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Abstract—Regression analysis using orthogonal polynomials in the time domain is used to derive closed-form expressions 
for causal and non-causal filters with an infinite impulse response (IIR) and a maximally-flat magnitude and delay response. 
The phase response of the resulting low-order smoothers and differentiators, with low-pass characteristics, may be tuned to 
yield the desired delay in the pass band or for zero gain at the Nyquist frequency. The filter response is improved when the 
shape of the exponential weighting function is modified and discrete associated Laguerre polynomials are used in the analysis. 
As an illustrative example, the derivative filters are used to generate an optical-flow field and to detect moving ground targets, 
in real video data collected from an airborne platform with an electro-optic sensor. 
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I.  INTRODUCTION 

The fact that classical regression analysis, using orthogonal polynomials, automatically satisfies a number of highly 
desirable maximally-flat constraints means that digital smoothers and differentiators may be concurrently designed and 
visualized in the complementary time and frequency (or 𝓏-plane) domains [1]-[3]. Much of the early work on the engineering 
applications of such filters focused on the time domain [4], whereas the more recent signal-processing literature places a 
greater emphasis on the frequency domain [5],[6]. 

Low-pass maximally-flat designs are appealing because the specified response is guaranteed at the design frequencies; 
furthermore, closed-form expressions can usually be derived for the filter coefficients. Early maximally-flat finite-impulse-
response (FIR) designs were formulated using flatness constraints with unity and zero gain at 𝜔 = 0 and 𝜔 = 𝜋, respectively 
[7], although the latter constraint may be relaxed for non-linear phase designs with a tunable group delay [8]-[10]. Infinite-
impulse-response (IIR) designs have received somewhat less attention [11]. Closed form expressions for IIR filter coefficients 
that satisfy flatness constraints are given in [12]; however the form of the filter response is difficult to predict at non-design 
frequencies. 

The causal IIR filters, derived in the time domain using discounted least-squares, in [4] were intended for use in tracking 
radar systems. Predictive forms with a low-frequency phase lead for a negative group delay are favored in these applications 
to allow the antenna control system to keep the target within the field of regard. The “fading memories” of such filters place 
the greatest weight on the most recent sample. It is shown in this paper that the frequency response may be improved, in 
systems where a moderate delay is tolerable, if the exponential weight used in the (recursive) regression analysis is replaced 
by a more general weight, which is closer to being symmetric and has a maximum at a non-zero delay. Similar weighting 
functions have been used to improve the frequency response (i.e. narrower main-lobe and lower side-lobes) of recursive 
analyzers used in wide-band frequency analysis [13]-[15].  

Closed-form expressions for the filter coefficients are derived and presented in Section II; some tuning considerations are 
discussed and the filter responses are analyzed in Section III. The main result of this paper, as illustrated in Section III and 
summarized in Section IV, is a demonstration of the improved high-frequency noise-attenuation that is achievable, in cases 
where a larger group delay is tolerable, when associated Laguerre polynomials are used (the 𝜅 = 1 case), relative to 
traditional fading-memory smoother and differentiator designs (the 𝜅 = 0 case) [4], [16]. Non-causal extensions of the 
traditional approach are also provided for completeness. As an illustrative example, the derivative filters are used in Section 
V to generate an optical-flow field and to automatically detect moving ground targets, in real video data collected from an 
airborne platform with an electro-optic sensor. 
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II. METHOD & RESULTS 

Derivation of linear-difference-equation (LDE) coefficients using regression analysis in the time and/or space domains, 
with polynomial or sinusoidal models, has previously been used to design low-order IIR filters [17]. The complete process 
will therefore not be repeated here; however, a broad overview is given in this Section, to introduce key concepts, design 
parameters, and filter characteristics. The procedure is extended here to include derivative filters and non-zero shape 
parameters (𝜅 ≥ 0). 

A continuous-time input 𝑦(𝑡), is sampled (i.e. measured) at time instants 𝑛𝑇, where 𝑇 is the sampling period and 𝑛 is the 
sample index. Over a specified ‘time-scale’ in the vicinity of 𝑛, the following model is used to represent the signal structure 
and the measurement process: 

𝑥(𝑛 − 𝑚) = ∑ 𝛽𝑘(𝑛)𝜓𝑘(𝑚) 𝐵
𝑘=0  (1a) 

𝑦(𝑛) = 𝑥(𝑛) + 𝜀  (1b) 

where: 𝑦(𝑛) is the 𝑛th ‘noise-corrupted’ measurement; 𝑥(𝑛) is the corresponding ‘noise-free’ signal at time 𝑛𝑇; 𝜀 is a 
Gaussian-distributed noise term, with 𝜀~𝒩(0, 𝜎𝜀

2); 𝛽 are the local model coefficients; 𝐵 is the model degree; 𝜓𝑘(𝑛) is the 𝑘th 
local basis function at time 𝑛𝑇; and 𝑚 is a delay index. The discrete basis functions are constructed by orthonormalizing a set 
of polynomial components, using a linear combination 

𝜓𝑘(𝑚) = ∑ 𝛼𝑘,𝑖𝑚
𝑖𝐵

𝑖=0   (2) 

where, in the general case, the 𝛼 coefficients are determined using the Gram-Schmidt procedure such that 

∑ 𝜓𝑘2
(𝑚)𝑤+(𝑚)𝜓𝑘1

(𝑚) =∞
𝑚=0 𝛿𝑘1𝑘2

 (3a)  

in the causal case and 

∑ 𝜓𝑘2
(𝑚)𝑤±(𝑚)𝜓𝑘1

(𝑚)+∞
𝑚=−∞ = 𝛿𝑘1𝑘2

  (3b) 

in the non-causal case, where 𝛿 is the Kronecker delta function and 𝑤(𝑚) is a (non-normalized) weighting function with  

𝑤+(𝑚) = 𝑚𝜅𝑒𝜎𝑚  (4a) 

in the causal case and 

𝑤±(𝑚) = 𝑒𝜎|𝑚|  (4b) 

in the non-causal case; in both cases, 𝜎 < 0 for stable filter realizations. 

The mean of (4a), for continuous 𝑚, is at 𝑚 = −(𝜅 + 1) 𝜎⁄ , thus older samples receive greater emphasis in the analysis as 
the “forgetting factor” 𝜎, approaches zero (from the left) and as the shape parameter 𝜅, increases. Orthonormalization, yields 
the discrete Laguerre polynomials for 𝜅 = 0 [4]; the discrete associated Laguerre polynomials result for 𝜅 ≥ 0. In the non-
causal case, the centroid of the weighting function is at zero for all parameter combinations, due to the use of a two-sided 
weighting function.  

The model coefficient vector (or the “Laguerre spectrum” [4]) is determined via discounted least-squares analysis, using  

𝛽̂𝑘(𝑛) = ∑ 𝜓𝑘(𝑚)𝑤+(𝑚)𝑦(𝑛 − 𝑚)∞
𝑚=0   (5a) 

in the causal case and 

𝛽̂𝑘(𝑛) = ∑ 𝜓𝑘(𝑚)𝑤±(𝑚)𝑦(𝑛 − 𝑚)+∞
𝑚=−∞   (5b) 

in the non-causal case. The maximum-likelihood estimate of the 𝐷th derivative of the input sequence is 𝑥̂𝐷(𝑛). It is evaluated 
at time 𝑇[𝑛 − 𝑞], using the model parameters 𝛽̂𝑘(𝑛) in the synthesis equation: 

𝑥̂𝐷(𝑛 − 𝑞) = (−1

𝑇
)

𝐷
∑ 𝛽̂𝑘(𝑛)

𝑑𝐷

𝑑𝑚𝐷 𝜓𝑘(𝑚)|𝑚=𝑞
𝐵
𝑘=0 .  (6) 

Note that the “hat” accent is used here to denote an estimated quantity. Fortunately, operations (5) & (6) may be combined 
and applied recursively by taking 𝒵 transforms. The discrete-time transfer function of the resulting causal filters, linking the 
𝒵 transform of the input measurements 𝑌(𝓏), to the 𝒵 transform of the output estimates 𝑋̂(𝓏),  i.e. 𝐻(𝓏) = 𝑋̂(𝓏) 𝑌(𝓏)⁄ , is    

𝐻(𝓏) = ∑ 𝑏𝑚𝓏−1𝑀𝑏−1
𝑚=0 ∑ 𝑎𝑚𝓏−1𝑀𝑎−1

𝑚=0⁄ .    (7) 

The transfer function has repeated (real) poles at 𝓏 = 𝑝, where 𝑝 = 𝑒𝜎 , and a pole multiplicity of  𝐵 + 𝜅 + 1; the 𝑞 
parameter only influences the zero locations. Following the process described in this Section yields the causal and non-causal 
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filter coefficients given in Tables I-III. The coefficients in Table I may also be determined using (13.3.11) in [4]; the smoother 
(for 𝑞 = 0) is also given in [18]. Improvements to these designs are made in this paper by generalizing to 𝜅 ≥ 0 (see Table 
III). The non-causal smoothers and differentiators considered in [19] are also generalized here to higher-order cases (see 
Table II). Non-causal filters are realized by summing the outputs of two filters that are independently applied in the forward 
(FWD, increasing 𝑛), and backward (BWD, decreasing 𝑛) directions. The way in which the design parameters (𝐵, 𝐷, 𝜅, 𝑝 & 𝑞) 
affect the response of the filters is discussed in Section III, although many of the filter characteristics may be understood using 
the constructs of (discounted) regression analysis used in this Section. 

 

 

TABLE I.  LDE COEFFICIENTS (CAUSAL, 𝐵 = 2, 𝜅 = 0)  

 Smoother a Differentiator b 

𝑐 1

2
(1 − 𝑝) 

1

2𝑇
(1 − 𝑝)2 

𝑏0 𝑐(𝑞2𝑝2 + 3𝑞𝑝2 + 2𝑝2

−2𝑞2𝑝 + 2𝑝

+𝑞2 − 3𝑞 + 2)

 
𝑐(2𝑞𝑝 + 3𝑝
−2𝑞 + 3)

 

𝑏1 −𝑐(2𝑞2𝑝2 + 8𝑞𝑝2 + 6𝑝2

−4𝑞2𝑝 − 4𝑞𝑝 + 6𝑝

+2𝑞2 − 4𝑞)

 
−4𝑐(𝑞𝑝 + 2𝑝

−𝑞 + 1)
 

𝑏2 𝑐(𝑞2𝑝2 + 5𝑞𝑝2 + 6𝑝2

−2𝑞2𝑝 − 4𝑞𝑝

+𝑞2 − 𝑞)

 
𝑐(2𝑞𝑝 + 5𝑝
−2𝑞 + 1)

 

𝑏3 0 0 

𝒂 [1, −3𝑝, 3𝑝2, −𝑝3] 

To place a zero at 𝓏 = −1, for maximum high-frequency attenuation use: 

a. 𝑞 = [4𝑝 − √2(𝑝2 + 4𝑝 + 1) + 2] [2(1 − 𝑝)]⁄  

b. 𝑞 = (1 + 2𝑝) (1 − 𝑝)⁄ .   

 
 

TABLE II.  LDE COEFFICIENTS (NON-CAUSAL, 𝐵 = 2, 𝜅 = 0)  

 Smoother (FWD&BWD) Differentiator 
(FWD/BWD) 

𝑐 1 [2(𝑝2 + 8𝑝 + 1)]⁄  − 

𝑏0 𝑐(𝑝2 + 10𝑝 + 1)(1 − 𝑝) (1 + 𝑝)⁄  0 

𝑏1 3𝑐𝑝(𝑝2 − 1) (+ −⁄ ) (𝑝 − 1)3 [2𝑇(𝑝 + 1)]⁄  

𝑏2 3𝑐𝑝2(𝑝2 − 1) 0 

𝑏3 𝑐𝑝3(𝑝2 + 10𝑝 + 1)(1 − 𝑝) (1 + 𝑝)⁄  0 

𝒂 [1, −3𝑝, 3𝑝2, −𝑝3] [1, −2𝑝, 𝑝2, 0] 
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TABLE III.  LDE COEFFICIENTS (CAUSAL, 𝐵 = 2, 𝜅 = 1)  

 Smoother c Differentiator d 

𝑐 1

6
(1 − 𝑝)2 

1

2𝑇
(1 − 𝑝)3 

𝑏0 0 0 

𝑏1 𝑐(3𝑞2𝑝2 + 9𝑞𝑝2 + 6𝑝2

−6𝑞2𝑝 + 6𝑞𝑝 + 12𝑝

+3𝑞2 − 15𝑞 + 18)

 
𝑐(2𝑞𝑝 + 3𝑝
−2𝑞 + 5)

 

𝑏2 
−2𝑐 {

(𝑞𝑝 + 3𝑝
−𝑞 + 3)

} {
(3𝑞𝑝 + 3𝑝
−3𝑞 + 3)

} 
−4𝑐(𝑞𝑝 + 2𝑝

−𝑞 + 2)
 

𝑏3 𝑐(3𝑞2𝑝2 + 15𝑞𝑝2 + 18𝑝2

−6𝑞2𝑝 − 6𝑞𝑝 + 12𝑝

+3𝑞2 − 9𝑞 + 6)

 
𝑐(2𝑞𝑝 + 5𝑝
−2𝑞 + 3)

 

𝑏4 0 0 

𝒂 [1, −4𝑝, 6𝑝2, −4𝑝3, 𝑝4] 

To place a zero at 𝓏 = −1, for maximum high-frequency attenuation use:  

c. 𝑞 = [4𝑝 − √2(𝑝2 + 6𝑝 + 1) + 4] [2(1 − 𝑝)]⁄ ;   

d. 𝑞 = 2(1 + 𝑝) (1 − 𝑝)⁄ .   

III. DISCUSSION 

The resulting causal and non-casual filters have appealing frequency responses that approximately satisfy various 
constraints (maximally flat). The validity of the approximations improve as 𝜔 = 0 is approached, where 𝜔 is the angular 
frequency 𝜔 = 2𝜋𝑓 (radians per sample) and 𝑓 is the normalized frequency (cycles per sample). For a smoothing filter (𝐷 =
0) the frequency response is flat, with unity magnitude and linear phase (for a group delay of 𝑞 samples). For a differentiating 
filter (𝐷 = 1) the frequency response has linear magnitude |𝐻(𝜔)| = 𝜔 and phase. For both filter types, the frequency range, 
over which these frequency-domain properties are approximately true, increases with 𝐵.  

The frequency response 𝐻(𝜔), of the filter is found by substituting 𝓏 = 𝑒𝑗𝜔 into (7). Using the causal smoother filter 
coefficients given in Table I in (7) and evaluating derivatives of |𝐻(𝜔)|2 at 𝜔 = 0, reveals that the first, second and third 
derivatives are all equal to zero, confirming that the procedure does indeed result in some degree of flatness.  

The gradual roll-off of these maximally-flat filters makes it difficult to clearly specify and identify pass-band, transition- 
band and stop-band regions, which are central to the more conventional equi-ripple and weighted-integral-squared-error 
(WISE) design processes used in FIR filter design [20],[21]. If the polynomial basis set represents the low-frequency content 
of the signal, with all other frequency components due to noise 𝜀, then the 𝑝 (or 𝜎) parameter determines the ability of the 
filter to discriminate between the two sub-spaces, i.e. the attenuation at ‘far-from-zero’ frequencies. Noise power in the filter 
output decreases as more data are considered in the analysis process (i.e. as 𝜎 → 0 for 𝑝 → 1). This improves frequency 
selectivity but decreases temporal selectivity due to a lengthening of the impulse response, which is not ideal for handling 
input discontinuities. IIR filters are particularly efficient in ‘very-low-pass’ roles because the time scale of analysis does not 
affect the order of the LDE. 

The 𝑞 parameter adjusts the gain and phase characteristics of the causal filters (𝑞 = 0 for all non-casual filters). In some 
applications, closed-loop control systems for instance, the ability to manipulate the group delay at low-frequencies is critical 
(𝑞 > 0 for a phase lag or 𝑞 < 0 for a phase lead); in other applications, audio processing for example, it is more important to 
strongly attenuate high frequencies. The proposed filters may be constructed in one of two ways, depending on design 
priorities: Either the 𝑞 parameter is arbitrarily chosen to yield the desired delay (see Fig. 1 and Fig. 3). (Note that in all phase-
response sub-plots, lines of constant group delay, equal to 𝑞 samples, are plotted to give an indication of phase linearity.) 
Alternatively, an ‘optimal’ 𝑞 value is determined for a given 𝑝, using the footnotes to Tables I and III, to place a zero at 𝓏 = −1 
for infinite (dB) loss at 𝜔 = 𝜋 (see Fig. 2 and Fig. 4) which also minimizes the variance reduction factor [17]. In the former 
design case, a reasonable value of 𝑞 must be chosen to ensure that there is sufficient data ‘support’, or analysis weight afforded 
by 𝑤+(𝑚), before and after the synthesis point at 𝑛 − 𝑞 to promote the desirable qualities discussed so far in this Section. 
This phenomenon is well known in regression analysis, where estimation/prediction errors are modelled using Student’s t 
distribution or Snedecor’s F distribution for uniformly weighted data over a finite interval [22]. It is surprising that these 
classical relationships are not utilized in recent studies on the time-domain properties of Savitzky-Golay smoothers and 
differentiators [23],[24]. 
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For 𝜅 = 0, i.e. pure exponential decay, the value of 𝑞 directly determines the number of samples that follow the synthesis 

sample in the analysis; however if 𝑞 is increased too far, the relative weight applied in the vicinity of the synthesis point is 
diminished, which degrades the frequency selectivity of the filter (see Fig. 1 and Fig. 2). This effect is most pronounced for 
near-zero 𝑝 where the weight decays rapidly. It also explains why predictive filters (with 𝑞 < 0) amplify high-frequency noise 
[25]. As a guide, 𝑞 should be kept near the centroid of 𝑤+(𝑚). Using 𝜅 > 0 provides the opportunity to use an analysis weight 
that is more symmetric around a delayed synthesis point, which improves the frequency selectivity of the filter (compare Fig. 
3 and Fig. 4 with Fig. 1 and Fig. 2).  

The responses of some alternative FIR and IIR smoothers, are provided for comparison in Fig. 5. These methods were 
selected: firstly, because they place an emphasis on low-frequency flatness; and secondly, because they enable the filter 
coefficients to be found without iterative optimization procedures.  

The minimized WISE design used a unity magnitude and a 1000x weight in the pass-band (|𝑓| ≤ 𝑓𝑐) to promote phase 
linearity, with zero gain and unity weight elsewhere; no transition-band was used. In time-domain target-tracking 
applications, the length of the finite memory filter is chosen to balance the contributions of random and systematic errors [4]. 
One of the interesting, and possibly undesirable, properties of the WISE FIR smoothers in Fig. 5 is the enhanced attenuation 
of sinusoids with periods that match the length (𝑀𝑇) of the analysis window, yielding a non-monotonic response. This is also 
a characteristic of finite-memory polynomial filters, e.g. FIR Savitzky-Golay filters [23]-[25]. The FIR-WISE filters are not 
maximally flat at 𝜔 = 0; however, the flatness improves (at the expense of stopband attenuation) as the relative passband 
weight increases. The proposed smoothers only allow the phase and magnitude near 𝜔 = 0 to be manipulated; however the 
WISE design method is ideal for arbitrarily-defined frequency bands. 

The “universal maximally flat” (UMF) low-pass filters [10], with an FIR were also investigated and a linear-phase 
instantiation is also shown in Fig. 5. Placing all zeros at 𝓏 = −1 gave a passband width that was similar to that of the 
corresponding linear-phase FIR-WISE filter. This design procedure provides exceptionally good high-frequency attenuation 
however the monotonic gain response makes it impossible to create a sharp transition between the passband and stopband.  

The “maxflat fractional delay” (MFFD) filters described in [12] have excellent frequency responses with good magnitude 
flatness and phase linearity over a wide frequency range. This is achieved using low-order filters because poles may be placed 
arbitrarily in the complex 𝓏-plane. However not all combinations of numerator and denominator polynomial orders are able 
to satisfy the flatness constraints for a specified group delay, therefore a lengthy trial-and-error search is required to find an 
appropriate combination of parameters that yields a filter with the desired response (see Fig. 5). 

Differentiator responses are plotted in Fig. 6. Note the following: the desired magnitude linearity in the low-frequency 
region for all filters; the increased attenuation at mid frequencies when 𝜅 is increased from 0 to 1 (at the expense of a longer 
delay); the  identical magnitude responses of the causal IIR filter (for 𝜅 = 1) and the non-causal IIR filter; and the reasonable 
phase linearity for all filters at low frequencies. Note also the improved noise attenuation for the IIR filters with optimal 𝑞 
assignment at medium to high frequencies, relative to the FIR design [26]. Like the smoothing filters, some of this attenuation 
is sacrificed if 𝑞 is instead chosen to yield the desired group delay. It is difficult to attenuate mid-range frequencies for the 
maximally-flat FIR differentiator (and smoother) – adding more zeros at -1 offers diminishing returns. The IIR differentiators 
in [27] have very similar responses to the maximally flat FIR response shown and both are more suitable when a wide-band 
differentiator is required. IIR differentiator (and smoother) designs involving iterative optimization procedures, such as 
those described in [6], were not considered for comparison here.  

Any number of alternative design techniques could have been used to design the types of low-pass IIR filters considered 
here, possibly resulting in superior properties with respect to a given design requirement – e.g. pass-band gain flatness, pass-
band phase linearity, pass-band width, transition bandwidth and stop-band attenuation. However, by appealing to the 
concepts of discounted least-squares regression in the time domain, the main advantage of the proposed design approach is 
the ease with which: 1) closed-form expressions for the filter coefficients may be derived, at least in low-order cases; and 2) 
impulse and frequency (i.e. phase and magnitude) responses may be intuitively adjusted using two principal design 
parameters (𝑝 and 𝑞) to achieve the desired effect. Thus complications arising from slow/non-convergent optimization 
procedures or continuous-to-discrete transformations, and even the use of computing aids, are avoided. 
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Fig. 1. Frequency response of causal IIR smoothers with 𝐵 = 2, 𝜅 = 0 and 𝜎 = −1 2⁄ , as a function of 𝑞. Optimal response for 𝑞 = 2.12. 

 

Fig. 2. Frequency response of IIR smoothers with = 2, 𝜅 = 0. Causal filters (solid lines) for a variety of optimal 𝜎 and 𝑞 combinations; non-causal filters 
(dashed lines) for 𝑞 = 0.  
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Fig. 3. Frequency response of causal IIR smoothers with 𝐵 = 2, 𝜅 = 1 and 𝜎 = −1 2⁄ , as a function of 𝑞. Optimal response for 𝑞 = 4.14. 

 

Fig. 4. Frequency response of causal IIR smoothers with 𝐵 = 2, 𝜅 = 1 for a variety of optimal 𝜎 and 𝑞 combinations. 
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Fig. 5. Frequency response of various FIR and IIR smoothers. All FIR filters designed using 𝑀 = 17. FIR-WISE filter designed using 𝑓𝑐 = 0.05 and a 1000x 
relative passband weight, for various pass-band group delays, including the linear-phase case (𝑞 = 8). Linear-phase FIR-UMF filter designed with all zeros 
at 𝓏 = −1. IIR-MFFD filter designed using 𝑞 = 8, a numerator order of 1 and a denominator order of 4.  
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Fig. 6. Differentiator magnitude response (linear scale) and phase response. Maximally-flat linear-phase FIR filter (dashed line) with 𝑀 = 9 and five zeros 
at 𝓏 = −1; IIR filters designed using 𝐵 = 2 and 𝜎 = −1 2⁄ . Causal variants (solid lines) with 𝜅 = 0 and 𝜅 = 1 (kap) and optimal 𝑞; non-casual variant 
(dotted line) also shown. 

IV. APPLICATION 

The recursive IIR derivative filters described above were used in an algorithm to automatically highlight moving ground 
vehicles observed from an airborne platform with an electro-optic video camera. The raw data were collected at a rate of 25 
frames per second, with red, green and blue channels, quantized using 24 bits at a resolution of 1920 by 1080 pixels per 
frame. One thousand frames of a 480 by 640 region-of-interest were then extracted and converted to a monochrome intensity 
map 𝐼, which was then (post) processed using a MATALB ® script, coded using only the core MATALB (R2013b) engine (i.e. 
no toolboxes), running on a personal computer with an Intel ® i7-4810MQ central processing unit with four cores (for eight 
concurrent threads) and a 2.8 GHz clock. A throughput rate of approximately 4 frames per second was achieved. 

The optical-flow field of the (apparently) rotating and translating background was generated using the Lucas Kanade 
algorithm [28]-[31]. Spatial partial derivatives 𝐼𝑥  and 𝐼𝑦  were generated using non-causal filters with 𝐵 = 2, 𝜅 = 0 and 𝑞 = 0 
(see Table II for filter coefficients); temporal partial derivatives 𝐼𝑧  were generated using causal filters with 𝐵 = 2, 𝜅 = 1 and 
𝑞 = 4 (see Table III for filter coefficients). Both filter types used 𝜎 = −1 for 𝑝 = 0.3679. Note that sample indices 𝑛𝑥, 𝑛𝑦 and 
𝑛𝑧 have been omitted in this section for brevity; also note that a delay of 4 frames is applied to the spatial partial derivatives 
so that 𝐼𝑥  and 𝐼𝑦  are aligned with the output of the temporal filter, 𝐼𝑧 . Local averages 𝐽𝑥𝑥 , 𝐽𝑥𝑦 , 𝐽𝑥𝑧 , 𝐽𝑦𝑦 , and 𝐽𝑦𝑧, of the intensity 
partial-derivative products 𝐼𝑥𝐼𝑥 , 𝐼𝑥𝐼𝑦 , 𝐼𝑥𝐼𝑧, 𝐼𝑦𝐼𝑦 , and 𝐼𝑦𝐼𝑧 , were then computed using non-causal and causal recursive 
exponential smoothers (i.e. 𝐵 = 0 and 𝜅 = 0) with a single pole at 𝓏 = exp(−1 16⁄ ). The optical flow field of the background 
was then generated in the usual way using  

[
𝑣𝑥

𝑣𝑦
] = − [

𝐽𝑥𝑥 𝐽𝑥𝑦

𝐽𝑥𝑦 𝐽𝑦𝑦
]

−1

[
𝐽𝑥𝑧

𝐽𝑦𝑧
] (8) 

where the velocity components 𝑣𝑥  and 𝑣𝑦 are expressed in pixels per frame units when 𝑇 = 1 pixel or frame for the spatial 

and temporal filters, respectively.  

The standard Lucas Kanade algorithm was extended in this work so that it is able to provide a means of detecting small 
moving targets that are set against a non-uniformly moving background. It can be seen from (8) that  
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[
𝐽𝑥𝑧

𝐽𝑦𝑧
] = − [

𝐽𝑥𝑥 𝐽𝑥𝑦

𝐽𝑥𝑦 𝐽𝑦𝑦
] [

𝑣𝑥

𝑣𝑦
] (9) 

represents the averaged spatiotemporal partial-derivative products due to the assumed background motion, thus 

[
ℐ𝑥𝑧

ℐ𝑦𝑧
] = − [

𝐼𝑥𝐼𝑥 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦𝐼𝑦
] [

𝑣𝑥

𝑣𝑦
] (10) 

may be interpreted as being the local contribution of background motion to the raw spatiotemporal partial-derivative 
products. It therefore follows that 

∆ℐ = √(𝐼𝑥𝐼𝑧 − ℐ𝑥𝑧)2 + (𝐼𝑦𝐼𝑧 − ℐ𝑦𝑧)
2

  (11) 

may be used as a convenient indication of the ‘surplus’ spatiotemporal partial-derivative products, due to local foreground 
motion, which cannot be accounted for by delocalized background motion.  

An illustrative example of this processing architecture is provided in Figs 7-9. In this particular application, sensor noise 
power is very low; therefore, temporal filters designed using 𝜅 = 0 and 𝜅 = 1 produced similar optical flow fields and 
disparity/salience maps. Furthermore, the spatial and temporal filters are required to cope with discontinuities in polynomial 
model parameters 𝛽, due to object edges (e.g. buildings) therefore filters with a short impulse response were required, using 
poles close to the center of the unit circle (𝑝 = 0.3679).  

 

Fig. 7. A single frame of the monochrome region of interest 𝐼, containing an urban traffic scene, with moving vehicles and parked vehicles on the roadside. 
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Fig. 8. Optical flow field (𝑣𝑥, 𝑣𝑦) of the background. As the observing aircraft manoeuvres above the scene, the background appears to translate and rotate 

(around the bottom left-hand corner of the image). Away from the image edges (where evidence of spatial filter start-up transients are apparent) the 
velocity estimates appear to be reasonable.  

 

Fig. 9. Map of disparity/salience, ∆ℐ. The three vehicles in the ‘foreground’ that are moving towards the top of the image, i.e. contrary to the motion of the 
‘background’, are the brightest objects in the image. 
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V. CONCLUSION  

In this paper it is qualitatively shown that time-domain regression-analysis satisfies a number of highly desirable design 
constraints in the 𝜔 domain. This perspective naturally leads to the introduction of the shape parameter (𝜅), which allows 
more favorable phase/gain compromises to be reached. The IIR smoothing and differentiating filters presented here may find 
application in image-processing or machine-vision areas, more specifically, in systems that require:  

 low-order filters for a high rate of data throughput, low-pass characteristics for the removal of high-frequency noise (e.g. 
as an alternative to simple frame differencing or for use in gradient-based optical flow calculation and/or moving target 
indication),  

 a tunable impulse response duration (using 𝑝) to accommodate the tradeoff between steady-state frequency selectivity 
and transient response in non-stationary environments, and 

 a tunable phase response (using 𝑞) to attain the desired balance between frequency selectivity and group delay. 

The intended application motivated the consideration of both causal and non-causal filters. 
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