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A Novel Quality Metric Using Spatiotemporal 

Correlational Data of Human Eye Maneuver 
 

Abstract— The popularly used subjective estimator- mean opinion 

score (MOS) is often biased by the testing environment, viewers 

mode, domain expertise, and many other factors that may actively 

influence on actual assessment. We therefore, devise a no-

reference subjective quality assessment metric by exploiting the 

nature of human eye browsing on videos. The participants’ eye-

tracker recorded gaze-data indicate more concentrated eye-

traversing approach for relatively better quality. We calculate the 

Length, Angle, Pupil-size, and Gaze-duration features from the 

recorded gaze trajectory. The content and resolution invariant 

operation is carried out prior to synthesizing them using an 

adaptive weighted function to develop a new quality metric using 

eye traversal (QMET). Tested results reveal that the quality 

evaluation carried out by QMET demonstrates a strong 

correlation with the most widely used peak signal-to-noise ratio 

(PSNR), structural similarity index (SSIM), and the MOS. 

Keywords— Eye-traversal, Eye-tracking, Gaze-trajectory, 

HEVC, MOS, QMET, Quality Assessment. 

I. INTRODUCTION  

Video quality evaluation (VQE) is a prominent research area 
due to its wide range of applications in the development of 
various video coding algorithms [1]-[3]. Usually the quality 
estimation is performed in two ways: objective and subjective 
where the former one is more widely used due to its simplicity, 
ease of use and having real-time applications. Thus, a good 
number of citable researches have been conducted based on the 
objective image quality estimation [4]-[7]. The quality 
estimation could be mainly categorized into full-reference (i.e. 
original videos as reference), reduced-reference (i.e. existing of 
partial signals as reference) and no-reference schemes. The no-
reference models become more challenging due to the lack of 
original reference signal to analyze [8]. Moreover, the 
applications of full-reference metrics such as SSIM or PSNR 
have been restricted to the reference based situations only. To 
overcome this limitation, a number of no-reference based 
research works have recently come into light for quality 
evaluation. Based on the principle of natural scene statistics 
(NSS), authors in [9] introduce a no-reference quality 
assessment method of contrast distorted images using 
unnaturalness characteristics and justifying the degree of 
deviation from the NSS models. The video quality prediction 
model using the discrete cosine transform is presented in [10] to 
analyze the statistics of compressed natural videos. The authors 
in [11] introduce a no-reference metric for quality assessment of 
contrast distorted image by analyzing and combining the local 
and global details of an image. These statistical metrics may not 
be suitable in some high quality range as quality perception in 
these area is mostly due to perceptual human visual system 

(HVS) features, rather than to the statistics of the image [12], 
however, different features of the HVS is not actively studied in 
the existing schemes. 

The authors in [13] carry out the human cognition based 
objective quality assessment system using the eye-tracking 
technology and evolve more realistic ground truth visual 
saliency model to improve their algorithm. Actually the eye-
tracking has become a non-intrusive, affordable, and easy-to-use 
tool in human behavior research today that allows to measure 
visual behavior as it objectively monitors where, when, and what 
people look at. With very few exceptions, anything with a visual 
component can be eye tracked not necessarily by using the 
tracking device itself, rather simply employing the software 
based eye-tracking simulator [14]. 

Unlike objective quality evaluation, the subjective one is 
impractical for some applications due to the human engagement 
in the process. However, it could yield valuable data to evaluate 
the performance of objective methods towards aiming the 
ultimate goal of matching human perception [15]. To this end, a 
number of quality assessment algorithms have been proposed 
which are closely related to the studies of human visual attention 
and cognition. Jia et al. [16] propose a no-reference model using 
blur and blockiness metric to improve the performance of 
objective model based on eye-tracker data. The authors in [17] 
introduce a model to judge the video quality on the basis of 
psychological merits including- the pupil dilation and 
electroencephalogram signalling. Since they test their scheme 
only for an arbitrarily nominated and degraded portion of a 
frame which limits their scheme for its further use. Albanesi et 
al. [18] use the eye data to create a voting algorithm to develop 
a no-reference method. Using the scan path of eye movements, 
Tsai et al. [19] subjectively assess the perceived image and its 
colour quality. Tested results prove that percipients tend to 
spend more time in evaluating the image with relatively 
improved quality. On the other side, the widely used subjective 
testing method- MOS [20][21] is often biased by the testing 
environment, viewers mode, expertise, domain knowledge, age 
range, and many other factors which may undesirably influence 
the effectiveness of actual quality assessment process. The 
authors in [22] although introduce the QMET, their initial work 
incur with the limitation of proper feature correlation setting and 
highly depends on user defined threshold for each feature. This 
work is a significantly amended version of their previous work 
where the included major extensions are- the increased number 
of features, their correlation analysis, performing content and 
resolution invariant operation, synthesizing them by a weighted 
function, comparing the new metric with PSNR, SSIM, and 
MOS, and eventually employing two estimators Pearson Linear 



Correlation Coefficient (PLCC) and the Spearman Rank-Order 
Correlation Coefficient (SRCC) [9] to justify the effectiveness 
of QMET for using it as an impressive substitute to the MOS. 

 

(a) Good quality contents of the 

BlowingBubbles sequence 

 

(b) Poor quality contents of the 

BlowingBubbles sequence 

 

(c) Created heat-map for image in (a) 

 

(d) created heat-map for image in (b) 

 

(e) Eye-traversal for good quality   

 

(f) Eye-traversal for poor quality  

 

(g) Nature of Pupil-size variation  

 

(h) Nature of Gaze-duration variation 

Fig. 1. More concentrated eye-traversing approach is perceived for relatively 

better quality contents (e.g. BlowingBubbles sequence image in (c) and (e)). 
The opposite is noticed in (d) and (f) for which the Pupil-size sharply increases 

in (g), while the Gaze-duration notably decreases as shown in (h). 

Let us first concentrate on the Fig. 1 in which (a) and (b) 
represent BlowingBubbles sequence having good and poor 
quality contents respectively, while (c) and (d) indicate their 
corresponding reproduced heat-maps generated by the eye 
tracker. As the heat-map inherently indicates the participants’ 
concentration by reproducing deep reddish region in the image, 
the eye browsing nature in (d) tents to be more scattered 
compared to the one in (c). This observations trigger us to further 
calculate each plot of eye tracker recorded spatiotemporal gaze 
data. Fig. 1 (e) and (f) therefore, demonstrate the eye traversing 
approach of a viewer for good and poor quality image contents 
respectively and the tracked gaze plots indicate more 
concentrated eye-traversal for relatively better quality contents. 
As the trend is observed for the whole n frames of a sequence, 
the spatiotemporal correlation of gaze plots are analyzed to 
develop the proposed QMET. The higher QMET score promise 
good quality video as the viewers could better capture its content 
information with smooth global browsing. 

Now if we determine Length (L) and Angle (A) features for 
each gaze plot, they could better inform about the viewers nature 
of browsing (i.e. smooth or random as indicated in Fig. 1 (e~f)). 
Since we also discover that the quality variation has an impact 
on both the Pupil-size (P) and Gaze-duration (T) variation 
presented in Fig. 1 (g~h), therefore, four cardinal features- L, A, 
P, and T are calculated for each potential gaze plot (PGP) from 
the gaze trajectory of the whole sequence. The PGPs in this test 
are defined by the fixations (i.e. visual gaze on a single location) 
and saccades (i.e. quick movement of eyes between two or more 
phases of fixations). Then we carry out content and resolution 
invariant operation on the features and adaptively synthesize 
them using a weighted function to develop a new metric-QMET. 
Experimental results reveal that the quality evaluation carried 
out by QMET has a good correlation to the HM recommended 
coding quality and the widely used PSNR, SSIM, and MOS. The 
proposed QMET is expected to use as an impressive substitute 
to the MOS in evaluating the objective metrics towards aiming 
the goal of matching human perception. Since the eye tracker 
data could be easily captured today by directly employing the 
software based eye-tracking simulator [14] (i.e. device itself is 
no longer required), the utility of the QMET could also be more 
flexible using such simple simulator generated data set. 

The remainder of this paper is organized as follows. Section 
II explicitly presents the key steps of the proposed 
implementation; Section III evaluates the tested results in detail, 
while Section IV concludes the paper. 

II. PROPOSED TECHNIQUE 

The first phase of the proposed quality metric design is to 
conduct the coding quality variation and five different segments 
preparation which is executed by employing the High Efficiency 
Video Coding (HEVC) [23] reference test model HM15.0 [24]. 
These quality varied videos were then watched by a group of ten 
participants, their eye-tracking data were analyzed using four 
quality correlation features (i.e. L, A,  P, and T), performed 
invariant operation on features, and synthesized them by an 
adaptive weighted function eventually to develop a new metric- 
QMET to recognize human perception and response to the video 
quality variation. The entire process is presented as a process 
diagram in Fig. 2 and the key steps are detailed in the following 
sub-sections.  

 

Fig. 2. Process diagram of the proposed technique. 

A. Data Capture And Pre-processing 

     Participants who were recruited from the University had 
normal or corrected-to-normal vision and did not suffer from 
any medical condition that might be adversely influenced by 



our project [ethical approval no. 2015/124]. A total of 15 people 
(including males and females) who were recruited fall within 
the 20-45 age band and were undergraduate/postgraduate 
students, PhD students, and lecturers of the University. The 
HEVC recommended eight class sequences were used in the 
test namely: Traffic (2560×1600- class A), Cactus (1920×1080-
class B), Tennis (1920×1080- class B), BasketballDrill 
(832×480- class C), BQMall (832×480- class C), 
Blowingbubbles (416×240- class D), Flowervase (416×240-  
class D), and FourPeople (1280×720- class E) (detail to be 
found in [25][26]). To avoid the biasness with color or contrast, 
initially we design experiment using the gray scale components 
only. We generate five different quality types of each video 
including Excellent (using quantization parameter QP=5), 
Good (QP=15), Fair (QP=25), Poor (QP=40), and Very-poor 
(QP=50). The video display order randomly varied for 
sequences. For example, if the visual display for Traffic was 
carried out in the order of Excellent to Very-poor, for the same 
participant, the display order for the next video Cactus was 
reversely designed from Very-poor to Excellent to avoid the 
participants’ biasness with content and quality in the 
experiment. Each segment was 30 seconds long and the 
segment gap was 3 second. Calibration and a trial run was 
performed so that the participants feel comfort about the whole 
process. Upon their satisfaction, the Tobii eye tracker [27][28] 
was employed to record their eye movements and the 
completion of whole process took about 30 minutes for each 
participant. As the device recorded data at 60HZ frequency and 
allocated frame rate was 30 (fps), each frame could 
accommodate two gaze points and a single whole video covered 
9000 gaze plots having 1800 for each quality segment. 

  

  

Fig. 3. The observed relationship between the features and the qualities. 

   

B. Correlation Analysis of Features 

The Length (L- in pixel) of ith PGP is calculated using the 
two dimensional Euclidean distance with respect to the (i+1)th 
gaze plot, while the Angle (A- in degree) of the ith plot is 
calculated by using the reference of its (i-1)th and (i+1)th values 
(where i={1,2,…,n} and the values of L and A are not calculated 
for the 1st and nth plots). The Pupil-size (P- in mm) and Gaze-
duration (T- in ms) on the other hand, are determined for each 
ith plot by averaging the values of left and right pupil size and 
the eye tracker recorded timestamp data respectively for all the 

sequences by employing MATLAB R2012a (MathWorks Inc, 
Massachusetts, USA). The overall calculated results indicate 
that L, A, P features have a proportional and T feature has an 
inverse proportional correlation with the video quality 
degradation as depicted in Fig. 3. However, it is observed by 
the authors in [18] that for relatively poor quality image, the 
participants tend to spend few more time for assessing quality 
that contradicts the outcomes presented in the bottom-right of 
Fig. 3. We also observe this mostly for the still images where 
people have enough leisure to spend more time to perceive a 
specific location. This, in turn, becomes impractical for videos 
since the frames move continuously that causes the continuous 
changes of object positions and does not allow the viewers to 
perceive the same scene even a few frames later. Thus, we 
interestingly notice that for the Very-poor quality video, the 
participants tend to spend rather less time on specific plots 
which is mostly due to appeared continuing unpleasant quality 
and the intention of the participants to look for better visibility. 

Now, we evaluate the contribution of each individual 
feature in terms of distinguishing different aspects of coded 
quality using dissimilar quality segment and observe that none 
of them discretely could be the best representative in terms of 
quality distinction. Since the human vision is not equally 
susceptible to different video contents and resolutions, we, 
therefore, carry out the content and resolution invariant 
operation (to be discussed in Section II-C) on the obtained 
feature values. Using the normalized data set for five sequences 
(i.e. one from each Class type), then we figure out a relationship 
of the features with video quality variation which is pictured in 
Fig. 4. To calculate the Q-score (i.e. the pre-processed score of 
the QMET) for L, A, P, and T, the equations (1)-(4) have been 
employed respectively where Q1, Q2, Q3, and Q4 denote the Q-
score for individual L, A, P, and T respectively which is better 
illustrated in Fig. 4.  

 
    𝑄1 = 𝐿𝛼𝐿                                                                     (1) 

    𝑄2 = 𝐴𝜑𝐴                                                                   (2) 

    𝑄3 = (𝑃/2)𝛽𝑃                                                            (3) 

    𝑄4 = √2𝑇
(𝜏/√2𝑇)

                                                        (4) 

In the equations, the symbols 𝛼 , 𝜑 ,  𝛽 , and 𝜏  denote the 

weighting factors of L, A, P, and T respectively. Let’s briefly 

discuss about the formation of equations to produce different 

Q-scores using the power law [29]. For example, the value 

change of L for each quality segment is not significant (e.g. 0.08 

for Excellent and 0.10 for Good as shown in Fig. 4 (a) and the 

maximum average does not exceed 0.60), it could be best 

represented by its power representation since smaller power 

with smaller base produces higher score. Thus, a clear score 

difference among different quality segments could be produced. 

The features A, and P also similarly works as L with power 

multiplication, however, since T has an inverse relation with Q-

score, the power division woks here in the same manner as 

presented in Fig. 4 (a)-(d). The rationality of using the Q-score 

is to predict a better picture of the QMET’s performance change 



for various changes of L, A, P, and T within a sizable format 

that ranges from 0 to 1. Fig. 4 (a) reveal that L itself is not 

always a good indicator in segregating different quality 

contents since it produces almost the similar score both for Poor 

and Very-poor quality segments. The similar picture could be 

noticed for A and P features in Fig. 4 (b) and (c) respectively. 

The T feature in (d) itself is relatively more consistent compared 

to others, however, if excessive eye blinking incurs with 

captured data, it indeed loses it suitability.  

 

(a) Q-score calculation for different values of L using equation (1)    

 

(b) Q-score calculation for different values of A using equation (2) 

 

(c) Q-score calculation for different values of P using equation (3) 

 

(d) Q-score calculation for different values of T using equation (4) 

Fig. 4. The individual contribution of Length, Angle, Pupil-size, and Gaze-

duration features in terms of segregating different quality segments. 

Since L, A, P, and T features could best advice about how far, 
how much, how large, and how long respectively both in the 
spatial and temporal domain, we synthesize them by developing 
an adaptive weighted cost function as equated by Q= 𝐿𝜕𝐿 ×

𝐴ⱷ𝐴 × (𝑃/2)ᵹ𝑃 × √2𝑇
(ℵ/√2𝑇)

. Using the feature values of Fig. 4, 
the obtained outcome of the synthesizing operation is 
demonstrated in Fig. 5 (a) which clearly indicates the 
distinguishing Q-scores for different qualities. As the 

normalized value of the features varies within the range 0 to 1 
and their manipulation in equation (1)-(4) also follow this range 
to yield the quality score, thus, their multiplication could better 
reproduce the ultimate result within the predefined limit. The 
distribution of other combination among features and weights 
might work better, however, the experimental results 
demonstrate a good correlation of QMET with other metrics. 
Note that the weight for 𝛼, 𝜑, 𝛽, and 𝜏 in the above equations 
(1)-(4) is fixed with 0.5 in the experiment and the rationality of 
selecting 0.5 is further validated in Fig. 5 (b). According to the 
proposed implementation, the quality degradation is inversely 
proportional to the obtained Q-score. Therefore, we further 
calculate the slope at each point changing the quality (i.e. 
Excellent, Good, and so on) and determine their average for 
each individual weight used in Fig. 5 (b). Since the calculated 
average using weight 0.5 outperforms the other weight 
combinations, we fix it for the entire experiment.  

 
(a) Combined contribution of L, A, P, and T features in terms of segregating 

different quality segments 

 

(b) Justification of different weights and selection of 0.5 for the combined 

feature generated graph in (a)   

Fig. 5. The effectiveness of synthesizing the correlation of L, A, P, and T to 

best represent the distinguishing quality scores for varied quality segments 
using the weighting factor 0.5 for which the average slope value is the highest. 

C.  Invariant Operation on Features 

Let’s first ponder the unprocessed L in Fig. 6 (a~b) and 
calculate 61.96% and 52.57% variations (using highest and 
lowest values) according to the contents and resolutions 
respectively. The content invariant operation is thus first 
performed to neutralize the impact of contents to human vision 
that follows a number of steps: 

 
(a) Content based 

 
(b) Resolution based 

Fig. 6. The video content and resolution based unprocessed Length. 



First, we calculate the L of PGPs as mentioned in Section- II-B; 
Second, figure out the average of PGP(x) and PGP(y) and entitle 
them the centre C(x,y); Third, with respect to C(x,y), we 
estimate the two dimensional Euclidean distance of all PGPs 
and sort the calculated values of length by lowest to the highest 
order; Fourth, to determine the object motion area according to 
the best viewing strategy, we take the average of first 75% sorted 
values which is the foreseen radius of captured affective region; 
Fifth, the radius is then employed as a divisor of the calculated 
lengths for each PGP in the First step.  

TABLE I. EFFECT OF CONTENT + RESOLUTION INVARIANT OPERATION ON 

LENGTH WHICH IS EMPLOYED FOR EVENTUAL QMET SCORING. 

Resolution 
 

Multiplication 
factor for 
resolution 
invariant 
operation 

Previous 
variations 

Present 
variation 

Content 
based 

Resolution 
based 

After content 
plus resolution 

invariant 
operation 

2560×1600 0.65 

61.96 % 52.57 % 10.67 % 
1920×1080 0.75 

1280×720 1.00 

832×480 1.25 

416×240 1.75 
 

Since we also observe its stunning variations for different 
resolutions in Fig. 6 (b), therefore, to execute the resolution 
invariant operation, we exploit a number of multiplication 
factors as inserted in the second column of TABLE I. The 
rationality of employing such multiplication factors is to best 
neutralize the impact of various size display resolutions 
appeared on the screen. For example, before the resolution 
invariant operation, the variation between (2560×1600), and 
(416×240) resolution based sequences was 62.16%, however, 
applying the multipliers in TABLE I, variation now downs to 
12.5%. Moreover, almost for all the sequences since the eye 
tracker recorded data shows a good correlation among the 
highest to the lowest resolution videos, the multipliers could 
perform well in resolution invariant operation. The outcomes 
then turn into the normalized values ranging within 0 to 1. The 
third column of TABLE I shows the previous variations for all 
sequences, while the fourth column reveals that the content plus 
resolution invariant operation could reduce the average variation 
down to only 10.67%. The resultant effect is revealed in the top-
left of Fig. 7 for the feature L and once the similar operations are 
performed on the features A, P and T, the variation effects could 
be significantly minimized as illustrated in the top-right, bottom-
left and bottom-right respectively as demonstrated in Fig. 7. 

  

  

Fig. 7. The content plus resolution invariant normalized L, A, P, and T features. 

D. The Development of QMET 

According to the hypothesis of the proposed algorithm, if 
relatively lower values of L, A, P and higher values of T belong 
to a PGP, it should produce higher value of QMET. Thus, the 
QMET is calculated for all PGPs of each segment (i.e. Excellent, 
Good, Fair, Poor, and Very-poor) of a sequence by adaptively 
synthesizing the features as follows: 

𝑄𝑀𝐸𝑇 = 𝐿𝛼𝐿 × 𝐴𝜑𝐴 × (𝑃/2)𝛽𝑃 × √2𝑇
(𝜏/√2𝑇)

                   (5) 
  

where the associated weighted values of L, A, P, and T denoted 
by α, φ, β, and τ respectively are fixed with 0.5 in this 
experiment. The rationality of this multiplication is to keep a 
consistent relation of L, A, P, and T features with the previously 
reproduced Q-score. As the normalized value of the features 
varies within the range 0 to 1 and their manipulation in equation 
(1) - (4) also follow this range to yield the quality score, thus, 
their multiplication could better reproduce the ultimate result 
within the predefined limit. The distribution of other 
combination among features and weights might work better, 
however, the experimental results demonstrate a good 
correlation of QMET with other metrics. In an unusual case, if 
the normalized values of L and A become 0 for 30 consecutive 
frames (as the frame rate is kept 30 in this test), then a mimicking 
operation is performed. The reason of allocating such operation 
is due to handling the consecutive 0s that may incur with the 
intentional eye fixation of participants to a certain PGP. Thus, 
the user data which have got stack over the frames are forcefully 
panelized by arbitrarily setting the value of L=0.1 and A = 0.1. 
This operation is applicable only for the features L and A since 
P and T are still !=0 then. Note that during the whole experiment, 
we did not experience such unusual situation. If the QMET 
evaluated quality scores are closer to 1, the video content quality 
is rated best, while, the opposite happens for scores closer to 0. 

III. EXPERIMENTAL RESULTS 

The QMET evaluated minimum and maximum scores for 

each segment of quality using all videos are presented in Fig. 8 

while, their counted average score indicate it’s quality 

segregation proficiency for varied qualities. The calculated 

score for the Excellent quality segment is 0.79 which gradually 

decreases with quality degradation and reach 0.27 for Very-poor 

quality contents once we calculate the average score of Max and 

Min for each quality segment. Thus we find a clear score 

declining pattern from Excellent to Very-poor quality contents.  

 

Fig. 8. The maximum (Max) to minimum (Min) QMET score for each quality 

segment showing the score degradation from Excellent to Very-poor. 



In Fig. 9, the PSNR and SSIM evaluated best quality video-

set (i.e. highest, second-highest and third-highest scorer) for the 

Excellent segment include [Flowervase, Basketball, BQMall] 

and [Tennis, FourPeople, Flowervase] respectively. 

Conversely, for the same segment, the QMET and MOS picked 

sets include [Basketball, Flowervase, Tennis], and [BQMall, 

Fourpeople, Flowervase] respectively. The Flowervase 

sequence is common in the highest scoring list of all the metrics.    

 

(a) PSNR evaluated quality score 

 

(b) SSIM evaluated quality score 

 

(c) QMET evaluated quality score 

 

(d) MOS evaluated quality score 

Fig. 9. The PSNR, SSIM, QMET, and MOS scores for Excellent and Very-

poor. These two graphs could best segregate the best and worst quality. 

In contrast, for the Very-poor quality segment, major 

dissimilarity could be found for the Tennis as it obtains the 

lowest score according to the PSNR, QMET, and MOS’s 

assessment criteria, however, the SSIM scores it highest. This is 

possibly the SSIM is a perception-based model that considers 

degradation in an image mainly by recognizing the change in 

structural information. Interestingly, similarity among four 

metrics could be noticed for the Traffic sequence as it is assessed 

one of the lower scorers by all these metrics. The proposed 

QMET could obtain the highest and lowest score 0.82 and 0.26 

for the Excellent and Very-poor quality segment respectively. 

This stunning difference is because the participants could better 

capture information from the best quality contents with smooth 

global browsing. However, for Very-poor segment, participants 

perhaps watch the video with a trial and error basis; i.e. try to 

capture content information but do not succeed due do its 

unpleasant quality and then immediately move to the next but 

still erroneous. As the number of such hits and miss browsing 

sharply increases with time, the quality score also decreases as 

plenty of inappropriate feature values incur with the scoring 

process. Thus, a sequence having really Poor~Very-poor 

quality, it is very unlikely to acquire higher score using QMET. 

Fig. 10 (a~d) illustrate the PSNR, SSIM, QMET, and MOS 

evaluated average scores obtained for all videos using two 

quality segments (i.e. Excellent and Very-poor). The calculated 

percentage of variation between the highest and lowest score 

using four metrics are 54.89, 33.07, 58.16, and 49.83 

respectively which indicate the QMET could best segregate the 

best and worst quality contents as shown in Fig. 10 (e). The four 

metrics estimated maximum variations i.e. the calculated 

difference between the highest score of Excellent quality and the 

lowest score of Very-poor quality are further shown in Fig. 10 

(f) in which the MOS tends to obtaining the highest score which 

is mostly because of inserting the arbitrary score of the 

participants for both Excellent and Very-poor quality contents. 

  

  

  

Fig. 10. In the Figure, (a~d) reveal the PSNR, SSIM, QMET, and MOS 

induced average values for the Excellent and Very-poor quality segment; (e) 

indicates the four metrics estimated average percentage of variation between 
the best and worst quality; while (f) points to the maximum achievable 

difference (e.g. the difference between the highest score of Excellent quality 

and the lowest score of Very-poor quality) obtained by the metrics. 



The quality variation recognition score for all individual 

sequence is further discussed in Fig. 11 as we use a wide range 

of video contents and resolutions. We observe in Fig. 11 that the 

QMET could recognize its maximum quality variation for the 

Tennis sequence. This is because the participants could better 

capture the information from its Excellent quality segment with 

smooth global browsing. However, for its Very-poor quality 

segment, the participants’ distorted pattern of browsing produce 

imperfect feature values and device poor score that eventually 

results in a higher score difference. The opposite happens for the 

Basketball or Flowervase because of relatively higher and 

continuing correlation among the aforementioned quality 

segments. Unlike SSIM, PSNR, QMET, the MOS perform in a 

similar fashion over all sequences shown in Fig. 11. 

 

Fig. 11. The PSNR, SSIM, QMET, and MOS estimated percentage of quality 

variation using all the Class sequences used in this experiment. 

Now, two interesting observations: first, if different video 

contents are coded using the same QP (e.g. 5 for Excellent), the 

produced scores should not have a stunning variations. 

However, the PSNR could not follow this trend and for most of 

the quality segments, its variation goes the highest as revealed 

in Fig. 12. Interestingly, for the Fair and Poor quality, the 

participants perhaps provide some unusually perceived arbitrary 

score for which the MOS loses its suitability in this regard. This 

is also an example that mandates the development of another 

human perception based metric that could opt for relatively 

fairer scoring. Although the QMET performs better than PSNR 

and MOS, the SSIM appears most stable in this regard.  

 

Fig. 12. The obtained score using the PSNR, SSIM, QMET, and MOS when 
videos are coded for the same segment of quality. For each segment, lower the 

percentage of variation, better the metric is presumed. 

About the second observation, while using the same sequence 

coded with a range of QPs, due to its different quality variations, 

the score variations should be prominent as well. Although the 

QMET proves analogous results with the PSNR, it outperforms 

the SSIM and MOS in most cases as presented in Fig. 13. The 

results in the Figure come from averaging the calculated score 

of all the Class sequences used for experiment.  

 

Fig. 13. The PSNR, SSIM, QMET, and MOS recognized percentage of quality 
variation due to the varied ranges of qualities. The higher differences obtained 

at segments [X~Y] indicate relatively better recognition capability of a metric. 

The performance of the proposed QMET is further compared 

with the PSNR, SSIM, and MOS by employing two frequently 

used performance estimators: PLCC and the SRCC. A good 

quality is expected to achieve high values in both PLCC and 

SRCC [9]. First, the PLCC score of four metrics are calculated 

according to the sequences and the corresponding scores 

obtained for each one are reported in TABLE II. Almost in all 

cases, the QMET demonstrates inferior performance compared 

to the PSNR, however, it could outperform both the SSIM and 

MOS for most of the sequences reported in in TABLE II. 

TABLE II. AVERAGE PERFORMANCE OF FOUR METRICS ACCORDING TO 

THE EVALUATION CRITERIA OF PLCC. 

Sequences 
PLCC 

PSNR SSIM  QMET    MOS 

Traffic 0.73 0.61 0.57 0.56 

Cactus 0.56 0.59 0.61 0.60 

Tennis 0.71 0.67 0.66 0.61 

Fourpeople 0.59 0.69 0.65 0.68 

Basketball 0.77 0.62 0.71 0.63 

BQMall 0.79 0.55 0.69 0.64 

B.Bubble 0.69 0.53 0.58 0.61 

Flowervase 0.73 0.68 0.68 0.65 

Average 0.69 0.61 0.64 0.62 
 

Similarly, we also calculate the result using SRCC and the 

produced overall average gain is summarized in TABLE III. In 

terms of both PLCC and SRCC’s assessment criteria, the QMET 

reveal relatively improved performance compared to the SSIM 

and MOS, however, the PSNR is a clear winner as it obtains the 

highest score in both cases. In fact, the obtained results of the 

proposed approach are promising given the fact that no 

information about the reference image is available to the QMET 

for evaluating quality. Since the scoring pattern of four metrics 

are approximately similar in terms of distinguishing different 

quality contents as illustrated in Fig. 11, Fig. 12, Fig. 13, 

TABLE II, and TABLE III, the proposed QMET could be well 

represented as a new member of the quality metric family and 

successfully employed as an impressive alternative to the 

subjective estimator MOS. Since the proposed QMET is entirely 

the human cognition based metric and the participants have 

almost no scope to actively manipulate the score, its assessment 

process is relatively more neutral compared to the MOS. 



TABLE III. AVERAGE PERFORMANCE OF FOUR METRICS ACCORDING TO 

BOTH PLCC AND SRCC’S EVALUATION CRITERIA. 

Quality metrics PLCC SRCC 

PSNR 0.69 0.71 

SSIM 0.61 0.58 

QMET 0.64 0.61 

MOS 0.62 0.60 
 

 

IV. CONCLUSION 

In this work, we introduce a novel no-reference subjective 

quality assessment metric that could be an impressive substitute 

to the popularly used subjective estimator MOS for quality 

evaluation and comparison. We simply exploit the human eye 

traversal on videos and discover the patterns of Length, Angle, 

Pupil-size, and the Gaze-duration features from the recorded 

gaze trajectory. The content and resolution invariant operation 

is carried out prior to synthesizing them using weighted 

function to develop a new quality metric- QMET. Tested 

analysis reveal a good correlation of QMET with the widely 

used PSNR and SSIM, while in most cases it performs 

relatively better than the MOS in terms assessing different 

aspects of coded video quality. Since the eye tracker data could 

be easily captured today by directly employing the software 

based eye-tracking simulator (i.e. device itself is no longer 

required), the utility of the newly developed metric could also 

be more flexible on such simple simulator generated data set. 

Other than the video coding applications, the QMET could be 

also applied in classroom education such as written program 

evaluations. For instance, a highly organized program (written 

in any programming language) could be anticipated having 

higher QMET score compared to the poorly organized one. 
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