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Abstract—Recently, many works have been published for 

counting people. However, when being applied to real-world train 

station videos, they have exposed many limitations due to 

problems such as low resolution, heavy occlusion, various density 

levels and perspective distortions. In this paper, following the 

recent trend of regression-based density estimation, we present a 

linear regression approach based on local Random Forests for 

counting either standing or moving people on station platforms. 

By dividing each frame into sub-windows and extracting features 

with ground truth densities as well as learned weights, we perform 

a linear transformation for counting people to overcome the 

perspective problems of the existing patch-based approaches. We 

present improvements against several recent baselines on the 

UCSD dataset and a dataset of CCTV videos taken from a train 

station. We also show improvements in speed compared with the 

state-of-the-art models based on detection and Deep Learning. 

Keywords—Density estimation; crowd counting; Random 

Forest; linear regression 

I.  INTRODUCTION  

 Crowd counting and density estimation has become one of 

the most challenging tasks in intelligent visual surveillance 

systems. Automated crowd counting and density estimation 

plays an essential role in many real-world applications such as 

estimating people in public places, counting various objects 

(e.g., trees, cars or cells), as well as measuring the dynamic 

crowd to control overcrowd disasters and understanding crowd 

behavior. Therefore, the analysis of crowd size and crowd 

behaviors has been a topic of great interests in computer vision 

research community. Recently published works [1-7] show that 

crowd counting may have already been reasonably addressed. 

However, when being applied to some real-world scenarios such 

as train station CCTV videos (see Fig. 1, for  example), the 

performance of existing solutions have dropped significantly. 

We have observed that some real-world problems are the 

contributors, including low resolution of images/video, heavy 

occlusion of subjects, diverse crowd densities, various people’s 

sizes, unusual situations in large scale, time-consuming 

computation of adopting complex network models, etc. In one 

word, existing solutions are not sufficient to handle these real-

world problems.  

 

Fig. 1. Counting people based on crowd density estimation. 

Among various existing solutions, during the past two or three 

years, there have been several influential publications [15, 26, 

28] adopting Deep Learning techniques for crowd density 

estimation. In this paper, in order to address the above 

mentioned problems, we propose a regression-based density 

estimation approach without having to use the resource-

expensive Deep Learning techniques. The main innovation and 

difference between our approach and the existing regression-

based approaches is that we use weighted Local Random Forests 

for a linear regression, of which the performance has 

demonstrated to outperform the-state-of-the-arts. The main 

contributions of this paper are listed as follows. 

• We propose to count people with high accuracies in 

public CCTV scenes such as a train station based on 

crowd density estimation, as shown in Fig 1.  

• Our model is learned with a simple linear regression 

based on weighted and Local Random Forests for 

estimating crowd density in a frame, and avoids the 

tasks of people detection, as well as gathering huge 

learned data for learning deep networks.  

• Unlike the existing methods, our method can estimate 

the count of people accurately without going through a 

complex computation. 

• Instead of using features based on randomly selected 

patches, which are time consuming to use and have 

perspective problems, we divide each image into fixed 

sub-windows. 



 Our goal is to estimate the density of crowd on a platform no 

matter if they are moving or not, and then estimate the total count 

by integrating the estimated densities over the whole frame. 

Given a set of training images in different situations such as high 

density, medium density and low density, our regression model 

based on Local Random Forests is learned. The best match 

between the estimated density function for the training images 

and the ground truth densities are learned. Then, we estimate the 

count in testing images as a summation of learned Local 

Random Forests with learned weights. Our experimental results 

show its effectiveness especially in the scenes where people 

have overlapping. 

 The rest of the paper is organized as follows. We first discuss 
related works in Section II. Section III describes our model 
based on Local Random Forests. Section IV introduces the 
datasets and presents experimental results. The paper concludes 
in Section V. 

II. RELATED WORKS  

 

 In general, the existing people/crowd counting approaches 

can be grouped into two broad categories [1]: direct and indirect. 

 The direct approaches, based on human detection, rely on 

detecting each person (either the whole body or head-shoulder) 

in the scene using various classifiers and then counting them [3-

5]. In these approaches, counting people can be modeled at a 

global scene level as well as correctly segmented scene level. 

With the advance and success in human detection, counting 

people becomes a by-product once each individual is correctly 

detected. The features that may be used include body, head, 

shoulder, skin, and hair [9, 10]. The benefit of these approaches 

is that they have a high level of accuracy. However, for the 

situations with highly dense crowd (such as stadium) where 

there are heavy people overlapping and occlusion [5], detecting 

individuals can become very difficult and not applicable when 

there are more crowed people with overlapping or low resolution 

of images. Therefore, detection-based approaches become 

helpless and are not suitable for large crowds. Such detection 

problems can be addressed using a head-only detector. Some of 

detection-based approaches by using human shapes attempt to 

segment or detect every single person and then count them [11]. 

Nevertheless, some other detection-based approaches try to 

detect each independent motion in the image via clustering 

interest points on people tracked spanning time and then count 

the people [10, 12-16]. 

 Indirect approaches are based on detecting features and map 

them onto the count value instead of detecting individuals. It 

seems more logical. Many features of images have been used 

such as foreground areas [7] and texture features [2]. These 

approaches include edge counting and regression-based crowd 

density estimation. One advantage of these approaches is that 

they can be scaled to high-density scenes. When handling highly 

crowded scenes, indirect, regression-based or feature-based 

approaches are considered to be more powerful and robust, and 

therefore have become dominant. In these approaches, counting 

people is equivalent to density estimation and the integral over 

the whole frame/image produces the total estimated count. 

Density is provided by extracting some features using a learning 

algorithm or through a statistical analysis on an entire image [6-

8]. These approaches have a problem of handling significant 

perspective distortions. Some techniques have been presented in 

the literature to deal with the perspective problem, e.g., a 

geometric correction to conduct all the objects at different 

distances to the same scale [17]. 

 Counting by Regression: In [18] the authors 

presented a simple model like a regression model for counting 

objects such as people and cells. They used Maximum Excess 

over Sub Arrays (MESA) distance and used Random Forest for 

creating their codebook. In this paper, we improve the learning 

step via a weighted regression based on Local Random Forests 

for getting more accurate results. Chen et al. [19, 20],  for 

counting objects, performed a regression based on the low-level 

imagery features. The authors of [20] used a ridge regression, 

and their inputs are local features from local regions and their 

output is the count of people. The authors of [19] presented the 

concept of cumulative attribute for regression and solved the 

problems of feature inconsistency and sparse data. In their work, 

by defining a set of training images, they extracted low-level 

features of images, and the numeric output value such as people 

count is converted into a binary cumulative attribute vector. 

Then, the cumulative attribute vector is provided into a single 

output regression model to estimate the output value as 

numerical. Loy et al [21] used semi-supervised learning for 

regression model. 

 

Using Random Forests: Pham et al. [22] and Fiaschi 

et al. [23] used Random Forest regressions and non-linear 

models  based on patch features for prediction by majority 

voting. Using image patches in the learning step has shown its 

strength but it also has some limitations. For example, in the 

situations where the video frames being investigated do not have 

enough resolution, the accuracies of these approaches are very 

limited. Furthermore, a patch is a sliding window and it is 

selected randomly.  

In this paper, we replace the randomly selected patches 

by fixed sub-windows. The sub-windows are divided from a 

frame and used to extract dense SIFT [27] features. Then, we 

used a linear regression in our approach to achieve better results. 

III. THE PROPOSED APPROACH 

 Fig. 2 shows the framework of our approach with the 
example of a crowded scene on a train station. The goal of the 
proposed system is to count the number of passengers,  

 



Fig. 2.    The framework of our approach with input images, learning step and testing step.  

 

Including moving and standing people in each platform. Input 

of this system includes the extracted features of raw images that 

are divided to N sub-windows (in our work N = 8), annotated 

images and a codebook. After a learning step using a weighted 

and Local Random Forest for each sub-window, we can 

estimate the number of people based on a summation, using a 

linear function for the weighed and Local Random Forests in 

the testing step. The details of our approach are illustrated in the 

following subsections. 

 

A. Learning Decision Tree  

 

       Given a set of � training images, denoted as   ��  ��1,2 … � , with annotations, where each annotation is one 

pixel of dot located at the center of each passenger. Note that, 

an annotation is to specify the position of a person by putting a 

single dot on the person (roughly the center of the head; known 

as “dotting”) in each frame of video, and it is easier than the 

bounding-box annotation. Dotting is a convenient and less 

difficult way for humans to count objects compared with other 

methods such as using a bounding box, especially when the 

number of objects in images is large. The density function is 

integrated over the whole image region to create the object 

count. The ground truth density function for each pixel � � ��   is 
defined as a kernel density estimation function centered at the 

annotated dots: 

  �
��� = � ���; �, ���,      ��� .                      �1� 

 

    Here, A is a set of annotated pixels and ���; �, ��� shows a 

2D Gaussian kernel generated on each dot ��� with a small 

variance � �in our work, � = 2.5 pixels), which is a 

smoothness parameter. Note that the results obtained do not very 

much rely on the setting of � and also when we normalize the 

base functions, the total number of objects in an image can be 

computed by Eq. (1). Given a set of training images together 

with their ground truth densities presented in Eq. (1), we first 

divide each frame to � sub-windows, and then extract the scale-

invariant feature transform (SIFT) features on each sub-window 

and learn a decision tree F to project the features ! ∈ #$×& to a 

density map ' ∈ [0,1]$×&, where ℎ and , denote the height and 

width of each sub-window, respectively. The count of pedesitran - of each sub-window, can be obtained via performing the 

intergral operation over ': 

 

- = � � '�.
&

./0
$

�/0  .                                          �2� 

As shown in Fig. 3, we estimate the density map of the testing 

frames based on the ground truth densities and the extracted 

features. 

 

B. Building Local Random Forests 

     The robustness of a decision tree can be further improved by 

assembling multiple decision trees into a Random Forest. More 

specifically, a Random Forest is a mixture of decision trees such 

that each tree relies on the values of a random vector sampled 

separately and with the same scattering, for all trees in the 

forest. 



 
Fig. 3.   Estimate the density function based on ground truth densities and extracted features. 

 

As shown in Fig 4, a Random Forest regression is organized by 

developing trees relying on the associates of  sequential 

predictions with various inputs. We learn a Local Random 

Forest for each sub-window via an approach similar to [22].  

That is, we first extract the dense SIFT features for each sub-

window. After that, we build the trees on a randomized subset 

of the training examples belonging to the same sub-window. 

The learning step proceeds repetitively, by splitting the training 

samples set 12, appearing at a node 3, into a left and right 

subsets 14 , 15. In the test phase, we choose the split point with 

threshold value τ similar to that in [3]: 

16 = 7� ∈ 71, … , |1|}|:�!�� < 3}                          �3� 15 =  1\16. 
 

Here, 1 denotes the set of test instances and |1| denotes the 

cardinality of  1. Note that our method differs from 

conventional methods that our Random Forests are defined on 

the sub-window level (local). The local property of our method 

is vital for tackling the counting problem, since in real-life 

applications the density levels of patches in the same frame can 

vary dramatically. Conventional methods neglect that and 

attempt to tackle the counting problem via a single model, thus 

suffer from the problem of inconsistency of features.  

C. Prediction step 

     In this section, we illustrate how to predict the number of 

people using a Local Random Forest regression in our approach. 

In comparison to the ordinary Random Forest, after the training 

process, we propose to use the linear combination of counts in 

sub-windows, to estimate the total count of people. 

> = � -?,?
@

?/0 .                                    �4� 

Here, ,? is the weight of the B-th sub-window and is learned 

by minimizing the distance between the predicted numbers and 

ground-truth numbers on the training sets.  

Fig. 4.   The structure of our Local Random Forestd for density map estimation.



 

Fig. 5.  A sample frame from the UCSD dataset and the ground truth. 

D. Creating codebook 

    For the purpose of getting better result and also saving time, 

we create a bag of features of training samples, instead of using 

dense SIFT features directly. We perform K-Means on the 

training images to generate a codebook consisting of C terms. 

Then, the features of each sub-window are represented by the 

frequencies of the individual terms in the codebook. In this way, 

we convert the original high dimensional dense SIFT features 

into a feature vector of length C. Consequently, by using this 

codebook, we can easily save time and by creating codebook 

for one time it is possible to compare it with input features 

quickly. 

I. EXPERIMENTS 

 In order to demonstrate the effectiveness of our proposed 

idea, we tested our approach on the widely used UCSD dataset 

[2], and our own Train Station dataset. Figs. 5 & 6 give the 

typical examples of each dataset. In this section, we present the 

detailed experiments and comparative results. 

A. Datasets 

We conducted experiments on two different datasets. Table 1 

provides some information about the two datasets. 

 The UCSD Dataset: In order to compare our algorithm with 

the state-of-the-art approaches, we firstly ran experiments on 

the widely adopted UCSD dataset. The authors of [2] also 

published their annotated images for those frames, the positions 

of the annotation, and the regions of interests.  

TABLE 1: DETAILS OF THE TWO DATASETS USED IN OUR EXPERIMENTS 

Dataset # of 

Frames 

Resolution FPS Count 

per 

Frame 

Total 

Counts 

UCSD 

 

2000 238*158 10  11- 46 49885 

Train 

station 

2000 256*256 4 1-53 62581 

 

 An example frame of this dataset and its ground truth density 

heat map obtained using our method (as shown in Eq. 1) are 

shown in Fig. 5. In our experiment, we selected 2000 fames from 

a relatively busy pedestrian street and used 400 frames for 

training with the rest for testing. 

Train Station Dataset: In addition to the UCSD, we conducted 

comparative experiments on our own train station data, 

comprising real CCTV surveillance video footages from a train 

station. Note that, due to public privacy concerns, the train 

station data cannot be made publicly available. The details of the 

dataset are also shown in Table 1. Fig. 6 shows two example 

frames from this dataset and their estimated density heat maps 

using our approach. 

 As Fig. 6 shows, this dataset is very challenging because of 

the following three reasons: 1) due to the high compression ratio 

applied, the resolution of the video is very limited, which results 

in that much of the subjects’ details, especially at a certain 

distance away, are unable to be recognized by human eyes; 2) 

the mounting angle of the surveillance camera results in there is 

heavy occlusion among most of the people, not to mention 

various obstacles that block the camera view; and 3) in different 

times of day, passengers of significantly different density may 

appear on the platforms, moving or still. 

 Similarly, we selected 2000 frames video of different camera 

views of the train station and annotated some of them as ground 

truth in order to compare the estimated count generated using 

our algorithm with the true count. We used 500 frames for 

learning. However, note that the initial 500 frames contain 

different situations including high density, medium density and 

low density. A region-of-interest (ROI) was selected for the 

platform only where there are passengers either standing or 

moving. Moreover, we proposed to address the problem of 

perspective distortion using sub-windows instead of image 

patches, as shown in Eq. (5). Comparative results of heat maps 

obtained on the train station dataset using our approach in 

different situations are shown in Fig. 6.  

B. Evaluation Metrics 

In order to quantitatively measure and compare the 

performance of various approaches, two metrics, i.e., the mean 

absolute error (MAE) and the mean squared error (MSE), which 

have been widely used in literature, were adopted. These two 

metrics are defined as below: 

��D = 1� � |E�– Ê�|@
0 , �1D = H1� ��E�– Ê���@

0   .            �6� 
 

Here, � is the number of testing images, E�  is the true count of 

people in the �J$ image, and Ê�  is the estimated number of people 

in the �J$ image. From their definitions, MAE also indicates the 

accuracy of the estimations, and MSE represents the robustness 

of the estimations. 

 

 



TABLE 2: COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON 

THE UCSD DATASET 

Methods MAE MSE 

Ridge Regression [20] 2.25 7.82 

Gaussian Process Regression [2] 2.24 7.97 

Cumulative Attribute Regression [19] 2.07 6.86 

Our Method 1.89 3.19 

C. Comparing with the state-of-the-art 

The comparative experimental results are presented in Table 2 

in comparison with the existing approaches on the UCSD 

dataset, where existing approaches’ results are directly cited 

from their publications. As can be seen from this table, 

compared with other regression-based methods, our approach 

has achieved the best accuracy. 

 

For Train Station dataset, we compare the results obtained 

using our approach with two other approaches implemented by 

ourselves, i.e., Lempitsky et al. [18] and Fiaschi et al. [23], as 

shown in Table 3. As shown in this table, our method is faster 

and more accurate than the other two methods. 

 

TABLE 3: COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON 

THE TRAIN STATION DATASET. 

Method MAE MSE Runtime 

Regression based [23] 2.57 3.25 82ms 

Lempitsky et al. [18] 2.11 2.51 57ms 

Our Method 1.67 1.86 41ms 

 

      From the above results, we can see that, our proposed 

approach has demonstrated promising results in real-world low-

resolution video of various densities and significant perspective 

distortion and occlusion. 

 

  

II. CONCLUSION 

      In this paper, we have presented an improved, regression-

based approach for crowd counting in low-resolution 

surveillance public spaces. We have focused our work on 

tackling a real-world problem using train station CCTV data, 

where 1) the resolution of frames was poor due to a high 

compression ratio, and 2) the densities of people on the platform 

at different times of the day vary significantly. In particularly, 

in order to improve the estimation accuracy, we have proposed 

to use the Local Random Forests for learning. Instead of using 

feature patches (i.e., sliding windows) selected randomly and 

used in a loop in order to compare with other parts of an image 

causing a time consuming process, we have divided each frame 

to fixed sub-windows and learned the density in each sub-

window based on a Local Random Forest for faster process. We 

have tested our approach on a widely adopted dataset and a 

private train dataset and have achieved promising results. 

Compared with the recent Deep Learning-based solutions, our 

approach is much simpler and does not require a huge amount 

of training data. Furthermore, due to the simplicity of our 

approach, the processing speed is also satisfactory. 

 

 
Fig. 6.    Two examples of the estimated density heat maps of the train 

platform scenario. It shows that, with our approach, we have achieved very 

high accuracies. 
 

       For future work, by extending this approach to a more 

powerful estimator, it is expected to have further performance 

improvement.      
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