is unavailable. The algorithm uses two techniques: a position
estimation based on visual odometry (using corner features)
that drifts, and an image registration technique that matches
the current image with a geo-referenced image in order to
compensate the drift. The position estimation is derived from
the homography matrix considering that the attitude data is
obtained from the IMU, and the distance to the plane is
obtained from an altimeter.

In [10], a feature-based pose estimation algorithm for piece-
wise planar scenes is presented. The algorithm establishes a
relationship between images through the homography matrix.
GPS data is linked with image data to provide inertial mea-
surements. Simulation results illustrate the performance of the
algorithm.



Binocular systems have also been used. In [11], by using
a Kalman Filter, the system fuses the vision-based data with
inertial data. Again, features are detected, and tracked with
the KLT feature-based algorithm, but in this case, their 3D
position is found by triangulation.

As can be seen, most of the work presented in the lit-
erature makes use of features to determine the homography
relationship between images, and also makes use of the
homography matrix to obtain the motion of the UAV (rotation
and translation).

Motivated by this fact, in this paper we want to address
the pose estimation problem using image registration and ho-
mography decomposition techniques, but using direct methods
[12] instead of feature-based methods [13].

In [14], a direct method was used in an inertially-aided
visual odometry system. Its election is based on the fact that
the use of direct methods can bring more accurate results in the
estimation due to the amount of information that is considered
in the evaluation of the motion model [12]. However, as the
authors say, their results were presented as a proof of concepts,
and additional improvements must be incorporated in order to
achieve a real-time operation of the algorithm.

Thus, the contribution of this work is to expand the use
of direct methods in a real-time pose estimation application.
To achieve this, we propose to use a MR strategy of the
ICIA algorithm [15]. This MR strategy helps to improve the
estimation when the assumption of small motions of direct
methods is not satisfied (e.g. flying at low altitudes -take-off
and landing-), and additionally permits to vary the number of
pixels used in the estimation of the motion without affecting
the quality of the estimation.

The pose estimation algorithm assumes that an initial es-
timation of the state of the vehicle is available before the
algorithm starts operating (e.g. the state before the GPS drop-
out). Hence, the proposed algorithm finds the motion between
frames by decomposing the homography obtained with the
ICIA, and integrates it with the previous estimation in order
to obtain the current state of the vehicle, using a method that
is similar to the one proposed in [10].

Therefore, our work differs from previous approaches in that
in our proposed strategy hierarchical-based direct methods are
used to obtain a real-time pose estimation that is based only on
visual information. Therefore, our proposal extends the results
obtained in [14], where an algorithm based on direct methods
was proposed but its complexity did not allow a real-time
operation of it.

The paper is organized as follows: in Section II an expla-
nation of the MR implementation of the the ICIA algorithm
is presented. Section III then presents the pose estimation
algorithm. In Section IV, tests and results that evaluate the
performance of the algorithm are shown. Finally, conclusions
and the direction of future work are presented.

II. MULTI-RESOLUTION INVERSE COMPOSITION IMAGE
ALIGNMENT MR-ICIA

The image registration technique will be in charge of
identifying the transformation (motion model) that allows to
align the current image I with a reference image T.

In this section, we describe the MR implementation of the
ICIA algorithm, by presenting first the motion model used,
then the derivation of the ICIA proposed in [15], and finally
its hierarchical implementation.

A. Motion Model: Homography
The algorithm we are presenting is based on the assumption

of planar scenes. For our application -aerial images-, this
assumption is valid considering that the distance to the ground
is larger than the height of the objects. On the other hand, by
assuming planar scenes, the motion can be recovered by using
the homography as the transformation in charge of aligning
two consecutive images.

This transformation has eight degrees of freedom (rotation,
translation, and surface parameters), and is parameterized as
follows:
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Different parameterizations of the homography matrix can
be adopted, depending on the number of degrees of freedom
(DOF) the application requires to recover, as shown in [16].

B. Image Registration: MR-ICIA
The starting point of the algorithm is the definition of the

position of the template T. In our application, this template
image is a fixed patch that encompasses almost 80% of the
image. Therefore, the goal of the ICIA algorithm as presented
in [15] is to minimize:

�

x

[T(W(x; ∆p))− I(W(x;p))]2 (2)

Where T is the template image, I the current image,
x = (x, y)T represents the pixel coordinates, and W(x;p)
is the motion model (in our case the homography) where
p = (p1, p2.., p8)T is the vector of parameters that describes
the transformation.

The increment to the parameters is found after a first-order
Taylor series expansion as follows:
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where H is the Hessian matrix defined by:
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where ∇T =
�

∂I
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�
is the gradient of the template that

is evaluated at W(x,0) (when the template is selected), and



∂W
∂p is the Jacobian of the transformation. This Jacobian is

also evaluated at (x; 0).
The advantage of this algorithm is that by changing the

roles of images T and I, H is constant. As can be seen in
(4), there is no term that depends on the parameters p, and as
a consequence H is calculated at the beginning of alignment
task.

Finally, the motion model is updated as follows:

W(x;p) ← W(x;p) ◦W(x; ∆p)−1 (5)

This algorithm iteratively estimates ∆p until a stopping
criteria is reached (||∆p||≤ 10−5).

The ICIA algorithm allows us to find the motion param-
eters efficiently. However, this iterative algorithm relies on
a linearization stage which is only valid when the range
of motion is small. In different applications, this is rarely
satisfied, especially when working with aerial image (vehicles’
vibrations, low altitude flights). To alleviate this problem, MR
methods are used considering, as mentioned in [17], that at
low resolution, the vector of motion is smaller, so that long
displacements can be better approximated using a propagation
of parameters through the MR structure.
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Fig. 1. Multi-Resolution ICIA. Images I and T are downsampled to create
the MR structure. In each level, the ICIA is applied iteratively. In each
iteration, I is warped, the error between the warped image and T is calculated,
and the parameters are updated. When the stopping conditions are reached,
the parameters are propagated to the next level. The process is repeated until
the lowest level of the pyramid is reached (highest resolution image).

The MR-ICIA algorithm is described in Fig. 1. The current
I and the reference T images are downsampled by a factor of
2, according to the number of levels defined in the pyramid,
in order to create the MR structure.

The process starts at the lowest resolution level ( j = jmax).
In this level, the ICIA algorithm iteratively finds the motion

model W j. The parameters of this motion model are propa-
gated to the next level of the pyramid, as follows:

p j
i = p j−1

i for i = {1, 2, 4, 5}

p j
i = 2.0 ∗ p j−1

i for i = {3, 6}

p j
i =

p j−1
i
2.0

for i = {7, 8}

(6)

where the subscript i represents the parameters, and j
represents the level of the pyramid.

The process is repeated until the lowest level of the pyra-
mid is reached (highest resolution image). In this level, the
parameters that best minimize the differences between images
I and T are obtained.

III. HOMOGRAPHY-BASED POSE ESTIMATION

The method for estimating the absolute position and orienta-
tion is based on the homography decomposition method [18].
Considering that the vehicle is equipped with a downwards-
looking camera, the homography induced by the ground plane
is used to obtain the motion of the vehicle.
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Fig. 2. Pose Estimation based on homographies.

• Planar Homography

If we consider two images, I0 and I1, of the same planar
object at two different instants of time (the camera is moving),
their corresponding camera coordinate systems are related by
a rigid transformation, as follows:

c1x = c1Rc0
c0x+ c1tc0 (7)

Where c0x, and c1x are the coordinates of a 3D point P
relative to each camera frame.

If the ground plane is characterized by its normal vector
c0n and its distance c0d, and knowing that:

c0n
T c0x = n1x+ n2y + n3z = c0d

1
c0d

c0n
T c0x = 1

(8)

then, equation (7) can be expressed as:
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Where

He = c1Rc0 +
1

c0d
c1tc0

c0n
T (10)

is the euclidean homography matrix that denotes a linear
transformation from c0x ∈ R3 to c1x ∈ R3 [18]. This matrix
depends on the motion parameters (c1Rc0 , c1tc0 ) as well
as on the structure parameters (c0n

T, c0d) of the plane Π.
Considering the scale ambiguity in the term

1
c0d

c1tc0 , it is
expected to recover from He the ratio of the translation scaled
by the distance c0d.

If we consider the pinhole camera model, equation (9) can
be expressed in terms of the image coordinates as:

I1x = γK (c1Rc0 +
1

c0d
c1tc0

c0n
T) K

−1 I0x (11)

Where γ =
c1 z
c0 z

, K the calibration matrix, and

Hp = γK(c1Rc0 +
1

c0d
c1tc0

c0n
T)K−1 (12)

Equation (12) is also a homography (projective homog-
raphy), that allows to map points from image I0 to points
in image I1. From (12), the homography in the euclidean
space can be calculated as shown in (13) using the intrinsic
camera parameters K, and recovering the scale factor as
γ = med(svd(HL)) [19].

HL = K
−1

HpK

He =
HL

γ
= (c1Rc0 +

1
c0d

c1tc0
c0n

T)
(13)

• Pose Estimation from Homography Decomposition

The pose estimation algorithm assumes that a camera, in
a downwards-looking configuration, is located on-board an
aerial vehicle, and the position of its coordinate system Xc

coincides with the vehicle’s body frame Xv, as shown in Fig.
2. Thus, the transformation from Xc to Xv is defined by a
fixed rotation v

Rc of 90◦ around the Z axis.
The algorithm also assumes that in t(0), when the algorithm

starts, an initial estimation of the position w
tv0 and orientation

of the vehicle w
Rv0 with respect to a world coordinate system

are known (e.g. GPS/IMU estimation).
Hence, the inter-frame motion of the aerial vehicle can be

estimated by decomposing the euclidean homography (10)
obtained with the MR-ICIA algorithm, using the method
described in [18]. This decomposition gives four solutions.
The correct solution is chosen, assuming the positive depth
constraint, and considering that the ground plane is not slopped
n = [0, 0, 1]T.

Therefore, the method recovers the rotation matrix c0Rc1

and the scaled translation vector
c0tc1

c0d
. The absolute transla-

tion c0tc1 can be recovered using a measured or calculated
height, as was shown in [10].

With all this information known, the pose with respect to
the world coordinate system is found as follows. The absolute
rotation w

Rv1 is found as:

w
Rv1 = w

Rv0
v0Rc0

c0Rc1
c1Rv1 (14)

where, v0Rc0 = v
Rc and c1Rv1 = v

R
T
c

From the rotation matrix w
Rv1 , the Euler angles roll (φ),

pitch (θ), and yaw (ψ), can be obtained as shown in (15).
Assuming that R = w

Rv1 , then:

θ = atan2(−R31,
�

R2
32 + R2

33)

ψ = atan2(R32,R33)

φ = atan2(R21,R11)

(15)

The translation vector w
tv1 = w

tc1 is recovered as:

w
tv1 = w

Rc0
c0tc1 +

w
tc0 (16)

where w
Rc0 = w

Rv0
v0Rc0 .

When a new image is analyzed. If the distance to the plane
is not available from an on-board sensor (e.g. altimeter), this
distance can be calculated from the previous data as:

c1d = c0d+ c0tc1 · c0n (17)

This distance is then used to recover the absolute translation
from frame 1 to frame 2. The process is repeated after this,
and the estimation of the pose is propagated.

IV. EXPERIMENTS AND RESULTS

Different tests have been conducted to analyze the per-
formance of the algorithm. The analysis is done in three
different stages of the flight: take-off, cruise, and landing. The
evaluation of the results is presented in terms of the RMSE
(Root Mean Square Error), comparing the obtained vision data
with the data obtained by other on-board sensors (GPS/IMU).
On the other hand, an analysis of the final frame rate of the
algorithm is presented.

A. Experimental setup
• Data collection
The data used in the experiments corresponds to a flight

of more than 90 minutes in duration. The image data was
collected by the Airbone System Laboratory (ASL) [20]. This
laboratory consists of a Cessna 172, as shown in Fig 3, owned
and operated by the Australian Research Centre of Aerospace
Automation (ARCAA).

The ASL is capable of capturing images from the on-board
cameras at a rate of 30 HZ with a resolution of 1024 × 768
using the open-source Videography software package [21].



On-board camera

Fig. 3. Airbone System Laboratory (ASL). This laboratory consists of
a Cessna 172 equipped with an x86 computer running Linux; a NovAtel
SPAN, which computes a tightly-coupled GPS/INS solution for position and
attitude data; two cameras: one pointing forwards and the other one pointing
downwards; and custom electronics for data synchronization. The ASL is
capable of capturing images at a rate of 30 HZ with a resolution of 1024×768.

Data is recorded from an on-board camera in a downwards-
looking configuration. This camera is externally triggered,
allowing the captured images to be precisely timestamped. The
position and attitude data used as ground truth is obtained by
an on-board GPS/INS system.

The flight path was chosen in order to maximize the terrain
variability (mountains, flat terrains, sea). From the available
data, a collection of images that correspond to three stages
of the flight was selected, these stages being: take-off, cruise,
and landing. Fig. 4 shows some of the images selected for the
tests. As can be seen there, the strong variability of the terrain,
and the different conditions of the flight (different heights)
represent a big challenge to the visual algorithm.

Take-off 200m Cruise 1400m Landing 100m

Fig. 4. Image data. A collection of images that correspond to three stages of
the flight were selected for the tests: take-off, cruise, and landing. As can be
seen, the variability of the data (mountains, flat terrains, sea) and the different
heights play an important role for testing the proposed strategy, and represent
a big challenge for the visual algorithm.

• Vision algorithm setup
Four pyramid levels are used in the tests. In each level, the

number of iterations and the number of parameters are fixed:
100 iterations per level, and 8 parameters are estimated in
each level. Two termination criteria are used. Criteria T1: the
minimum is reached when the increment of the parameters is
below a threshold (10−5). Criteria T2: the minimum is reached
if the mean error does not decrease after a defined number

of iterations (10 iterations). On the other hand, a template
that covers approximately 80% percent of the image is used,
although in each level the number of pixels that are considered
in the minimization process vary according to the level: in
the highest level (lowest resolution) all the pixels are used;
however, in the lowest level (highest resolution) 1 of every 5
pixels is employed. With this criteria, real-time frame rates are
achieved without compromising the accuracy of the estimation.

The algorithm was developed in C + + and the OpenCV
libraries [22] were used for managing image data.

B. Take-off Mode
The MR-ICIA algorithm is used to register pairs of images,

and the homography found in the registration is decomposed
in order to obtain the relative position and orientation of
the vehicle. This process is integrated in time to obtain the
vehicles’ state. We compare our estimation (red/dark line)
with the truth data (green/light line) in Fig 5. From this
figure, we can observe that the errors that were obtained
are relatively low, considering that the tests correspond to
approximately 1 minute of flight and that the estimation is
based only on visual information: the RMSEs in position are
[152.69, 273.93, 50.6591] m for X, Y, and Z respectively, and
the RMSEs in orientation [3.72, 1.17, 1.58] degrees. for roll,
pitch, and yaw angles. This will allow to maintain a good
approximation of the vehicle’s state while the system recovers
from a GPS drop-out.
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Fig. 5. Results of the take-off stage. The visual estimation (red/dark line)
is compared with the GPS/IMU (green/light line) data. As can be seen, the
signals have a similar behavior. The normal drift due to the integration is also
present. However, its rate is low, allowing to maintain a good approximation
of the vehicle’s state while the system recovers from a GPS drop-out.

C. Cruise Mode
Fig. 6 shows the results of the algorithm in the cruise stage.

The visual estimation (red/dark line) shows a behavior that is



similar to that of the GPS/IMU data (green/light line).
The RMSEs obtained in the angles’ estimation are in

the range of 4 degrees, and the RMSEs in position are
[376.27, 467.15, 60.42] m for X, Y, and Z respectively. The
previously mentioned errors in position can be considered low
if we take into account the total traversed distance and that
the mean speed was ≈ 211 km/hr. Therefore, those errors
represent 7% and 4% of the total traversed distance for the X
and Y axes, respectively (6470 m and 7700 m).
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Fig. 6. Results of the cruise stage. The visual estimation (red/dark line)
is compared with the GPS/IMU (ligth/dashed line) data. The upper figure
corresponds to the 3D position of the vehicle, and the other figures show the
estimation of the rotation angles. The errors that were obtained are relatively
low considering that the tests correspond to approximately 1 minute of flight.

D. Landing Mode

During the landing stage (see Fig. 7), the vision algorithm
was able to estimate the vehicle’s state until the vehicle
reached a height of 60 m. From that point on (taking into
account the characteristics of the on-board camera), the visual
estimation was not robust. This happened because after the
vehicle reached that height, the conditions of the terrain were
not the appropriate ones for the registration algorithm (there
was not enough texture information), and because when the
vehicle was close to the ground there was not a common
frame-to-frame visual information that allowed the estimation
of the vehicle’s relative state. Therefore, the performance was
degraded during this stage.

For this test, the obtained RMSEs in orientation are
[2.4, 3.9, 5] degrees for roll, pitch, and yaw angles; and in
position the RMSEs are [468.13, 150.68, 10.91] m for X, Y,
and Z, respectively.
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Fig. 7. Results of the landing stage. The visual estimation (red/dark line) is
compared with the GPS/IMU (green/light line) data during the landing stage.
As can be seen, the signals have a similar behavior, the vision algorithm was
able to estimate the vehicle’s state until reaching a height of 60 m, and the
RMSEs obtained in the attitude estimations are low.

E. Discussion
In general, the tests show that the vision-based proposed

strategy obtains an adequate estimation of the state of the
vehicle. In terms of errors, it can be seen that depending on the
stage of the flight, the errors in position are stable, and also low
if the total traversed distance and the speed (150−200 km/hr)
are considered in the analysis of the results. Therefore, the
visual system can offer a good approximation of the vehicles’
state when it is so required. The same situation is reflected
in the estimation of the vehicles’ attitude, where the obtained
errors were < 5◦ during all the stages (see Fig. 5, Fig. 6, and
Fig. 7), being all the results obtained for a flight of more than
1 minute.

The limitations of the system are related to the kind of
terrain analyzed and the configuration of the on-board camera
(camera field of view). The algorithm requires texture infor-
mation to register pairs of images, and from the tests it was
found that during take-off and most of the cruise sequences
high texture information was available. However, in the last
stage of the landing (when the altitude was lower than 60
m), it is seen that due to the low texture information in
the sequence, and also due to the current configuration of
the system (there is not common information in consecutive
images), the image registration technique is not able to find
the appropriate homography between images.

In terms of performance, it has been shown that the adopted
image registration strategy (MR-ICIA + variation of the num-
ber of pixels used in each level of the pyramid) allowed to
achieve a pose estimation at real-time frame rates (12 fps),



without compromising the accuracy of the estimation. This
speed can be improved depending on the application and the
degree of precision the system requires: a faster speed can be
obtained by using lower image sizes (the results were obtained
with an image resolution of 1024 × 768) and by estimating
different parameters in the different levels.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an algorithm for pose

estimation of aerial vehicles based on direct methods and ho-
mography decomposition techniques. We have shown that by
using the proposed strategy, direct methods can be employed
to obtain real-time frame-to-frame motion estimations making
an optimal use of all the available information in the image.

Real flight data was used to analyze the performance of
the algorithm during representative stages of a flight: cruise,
landing, and take-off, where two of those stages can be
considered critical (take-off and landing).

The results show a good correlation of the visual estimation
with the GPS/IMU data that validates the proposed strategy
and makes it useful to provide valid data of the aircraft’s state
(e.g. during GPS dropouts).

In terms of performance, the adopted image registration
strategy (MR-ICIA + variation of the number of pixels used
in each level of the pyramid) allowed a pose estimation
at real-time frame rates: 12 fps, without compromising the
accuracy of the estimation. Nonetheless, future work will focus
on improving this speed by adopting a dynamic strategy in
terms of the number of parameters that are estimated in the
hierarchical structure.

By using direct methods, the vision-based data has the
advantage of drifting slowly in time, providing a good ap-
proximation of the vehicle’s state during long periods of
time (minutes) based only on visual information. Taking this
into account, future work will focus on filtering the visual
estimation to improve its robustness, especially when flying in
places with low texture information, integrating the obtained
visual data with other sensors, and will also focus on the
implementation of the system on-board a UAV.
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