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Abstract—Thin leaves, fine stems, self-occlusion, non-rigid and
slowly changing structures make plants difficult for three-
dimensional (3D) scanning and reconstruction – two critical
steps in automated visual phenotyping. Many current solutions
such as laser scanning, structured light, and multiview stereo
can struggle to acquire usable 3D models because of limitations
in scanning resolution and calibration accuracy. In response,
we have developed a fast, low-cost, 3D scanning platform
to image plants on a rotating stage with two tilting DSLR
cameras centred on the plant. This uses new methods of camera
calibration and background removal to achieve high-accuracy
3D reconstruction. We assessed the system’s accuracy using a
3D visual hull reconstruction algorithm applied on 2 plastic
models of dicotyledonous plants, 2 sorghum plants and 2 wheat
plants across different sets of tilt angles. Scan times ranged
from 3 minutes (to capture 72 images using 2 tilt angles), to
30 minutes (to capture 360 images using 10 tilt angles). The leaf
lengths, widths, areas and perimeters of the plastic models were
measured manually and compared to measurements from the
scanning system: results were within 3-4% of each other. The
3D reconstructions obtained with the scanning system show
excellent geometric agreement with all six plant specimens,
even plants with thin leaves and fine stems.

1. Introduction

The structures of different plant species pose a range
of challenges for 3D scanning and reconstruction. Various
solutions to the issue of digitally imaging plants have been
reported. For plants with larger leaves and simple structures
(such as maize, sorghum, cereal seedlings) it is possible to
capture a small number of digital images from various view-
ing angles (typically 3), analyse these in 2D, then develop a
relationship between these 2D poses and the (destructively
measured) leaf area and biomass of the species [1]. However,
commercial systems using this approach are relatively ex-

pensive, with closed and proprietary analysis software; these
have generally been deployed in large phenomics centres
with conveyor based systems [2]. The 2D approach has
difficulty in resolving concavities, leaf overlap and other
occlusions; many of the powerful image analysis tools which
can be applied to 3D meshes (e.g., volumetric based shape
recognition and organ tracking) are more difficult in 2D [3].

Laser scanning, e.g., light detection and ranging (LI-
DAR), has been applied to plant digitisation but reconstruct-
ing a mesh from a pointcloud sufficiently dense to capture
thin narrow leaves is computationally intensive. While this
approach has been applied successfully to forestry [4],
[5] and to statistical analysis of canopies, it is not well
suited to extracting single plant attributes [4], [6]. Full
waveform LIDAR is extremely expensive; simpler machine
vision LIDAR systems of sufficient resolution can cost tens
of thousands of dollars. Structured light approaches using
affordable sensors such as the Kinect gaming sensor or
camera-video projector setups do not offer the resolution or
spatial repeatability to cope with complex plant structures
[7], [8].

Recently, approaches using multiple images from a
larger number of viewing angles have yielded promising
results [3], [9], [10], [11], [12], [13], either by using a
silhouette-based 3D mesh reconstruction method or patch
based stereo reconstruction transforming the images to point
clouds. Silhouette-based reconstruction is prone to errors in
camera calibration and silhouette extraction. Image acqui-
sition for 3D reconstruction remains largely manual [14],
limiting the speed and accuracy of 3D reconstruction.

Existing background removal techniques for silhouette
extraction [15], [16] are not reliable for complex plant
structures. For current patch based methods, reconstruction
quality is usually poor due to both weak-textures (patterns
on leaves) and thin structures. In both cases, high accuracy
3D reconstruction requires a very rigid imaging station and
the engineering required for sensor integration is costly.
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Recent work has included semi-automated approaches to
modelling the plants [17], [18] increasing completeness and
visual quality at the expense of throughput.

To address the shortcomings of existing scanning sys-
tems, we describe “PlantScan Lite”, an affordable automated
3D imaging platform system to accurately digitise complex
plant structures. This can be readily built for less than
AU$8000 of components (including DSLR cameras). The
system has a number of novel elements including the use
of high-resolution digital single-lens reflex (DSLR) cam-
eras synchronised with a turntable; a high-accuracy, easy-
to-setup camera calibration; and an accurate background
removal method for 3D reconstruction.

2. Methods

PlantScan Lite uses a four step process of 3D scanning
and reconstruction (Fig. 1):

1) Image acquisition. Multiple-view images of a cal-
ibration target, a plant of interest and background
are captured using a turntable and tilting cameras.

2) Camera calibration estimates camera parameters for
all captured images.

3) Image processing corrects for optical distortion and
extract plant silhouettes (background removal).

4) 3D reconstruction. This paper focuses on the visual
hull reconstruction method which uses silhouette
images and corresponding camera parameters and
poses to create a 3D mesh model. The model is then
processed to extract plant geometry information.

2.1. Image acquisition system

PlantScan Lite’s image acquisition system consists of
(Fig. 2):

• Two Canon DSLR cameras (1, 2) at an angle of
approximately 40 degrees. The cameras are pow-
ered by AC adapter kits and connect to a computer
through USB cables for tethering capture.

• Two aluminum frames, one tilted (3) and one fixed
to the ground (4). The tilted frame is to mount
the cameras and move them up/down. The frames
join together with two hinges where the axis of
rotation crosses that of the turntable near the middle
of a plant to be scanned. Two guiding bars (5) are
attached to the lower frame (4) both to keep the tilted
frame moving on a vertical plane.

• Two Phidget bipolar stepper motors (6, 7); one
drives a turntable, the other moves the upper frame
and the two cameras via a threaded rod (8). Both
stepper motors have a gearbox to increase the rota-
tion resolution (0.018 degree/step for the turntable)
and torque (18 kg·cm for the threaded rod). The
turntable controller is synchronised with the cameras
via software based on Phidget Python library [19]
and Piggyphoto [20].

Figure 1. Overview of 3D scanning and reconstruction process.

2.2. Camera calibration for turntable

Fig. 3 shows the schematic description of the system
with a calibration target and a plant (notation follows [21]).
A chessboard target has a local coordinate system {T}
with relative pose T ξW to the world {W} which is fixed
to the turntable. A camera at tilt position j has a local
coordinate system {K} and relative pose KξW to the world
coordinates {W}. Standard mono camera calibration only
provides camera pose KξT relative to target at angles where
the chessboard pattern is visible to the camera. The aim
of camera calibration for the turntable is to find intrinsic
parameters and poses KξW for all cameras at all positions.
Three constraints are considered: a) turntable rotation angle
is known, b) images captured by the same camera have
the same intrinsic parameters, and c) different extrinsic
parameters are assigned to different tilt positions as if these
belong to different cameras that form a vertical arc. The
calibration process consists of (1) mono and stereo camera
calibrations (2) plane and circle fitting (3) camera to world
pose derivation, and (4) optimisation of all camera parame-
ters. Theses step are detailed below.

2.2.1. Mono and stereo camera calibration. The OpenCV
library provides mono and stereo camera calibration routines
[22], [23]. The calibration procedure starts by taking images
of a chessboard target at different angles and distances.
Corners of the squares on chessboard target are detected.
To make this detection efficient, images of the chessboard
calibration target are repeatedly scaled down 50% in a
pyramid fashion to approximately 1K × 1K resolution at
the top level. The detected corner positions are obtained at
the top level (lowest resolution) using OpenCV’s function
findChessboardCorners and tracked with subpixel accuracy
using function cornerSubPix on images at lower levels of
the pyramid.

Fig. 4 describes transformations between different co-
ordinate systems. Thin arrows represent coordinate vectors.
A pair of orthogonal arrows denotes a coordinate system.
Thick arrows show relative pose between two coordinate
systems. The coordinates (in mm) of a corner p with respect



Figure 2. Mechanical setup of PlantScan Lite with dual cameras. A) Lowest position - approximately zero degree for the lower camera. B) Highest position
- approximately 45 degrees. Two cameras (1, 2) are attached to the tilted frame (3) at approximately 40 degrees apart and jointly cover a full hemisphere
scanning surface as in C). A 3D mesh is included to show the size and position of the actual plant relative to the camera view.

Figure 3. Left: A camera K at tilt position j has its own coordinate system
{K} with a relative pose KξW to the world coordinate system {W}
attached to the turntable. The camera is panned around relative to turntable
at angle θi. The target has its own coordinate system {T} with a relative
pose T ξW to the world. Right: a plant is scanned in the same way as the
chessboard.

Figure 4. Existing camera calibration available in OpenCV library. A)
shows camera pose KξT relative to target obtained from mono camera
calibration. Point p has relative coordinates Kp to {K}, and K′

p to {K′}
as in B).

to the chessboard target coordinate system {T} are repre-
sented as T p = [X,Y, Z = 0, 1]T . The position of p relative
to a camera coordinate system {K} is Kp = [x, y, z]T . The
relationship between T p and Kp is expressed as:

Kp = KξT · T p = [R|t] · [X,Y, Z, 1]T (1)

where R is a 3 × 3 rotation matrix, t a 3 × 1 translation
vector. This rotation translation matrix [R|t] represents the
extrinsic parameters of camera K relative to target T. The
rotation matrix can be represented as a 3 × 1 angle-axis
rotation vector, so extrinsic parameters have only 6 inde-
pendent components [r0, r1, r2, t0, t1, t2]. The “·” operator
is a matrix-to-vector multiplication.

Point p forms an image on camera sensor at coordinates
Ip = [u, v]T . An extended pinhole camera model is used
to describe this relationship between Kp and Ip with radial
optical distortion:

r =

√(x
z

)2
+
(y
z

)2
(2)

u =
fx

z
(1 + d1r

2 + d2r
4) + cu (3)

v =
fy

z
(1 + d1r

2 + d2r
4) + cv (4)

where f is focal length, [cu, cv] optical center on im-
age, and [d1, d2] radial distortion coefficients. A vector
[f, cy, cv, d1, d2] represents intrinsic camera parameters.

To calibrate the camera, multiple images of the same
target are captured at different pan angles θi and tilt angles
φj , where i = 0 to imax and j = 0 to jmax. Mono camera cal-
ibration, using OpenCV’s calibrateCamera (based on [24]),
takes lists of T p and Ip and computes intrinsic parameters
[f, cy, cv, d1, d2]k for the camera, and extrinsic parameters
[Rijk|tijk] for each of the images.

Fig. 4B shows the multiple camera setup with an ad-
ditional camera K ′ at a different tilt position. The same
point p is seen by the camera K ′ at coordinates K′

p. The
transformation between the two camera coordinate systems
gives:

K′
p = K′

ξK · Kp = K′
ξK ⊗ KξT · T p (5)

The transformation K′
ξK between cameras K and K ′ is

equal to stereo transformation [Rk,k′ |tk,k′ ] (using OpenCV’s
stereoCalibCameras). If K and K ′ are of the same camera
but at different tilting angles φj and φj+1, the transformation
becomes [Rj,j+1|tj,j+1]. The “⊗” operator denotes matrix-
to-matrix multiplication. The transformation can be applied
repeatedly between successive camera pairs at different tilt
positions. Given stereo transformations between successive
cameras and the pose of the first camera, the poses of other
cameras are also obtained.



Figure 5. Rotation axis estimation from target movement. A) A point p on
calibration target moves on a planar circular orbit with a normal vector n as
the target rotates. B) Use a new coordinate {L} that is parallel to normal
vector n to locate the world coordinate at the centre of orbit. Relative pose
is computed.

2.2.2. Estimation of axis and centre of rotation. Location
of the world coordinate system fixed to the rotation axis is
found in two steps (Fig. 5): (1) compute the normal vector
n of the plane containing the rotation orbit of the target’s
corners, and (2) fit a circle to find the centre of rotation o.
The normal vector and centre of rotation define the world
coordinates.

First, rotation axis is estimated from the rotational
motion of the chessboard target. From extrinsic parame-
ters [Rijk|tijk], the same chessboard corner T p is seen as
Kp = [Rijk|tijk]T p moving on a circular orbit as shown in
Fig. 5A. Note that the chessboard pattern and its positions
can only be detected in 1/4 to 1/3 of the number of target
images around the circular orbit. The equation of the orbit
plane is expressed as:

a(tx − xm) + b(ty − ym) + c(tz − zm) = 0 (6)

where [xm, ym, xm] is the centroid (or the mean) of all
positions Kp on the same orbit, and [a, b, c] is the normal
vector of the plane.

Equation (6) can be rewritten in matrix form Bn = 0
where n = [a, b, c] and B is a matrix containing chessboard
positions relative to the centroid of all the positions. Vector
n is an eigenvector corresponding to the smallest eigenvalue
obtained from Singular Value Decomposition of matrix B.

Second, to find the centre of rotation of the calibration
target, a different coordinate system {L} is used (Fig. 5B).
{L} is in fact equivalent to {K} with a rotation transforma-
tion LξK such that the y-axis is parallel to n. In {L}, a 2D
circle can be fitted onto the target point orbit and the centre
of rotation can be obtained. The relationship between {L}
and {K} with respect to {W} is:

LξW = LξK ⊗ KξW (7)

The transformation LξW has the form [Rω|0], where Rω
is a rotation matrix whose angle-axis rotation vector ωw =
[ωwx, ωwy, ωwz]

T can be obtained as:

ω = arctan

(
|n× y|
n · y

)
(8)

w =
n× y

|n× y|
(9)

Figure 6. Camera pose with respect to world coordinate system. A) Relative
poses of KξW and K′

ξW are obtained. B) Camera coordinate {K} moves
on a circle centre at {W} origin.

where ω is the rotation angle and w is a vector around which
the rotation is applied to turn n to y-axis y of {W}. The
bar denotes vector normalization.

Rω is computed from ωw by Rodrigues’ formula:

Rω = cosωI + (1− cosω)wwT + sinω[w]× (10)

After applying the rotation transformation Rω to target
positions, a circle can be fitted to [z, x]T coordinates by a
Linear Least-Squares algorithm [25]. This fitting gives the
centre of the orbit [x0, y0, z0]T , with y0 to be the averaged
y-component of the target point positions in {L} coordinate
system.

Now the world coordinate system is set at centre of
rotation o and with its axes parallel to those of {L}, the
transformation from {L} to {W} is:

LξW = [I|t0] (11)

where t0 = [x0, y0, z0]T . As a result, pose of camera K
relative to {W} can be expressed as:

KξW = KξL ⊗ LξW =
(
LξK

)−1 ⊗ LξW (12)

= [Rω|0]−1[I|t0] = [RTω |RTω t0] (13)

2.2.3. Estimation of camera poses relative to the world
coordinate system fixed to the turntable axis. Since the
pose KξW of the camera K at tilt position φj is obtained,
the pose of any additional camera K ′ relative to the world
coordinate system can be obtained from a given stereo
transformation KξK as shown in Fig. 6A:

K′
ξT = K′

ξK ⊗ KξW (14)

Similarly, the pose of the target relative to the world coor-
dinate system is expressed as:

T ξW = T ξK ⊗ KξW =
(
KξT

)−1 ⊗ KξW (15)

We are interested in the reverse transformation to obtain
target point position in the world coordinate system:

W ξT = W ξK ⊗ KξT =
(
KξW

)−1 ⊗ KξT (16)

= [Rijk|tijk]−1[RTω |RTω t0] (17)
= [RTijkR

T
ω |RTijkRTω t0 −RTijktijk] (18)

Since there are multiple estimates of W ξT for different
rotation angle θi, W ξT0 for zero rotation angle is obtained



by applying an inverse of the rotation to the corresponding
pose:

W ξT0 = [R−1θi |0]W ξT (19)

= [RTθiR
T
ijkR

T
ω |RTθi(R

T
ijkR

T
ω t0 −RTijktijk)](20)

where Rω is the matrix obtained from angle-axis rotation
vector (equation (10)), and R−1θi = RTθi .

Since the world coordinate systems and the target are
fixed, the camera coordinate system needs to move in a
circle around y axis of {W} to represent the correct relative
motion seen by the camera, as shown in Fig. 6B. The pose
of camera K for rotation angle θi is:

KθiξW = KξW [Rθi |0] = [RTωRθi |RTω t0] (21)

The pose of camera K ′ for rotation angle is :

K′θiξW = K′θiξW [Rθi |0] (22)
= [Rj,j+1R

T
ωRθi |Rj,j+1R

T
ω t0 + tj,j+1](23)

2.2.4. Optimisation to refine camera parameters. A non-
linear least-square optimisation is applied to refine estimates
of camera intrinsic parameters [f, cu, cv, d1, d2] and angle-
rotation vector and translation vector of camera pose KξW
and K′

ξW at different tilt angles, and target inverse pose
W ξT0. Optimisation seeks to minimize is the pixel distance
between projected target corners to camera and the corners
on the actual images.

Estimated position of chessboard corner relative to cam-
era K at rotation θi:

Kpestimated = KθiξW ⊗W ξT0 · T p (24)

A pinhole camera projection with radial distortion is applied
with equations (2), (3) and (4) to obtain corresponding
image point Iθipestimated. This is applied to other tilt posi-
tions and the second camera. The squared distance between
image projection Iθipestimated of estimated corners and their
detected image positions is minimised.

2.3. Background subtraction

Plants with large leaves can cast strong shadows, so
a simple image threshold will not completely remove the
background. We found that a shadow removal algorithm
based on static background proposed in [15] performs back-
ground removal for thin leaves more accurately and with less
computation than other techniques [26], [27], [28]. Here,
we extend the technique of [15] for LAB color space [29],
further improving background removal accuracy.

Suppose L(u, v), A(u, v) and B(u, v) are the luminance
and two color channels of the current image and L′(u, v),
A′(u, v) and B′(u, v) the corresponding image channels of
the background image. Three error functions applied to each
pixel position [u, v] are defined as follows:

∆(u, v) = |L(u, v)− L′(u, v)| (25)

Figure 7. Removal of background (left) from a plant image (middle) to
produce a silhouette image (right).

Θ(u, v) = |A(u, v)−A′(u, v)|+
|B(u, v)−B′(u, v)| (26)

Ψ(u, v) =

∣∣∣∣ L(u, v)

L(u+ 1, v)
− L′(u, v)

L′(u+ 1, v)

∣∣∣∣+∣∣∣∣ L(u, v)

L(u, v + 1)
− L′(u, v)

L′(u, v + 1)

∣∣∣∣ (27)

These error functions ∆(u, v), Θ(u, v) and Ψ(u, v) repre-
sent the differences in luminance, color and texture respec-
tively. An overall score is computed to determine a pixel as
foreground or background:

Ω(u, v) =
α∆(u, v) + βΘ(u, v) + γΨ(u, v)

α+ β + γ
(28)

where the values of α, β, γ are found empirically.
A threshold t is applied to Ω(u, v) to separate back-

ground and foreground. For our images, α = 0.1, β = 0.5,
γ = 0.4 and t = 5 to 10 were found to work well. Unlike
[15], our proposed technique allows for segmentation of
dark objects (such as the plant pots) and this is controlled
via coefficient α. Fig. 7 shows an example of background
removal using our proposed algorithm.

2.4. 3D reconstruction

2.4.1. Bounding box estimation. The bounding box of the
subject is obtained in two steps:

1) An initial 3D bounding box is estimated based on
silhouettes from the most horizontal camera view.
These silhouette images are overlapped/combined
into a single image and 2D bounding box is com-
puted (Fig. 8). The Y axis and the origin are
projected onto this overlapped image. The crossing
points of the projected axis with the 2D bounding
box are mapped back to the turntable axis in 3D
space to obtain ymin and ymax. The back projection
of the rectangle width to the world origin gives a
single magnitude for xmin, xmax, zmin and zmax.

2) A refined bounding box is calculated from a 3D
reconstruction at a low resolution (1283 voxels)
using the initial bounding box. This takes only a



Figure 8. Initial bounding box estimate from the overlapping of silhou-
ettes from horizontal camera. The vertical green centreline represents the
projected turntable axis.

few seconds to compute. Particularly, we found
that no thin parts of the plant are missing when
reconstructed at low resolution. As a result, the
refined bounding box tightly contains the 3D space
of the plant.

2.4.2. Volume reconstruction. In this work, the 3D plant
was reconstructed using a visual-hull volume carving ap-
proach. This method recovers sharp and thin structures
common to plants (although a major drawback is that it
cannot correctly recover concave surfaces, making recon-
structions of curved surfaces such as leaves thicker than
they should be). There may be plant movements induced
by air circulation or mechanical vibration which can be
accounted for by some tuning during reconstruction. The
reconstruction method consisted of 3 steps:

1) A 3D volume equal to the bounding box is gener-
ated and split into voxels. Each voxel is repeatedly
projected into the silhouettes and its 2D signed
distance to the nearest boundary of each silhouette
is calculated. If the distance is negative (outside)
in any of the silhouettes, the voxel is flagged as
empty. To accommodate some uncertainty in the
silhouettes and plant movements, a voxel is set
to be removed if it is outside more than a fixed
number of silhouettes (3 is chosen in this paper).
The process repeats until the end where remaining
voxels form a 3D hull model of plant. An octree
structure is used for voxel removal from lowest
resolution to the highest resolution [30], giving a
3X speedup as compared to processing all voxels
of a full resolution 3D volume.

2) Removal of pot and pot carrier. Since we are only
interested in the plant, the pot and pot carrier need
to be removed to simplify mesh analysis as well
as reduce the mesh size. One method is to subtract
voxels inside a given bounding tapered cylinder of
the pot and pot carrier. Fig. 9 shows the snapshot
of the mesh of one of the plastic plants before
and after pot subtraction. This needs to be done
before the 3D meshing step to produce a clean and
watertight mesh.

3) 3D meshing by marching cube from the remaining
voxels. A grid point is checked against 8 surround-
ing voxels. The value of the 8 surrounding voxels

Figure 9. 3D mesh reconstruction without and with pot and pot carrier
subtraction.

Figure 10. Left: snapshot of 3D leaf segmentation of the big plastic plant
to measure their geometry. Right: snapshot of the centreline extracted from
a single leaf to estimate the length. The width is calculated based on the
distance between the two extremities across this axis.

is matched with a 256-element lookup table to
determine if the grid is on or close to the mesh
so that a polygon can be created from this grid and
nearby grid points.

2.5. Mesh segmentation and geometry

Mesh segmentation algorithms involve assigning a
unique label to all the vertices of the 3D mesh that belong to
the same region. This paper uses a simplified version of the
“hybrid” segmentation pipeline previously presented in [3].
Primarily it is based around a constrained region-growing al-
gorithm. In short, the curvature and normal for the 3D mesh
were pre-computed. A user defined curvature threshold was
provided to find large “flat” regions (e.g., broad leaves) for
use as seed regions. A curvature-constrained region growing
was then performed from each seed region. The geometry
(area, width, length, and circumference) of each segmented
leaf was then extracted using the approach outlined in [3].
The result for large plastic plant is shown in Fig. 10.

3. Results

Fig. 11 shows reconstructions of different plants with
different complexity and leaf shapes. 3D meshes of plants
with thin and narrow leaves are reconstructed with excellent
geometric agreement, although there is a minor discrepancy
at the tips of the leaves. For visual comparison the pots are
included in this figure, however they are removed (as in Fig.
9) before geometry measurement.



Figure 11. Examples of 3D reconstruction of Wheat (Triticum aestivum)
(left columns) and Sorghum (Sorghum bicolor) (middle columns) at 5
weeks after sowing and plastic plants (right columns) using 360 im-
ages/plant. Color images are one of input images corrected for lens dis-
tortion. Grayscale images are rendering of the corresponding 3D models
from the same view.

Figure 12. Leaf sizes of the large plastic plants. The plastic plant has 4
leaves B, 2 leaves C and 6 leaves D. Circle A has an area of 10 cm2 and
diameter of 35.7mm to be used as reference.

The same plastic plants are also reconstructed twice with
different numbers of input images to see how this affects the
reconstruction quality. Without tilting the cameras, it took 3
minutes for two cameras to capture a total of 72 images, as
compared to 30 minutes to capture 360 images where the
two camera were moved to 5 tilt positions (taking half of
the total scanning time). A visual comparison (not shown in
paper) does not show obvious differences between the two
meshes of the same plant.

The leaves of the large plastic plant (bottom of Fig. 9)
were dissected and scanned to measure the length, width,
perimeter and area). There are 12 leaves grouped into 3
sizes shown in Fig. 12 and Tab. 1. Since the leaves mostly
curve along their length, the length measurement is likely
to be affected. For validation of the reconstruction accuracy,
the width of the leaves is chosen as this is less affected by
the curving.

A quantitative comparison between the two cases is
shown in Fig. 13A and B. The ground truth obtained
from the 2D scans of the dissected leaves (Fig. 12) was
graphed against the measurement obtained from the 3D
meshes of the plant. To fit into the plots, the values of
perimeter are scaled down half and the values of area are
root-squared. It can be seen that the measurements agree
quite well with the ground truth. The average relative error

ε = 1
N

N−1∑
i=0

|truthi−measurementi|
truthi

of the measurement is

4.0% for 72 images and 3.3% for 360 images:

TABLE 1. MANUAL LEAF MEASUREMENTS OF LARGE PLASTIC PLANT.

Leaf Length (mm) Width (mm) Perim. (mm) Area (mm2)

B 152.6 74.5 350.89 8535.6

C 186.9 96.6 436.16 13303.4

D 221.0 115.6 519.1 18868.0

4. Conclusion and discussion

We have presented a complete system for automatic
high-resolution 3D plant phenotyping. Several technical so-
lutions in camera calibration, image processing and 3D
reconstruction have been proposed for high accuracy of 3D
mesh models. Notably, we proposed a camera calibration
procedure that uses a standard chessboard calibration target
that is easy to make and use in production environment.
We also proposed an extension of foreground segmentation
to LAB color space for improved segmentation accuracy
for plants with thin leaves commonly found in major crop
plants.

The system captures high quality images with accurate
camera poses for image-based 3D reconstruction algorithm.
The quantitative measurements using 3D visual hull algo-
rithm provided an estimate of the accuracy of the whole
system in general. We showed that useful metrics such
as leaf width, length and area can be obtained with high
accuracy from the 3D mesh models. Fast scanning only
takes 3 minutes (72 images) per plant and still produces
a reasonable measurement (4% error). More images (360
images) per plant is required for better accuracy (3.3% error)
especially for complex plant structure, but requires 5 to 10
times more time to scan.

Future works include a calibration using both pan and
tilt axes so that camera pose can be obtained for an arbitrary
pair of pan-tilt rotation angles. This would enable a more
flexible scanning trajectory other than circular rotation with
fixed number of images per tilt angle.
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