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Abstract

In video-based action recognition, viewpoint variations often pose major chal-

lenges because the same actions can appear different from different views. We

use the complementary RGB and Depth information from the RGB-D cameras

to address this problem. The proposed technique capitalizes on the spatio-

temporal information available in the two data streams to the extract action

features that are largely insensitive to the viewpoint variations. We use the

RGB data to compute dense trajectories that are translated to viewpoint insen-

sitive deep features under a non-linear knowledge transfer model. Similarly, the

Depth stream is used to extract CNN-based view invariant features on which

Fourier Temporal Pyramid is computed to incorporate the temporal informa-

tion. The heterogeneous features from the two streams are combined and used

as a dictionary to predict the label of the test samples. To that end, we propose

a sparse-dense collaborative representation classification scheme that strikes a

balance between the discriminative abilities of the dense and the sparse represen-

tations of the samples over the extracted heterogeneous dictionary. To establish

the effectiveness of our approach, we benchmark it on three standard datasets

and compare its performance with twelve existing methods. Experiments show

that the proposed approach achieves up to 7.7% improvement in the accuracy

over its nearest competitor.
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1. Introduction

Video-based human action recognition is a challenging problem because of

the large intra-action variations resulting from different illumination conditions,

scales of videos, object textures and different scene backgrounds. In the real-

world scenarios, the task becomes even more arduous due to the camera view-

point variations. Recent advances in the Depth video technology has resulted

in mitigating the problems arising from texture and illumination variations in

the scenes because the Depth data is largely insensitive to such diversities. Nev-

ertheless, the Depth videos still remain easily influenced by the camera view-

point variations. To incorporate viewpoint invariance in video-based human

action recognition, we propose to fuse view-invariant deep features from RGB

and Depth data streams and use the resulting heterogeneous features for action

recognition.

It is a common practice in the RGB video based action recognition [1, 2,

3, 4] to extract the optical flow and dense trajectory features from the data

and use them for predicting the action labels. RGB videos generally contain

high-fidelity appearance information about the scenes and the extracted dense

trajectories provide important temporal cues that are useful in classifying an

action. However, dense trajectories are sensitive to the camera viewpoints [5].

Moreover, such features do not contain any explicit information regarding the

human poses in the videos. It is easy to imagine that human pose information

can be useful in a more accurate action recognition in realistic conditions.

Rahmani and Mian [6] recently proposed a Non-linear Knowledge Transfer

Model (NKTM) for cross-view action recognition. Their model maps dense

trajectory features of RGB videos to a single canonical viewpoint, that makes

their approach less sensitive to the viewpoint variations. Nevertheless, their

technique is unable to take full advantage of the human pose information because

it is harder to extract such details using only the RGB data. Comparatively, the
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Depth data is much more suitable for extracting the human poses. Thus, their

approach becomes a sub-optimal choice for the cases where the Depth data is

also easily available. To take advantage of the human pose information in videos,

Rahmani and Mian [5] separately proposed a Human Pose Model (HPM), that

extracts view-invariant features using the Depth stream only. Accurate action

recognition using the HPM features [5] substantiates the usefulness of the pose

information in action recognition.

With the recent easy availability of the RGB-D sensors (e.g. Kinect), it

is intuitive to jointly exploit both RGB and Depth data streams for action

recognition. Existing approaches [7, 8, 9, 10, 11, 12] also report reasonable per-

formance gain with the joint usage of the two data streams. However, none

of these approaches are tailored to incorporate viewpoint invariance in action

recognition. Whereas RGB and Depth data streams of RGB-D videos naturally

complement each other, specialized processing of each stream is imperative for

successful viewpoint invariant action recognition. Moreover, to take full advan-

tage of both data streams it is important to carefully combine them to amplify

the view-invariant character of the resulting data.

In this work, we propose a view-invariant action recognition approach, il-

lustrated in Fig. 1, that accounts for the aforementioned observations. The

proposed approach, that builds on our recent work [13], simultaneously extracts

view-invariant features from the RGB and the Depth data streams and metic-

ulously combines these heterogeneous features for better classification. For the

Depth features, it exploits the CNN-based Human Pose Model [5] and performs

temporal encoding of the extracted CNN features using the Fourier Temporal

Pyramid. For the RGB stream, we first extract dense trajectory features and

encode them with a representative code book. The resulting codes are passed

through another deep network model to extract the desired view invariant fea-

tures. The network is implemented using the Caffe library [14] and it has been

learned from scratch for extracting the view-invariant features.

Our approach carefully combines the RGB and the Depth features and uses

the joint features as a dictionary to classify the test samples. To that end, we
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Figure 1: Schematics of the proposed approach: During training, the Depth stream extracts

CNN features using the Human Pose Model [5] and performs temporal endcoding using the

FTP. The RGB stream is used to extract dense trajectories and a deep network, implementing

non-linear knowledge transfer, is employed to extract the view invariant features. The resulting

heterogeneous features are fused together and used as a set of basis vectors in collaborative

representation based classification of the test samples.

propose to take advantage of both dense and sparse representations of a test

feature over the extracted heterogeneous dictionary. We propose a classification

scheme that balances between the discriminative abilities of dense and sparse

representations to achieve the optimal performance under the collaborative rep-

resentation based classification framework [15]. We evaluate our approach on

three standard multi-view action recognition datasets and compare its perfor-

mance with twelve existing techniques. Results of the performed experiments

clearly establish the effectiveness of the proposed approach.

The remaining article is organized as follows. In Section 2, we discuss the

related existing literature in RGB, Depth and RGB-D action recognition. We
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explain the proposed technique in Setion 3 and report detailed experimental

results in Section 4. The paper is concluded in Section 5.

2. Related work

RGB and Depth (D) are the two major video data formats used in human

action recognition. In this section, we discuss the related work relevant to each

of these formats as well as the combined RGB-D format.

2.1. RGB Video Human Action Recognition

In RGB video based action recognition, few exiting approaches [16, 17, 18]

directly use geometric transformations to incorporate the much needed view-

point invariance. However, to achieve the desired performance level, it is critical

for these methods to accurately estimate the skeleton joints. In practical con-

ditions, it is often challenging to achieve high level of accuracy in skeleton joint

estimation, which makes these methods less appealing for the practical purpose.

Another stream of techniques [19, 20, 21, 22] exploits spatio-temporal features

in the RGB videos to incorporate the viewpoint invariance. Nevertheless, the

action recognition performance of these approaches is generally limited by the

structure of the extracted features [5].

Another popular framework in RGB video based view-invariant action recog-

nition is to find a latent space where the features are insensitive to viewpoint

variations and classify the actions employing that latent space [23, 24, 25, 26, 27,

28, 29]. A combination of hand-crafted features and deep-learned features was

also proposed by Wang et al. [30] for the RGB action recognition. In their ap-

proach, trajectory pooling was used for one stream of the data and deep learning

framework was used for the other. The two feature streams were combined to

form trajectory-pooled deep-convolutional descriptors. Nevertheless, only RGB

data is used in their approach and the problem of viewpoint variance in action

recognition is not directly addressed.
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2.2. Depth Video Human Action Recognition

With the easy availability of the Depth data through the Microsoft Kinect

sensor, the Depth video based action recognition became much popular in the

last decade. In [31] and [32], 3D data points are used at silhouettes of the Depth

images and 3D joint positions to extract features for action recognition. A

binary range-sample feature was proposed for the Depth videos by Lu et al [33],

that demonstrated significant improvement in achieving viewpoint invariance.

Rahmani et al [34] proposed the Histogram of Oriented Principal Components

(HOPC) to detect interest points in Depth videos and extracting their spatio-

temporal descriptors. HOPC extracts local features in an object-centered local

coordinate basis, thereby making them viewpoint invariant. Nevertheless, these

features must be extracted at a lagre number of interest points that makes the

overall approach computationally expansive. In another work, Yang et al. [35]

clustered hypersurface normals in the Depth sequences to characterize the local

motions and the shape information. An adaptive spatio-temporal pyramid is

used in their approach to divide the Depth data into a set of space-time grids

and low-level polynomials are aggregated to form a Super Normal Vector (SNV).

This vector is eventually employed in action recognition.

2.3. RGB-D Video Human Action Recognition

Most of the Depth sensors also provide simultaneous RGB videos. This fact

has lead to a significant interest of the scientific community to jointly exploit the

two data streams for various tasks, including action recognition [7, 10, 11, 12,

9, 8, 36]. For instance, a restricted graph-based genetic programming approach

is proposed by Liu and Shao [9] for the fusion of the Depth and the RGB data

streams for improved RGB-D data based classification. In another approach, Hu

et al. [8] proposed to learn heterogeneous features for the RGB-D video based

action recognition. They proposed a joint heterogeneous features learning model

(JOULE) to take advantage of both shared and action-specific components in

the RGB-D videos. Kong and Fu [36] also projected and compressed both Depth
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and RGB features to a shared feature space, in which the decision boundaries

are learned for the classification purpose.

Whereas one of the major advantages of the Depth videos is in the easy

availability of the information useful for the problem of viewpoint invariant ac-

tion recognition, none of the aforementioned approaches directly address this

problem. Moreover, the Depth and the RGB video frames are mainly combined

in those approaches by either projecting them to a common feature space [8, 36]

or by using the same filtering-pooling operation for both modalities [9]. We

empirically verified that on the used action recognition datasets that involve

multiple camera views, these techniques achieve no more than 4% improvement

(RGB-D combined) over the single (RGB or Depth) modality. On the other

hand, the technique proposed in this work achieves up to 7.7% average im-

provement over the single modality while dealing with the viewpoint variations.

The strength of our approach resides in processing the RGB and the Depth

streams individually to fully capitalize on their individual characteristics and

then fusing the two modalities at a latter stage of the pipeline. This strategy

has proven much more beneficial than combining the two data streams earlier

in data processing.

3. Proposed approach

The proposed RGB-D based human action recognition approach is illus-

trated in Fig. 1. We use a Deep Learning based Human Pose Model [37] to

extract features from the Depth data stream. These features are post processed

by computing Fourier Temporal Pyramids. For the RGB stream, we extract

dense trajectory features and encode them over a codebook. The resulting

codes are passed trough a network implementing a non-linear knowledge trans-

fer model. The two types of features are combined and used as a dictionary in

our approach. To classify, we first extract the joint features of the test samples

and then collaboratively represent them over the extracted dictionary. These

representations are used in predicting the class labels.
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3.1. Depth Feature Extraction

We extract CNN-based features from the Depth data stream using a pre-

trained Human Pose Model (HPM) [5]. HPM uses an architecture structure

similar to the AlexNet [38] but it has been trained using multi-viewpoint ac-

tion data that is generated synthetically by fitting human models to the CMU

motion caption data [39]. Using data from 180 different viewpoints for each

action makes the network training largely insensitive to the view variations in

the actions. HPM essentially extracts features using Depth images with static

human poses. Thus, to incorporate the temporal dimension we use the Fourier

Temporal Pyramid (FTP) [40] on the HPM features.

Let us denote the tth frame of the ith Depth video by Vi
t, where t P t1, 2, ..., fu,

such that f represents the total number of frames. We first crop a Depth frame

Vi P tVi
1,V

i
2, ...V

i
fu to resize it to a 227 ˆ 227 image in order to match the

input dimensions of the HPM. These frames are passed through the HPM and

the fc7 layer output activation vector ait P R4096 is used as the feature for the

Depth frame Vi
t. The features from the ith video are combined into a matrix

Ai “ rai1,a
i
t, ...,a

i
f s P R4096ˆf and the Fourier Temporal Pyramid of the matrix

is computed for the temporal encoding. More specifically, the computed pyra-

mid has 3 levels, and by dividing the feature set Ai in half at each level, we

get 1 ` 2 ` 4 “ 7 feature groups. Short Fourier Transform is applied to each

feature group, and the first 4 low-frequency coefficients are concatenated (i.e.

4 ˆ 7 “ 28) to form a spatial-temporal descriptor matrix Si P R4096ˆ28 for an

action. Finally, the matrix Si is vectorized as di P R114688 to get the Depth

feature for the i-th Depth video.

3.2. RGB Feature Extraction

For our approach, we employ another neural network to extract the RGB

features. The network model is implemented using the Caffe library [14] and

it has been trained from the scratch for the proposed approach. Momentarily,

we defer the discussion on the model details and describe the preprocessing of

the data for its training. Similar to the HPM, we use the CMU motion capture
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Figure 2: Caffe implementation of the used network. Dropout and sigmoid activation are

applied on the first 3 inner product layers.

data [39] for training this network. The data pre-processing is conducted as fol-

lows. We first fit cylinders to the available skeleton data in order to approximate

the human limbs and the torso. The points on those cylinders are then rendered

from eighteen different viewpoints using their orthographic projections onto the

x-y plane. We extract the dense trajectory features [1] from the resulting data.

In order to do that, we follow Gupta et al. [1] and fix the frame length to L “ 15.

This results in thirty-dimensional trajectory features. Notice that we again use

the data generated from multiple viewpoints, which is important to introduce

viewpoint invariance in the RGB features, similar to the Depth features. Once

the trajectory features are extracted, we perform clustering over these features

using the K-Means algorithm, where we empirically choose K “ 2000. We store

the cluster centroids in C P R30ˆ2000. The matrix C represents a codebook,

containing the 2000 most representative trajectories for the data.

To train the network, a video is first encoded over the matrix C. The

coding is performed such that the resulting Bag of word ξ P R2000 represents

a histogram of video trajectories closest to each column of the matrix C in

the Euclidean space. Our neural network implements the non-linear knowledge

transfer model [6] that projects the vectors ξ of all the viewpoints of an action

to a single canonical (i.e. frontal) viewpoint. The model essentially regresses

for the problem of projecting multiple features to a single feature, thereby not

requiring any explicit label during the training. The architecture of the network
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Figure 3: Three network architectures trained using the Caffe library [14].

based on our Caffe implementation is shown in Fig. 2. The network comprises

four layers with drop-outs and sigmoid activations applied to the first three

layers. The main intuition behind the chosen architecture is that since we must

keep the regression flexible, in the sense that it is able to project different views

to a single view, we first reduce the layer size to drop redundant information

in the features. In the latter layer, the size is again increased to discriminate

between the view specific high level details of the inputs.

In light of the original proposal of the non-linear knowledge transfer approach

by Rahmani and Mian [6], we tested multiple architectural variations of the

above mentioned network. In Fig 3, we show the three variations for which we

also present the experimental results in Section 4 to illustrate the sensitivity

of our approach to the architecture of the network. The chosen network is

labeled NKTM #1 in Fig. 3 (for the Non-linear Knowledge Transfer Model). For

training, we initialize the network with the weight filler “xavier” and variance

norm “AVERAGE”, and configure the loss layer as the “EuclideanLoss”. We

use the initial learning rate of 0.001 for all the layers and decrease it by a factor

of 10 after every 1000 iterations. The weight decay of the network is configured

to 0.0005. We train our network using the back-propagation algorithm with six

thousand iterations. These parameters are chosen empirically in our approach.

Once the network is trained using the CMU mocap data we use it to extract

features of the action recognition training data. For that, we first extract their

dense trajectories following [2, 3]. These trajectories are coded over the already

learned codebook C and the resulting codes are passed through the trained
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network. In order to finally arrive at the view invariant features, we concatenate

the outputs of each layer of the network. It was empirically verified for the used

network that its earlier layers are more informative for the small variations in

the viewpoints whereas the latter layers are more informative for the larger

viewpoint variations. Therefore, we concatenate the outputs from all the layers

to construct the RGB feature vector r P R6000.

3.3. Feature Fusion

The RGB and the Depth features are extracted from two different data

streams in our approach. However, they contain complementary information

due to the following reasons. Firstly, the data streams originate from the same

actions. Secondly, the dense trajectories model the temporal information from

the RGB frames using only the motion (without explicitly encoding the poses),

whereas the Depth features are extracted by modeling the human poses from the

raw Depth images (and using the FTP). Thus, the latter is specifically meant

to complements the former. It is also worth noting that the dense trajectories

are better extracted from the RGB frames due to the presence of texture. On

the other hand, human poses are more accurately computed using the Depth

images because they contain the shape information.

To integrate the strengths of the RGB and the Depth features, we propose to

fuse them into a joint feature. We use these heterogeneous joint features as the

basis vectors to collaboratively represent the test sample features and classify the

resulting representations. The proposed feature fusion scheme works as follows.

Let D “ rd1,d2, . . . ,dns P R114688ˆn and R “ rr1, r2, . . . rns P R6000ˆn denote

the feature sets obtained from the Depth and the RGB streams respectively.

We first transform D and R into Dz P R114688ˆn and Rz P R6000ˆn, where the

latter matrices are computed as the Z-scores of the formers. Then, the columns

of Dz and Rz are rescaled to the range r0, 1s. Finally, the rescaled features are

row-wise concatenated to form the heterogeneous feature set X P R120688ˆn.

The procedure is also illustrated in Fig. 4.

The feature fusion procedure is specifically designed keeping in view the
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Figure 4: Illustration of feature fusion process. First, the Z-scores of the Depth and the RGB

features are computed. Then, sample-wise scaling is performed to restrict features in range

[0,1].Finally, a row-wise concatenation is performed.

requirements of the proposed approach. In our framework, the obtained Depth

and RGB features generally vary greatly in terms of scale and dimensionality.

However, we still aim at using the combined features as the joint basis vectors to

represent the test sample features. Therefore, we first transform the features to a

dimensionality independent measure of Z-score, which represents each coefficient

of a feature vector in terms of the standard deviation of the vector components.

A further rescaling is performed to remove the scale differences of the extracted

features. Once the rescaled features are combined, they form an effective set of

basis vectors for the subspace in which the test sample features reside.

3.4. Classification

Our label prediction stage is inspired by the Collaborative Representation

(CR) based classification framework [41]. To predict the label of a test sample,

we first extract its joint feature y P R114688 following the feature extraction

procedure for the training data. Then, we compute two separate collaborative

representations of the test feature in terms of the training features by solving

the following optimization problems:

qα “ min
α
||y ´Xα||2,`λ||α||2 (1)

pα “ min
α
||y ´Xα||2, s.t. ||α||0 ď k, (2)

where, ||.||p denotes the `p-norm of a vector and k is the sparsity threshold.
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The vector qα P Rn is computed by regularizing the `2-norm of the coefficient

vector, that allows most of the components of qα to be non-zero in the represen-

tation. This makes qα the dense representation of y over the matrix X. On the

other hand, the sparsity constraint in (2) forces most of the coefficients in the

representation vector to become zero, thereby making pα P Rn the sparse rep-

resentation of y. Since the basis vectors in X have heterogeneous composition

in our approach, CR-based classification framework can be expected to favor

sparse representations in few instances and dense ones for the other. Therefore,

we propose to combine the two representations in a convex manner and use this

combination for predicting the class labels of the test samples. More precisely,

we compute
˝
α “ λ1 pα` p1´ λ1qqα, where λ1 Ð r0, 1s and later employ

˝
α P Rn

to predict the class label. We note that this representation combination strat-

egy differs from [41] that augments a dense collaborative representation with a

sparse one by simply adding the two and normalizing the resulting vector. Con-

vex combination of the two types of representations ascertain global optimality

of the solution with respect to the parameter λ1. This guarantee is not provided

by the data augmentation method proposed in [41].

In CR-based classification, it is generally the case that the class label is

predicted either by maximizing the reconstruction fidelity of the collaborative

representation coefficients [15] or by using a multi-class classifier in conjunc-

tion with the computed representation [42], [43]. However, these methods are

computationally expensive. We recently showed [41] that collaborative repre-

sentations can be used for predicting the class labels much more efficiently by

integrating over their coefficients for each class and assigning the class label to

the largest integrated value. Here, we implement this strategy by multiplying
˝
α

with a binary matrix B P RCˆn, where C denotes the total number of classes.

This matrix is constructed by assigning 1 to the ith row of its jth column if the

jth column of X belongs to the ith class of the training features. All other coeffi-

cients of the matrix are kept 0. With a matrix thus constructed, each coefficient

of the vector q “ B
˝
α P RC integrates the coefficients of

˝
α for a single class. We

maximize over the coefficients of q to predict the class label of the test sample.
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The proposed classification procedure is also summarized as Algorithm 1.

Algorithm 1 Sparse-Dense CR-based Classification

Input: (a) Training features X, normalized in `2-norm. (b) Test sample feature

y. (c) Regularization parameters λ, λ1. (d) Sparsity threshold k. (e) Binary

matrix B.

1: Optimization:

a) Solve (1) as qα “ Py, where, P “ pXTX` λInq
´1XT.

b) Solve (2) using the Orthogonal Matching Pursuit algorithm [44]:

2: Convex combination: Compute
˝
α “ λ1 pα` p1´ λ1qqα.

3: Labeling: labelpyq “ arg maxitqiu, where qi denotes the ith coefficient of

q “ B
˝
α.

Output: labelpyq.

4. Experiments

The proposed approach has been evaluate on three multiview RGB-D datasets:

UWA 3D Multiview Activity II Dataset [45, 34], Northwestern-UCLA Multiview

Action 3D Dataset [46] and the NTU RGB+D Human Activity Dataset [47].

We compare the performance of the proposed approach with the existing state-

of-the-art methods. The results of the existing methods are taken directly from

the original papers where applicable, otherwise, these results are taken from

the best reported results in the literature. For the proposed approach, we used

λ “ 0.01, λ1 “ 0.35 and the sparsity threshold k “ 50. These parameters were

optimized empirically using cross-validation.

4.1. UWA3D-II Dataset

This dataset is composed of 30 human actions that have been performed by

10 subjects, where each action is recorded from 4 different viewpoints. These

actions include: (1) one hand waving, (2) one hand punching, (3) two hands

waving, (4) two hands punching, (5) sitting down, (6) standing up, (7) vibrat-

ing, (8) falling down, (9) holding chest, (10) holding head, (11) holding back,
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Figure 5: RGB and Depth pairs from the UWA 3D Multiview Activity II Dataset [34].

(12) walking, (13) irregular walking, (14) lying down, (15) turning around, (16)

drinking, (17) phone answering, (18) bending, (19) jumping jack, (20) running,

(21) picking up, (22) putting down, (23) kicking, (24) jumping, (25) dancing,

(26) moping floor, (27) sneezing, (28) sitting down (chair), (29) squatting, and

(30) coughing. The four viewpoints are: (a) front, (b) left, (c) right, (d) top.

The dataset is challenging because its action classes are reasonably large and

they additionally containing subject scale and viewpoint variations. Further-

more, human-object interaction and self-occlusion in few videos makes action

recognition on this dataset even more challenging. Figure 5 shows a represen-

tative example of RGB and Depth pair for one of the actions from different

viewpoints.

For the evaluation, we follow Wang et al. [46] and use videos from two

views for training and the remaining views for testing, creating 12 different view

combinations. We first compare the results of the proposed approach employing

three variants of the non-linear knowledge transfer model network architectures

(see Fig 3). Note that, the original knowledge transfer model [6] only deals with

the RGB frames. We implement the network variants using the Caffe library

and train our models from the scratch. Table 1 summarizes the results of this

comparison. Based on these results we chose Network #1 for our approach.

Henceforth, unless otherwise mentioned, the results of the proposed approach

are based on this architecture.
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Table 1: Action recognition accuracies (%) on UWA 3D-II dataset using variants of NKTM

architectures shown in Fig 3. The architectures are implemented using Caffe library and

trained from the scratch.

Training view V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4 Mean

Testing view V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

Input: RGB + Depth images

NKTM #1 86.9 89.8 81.9 89.5 76.7 83.6 83.6 79.0 89.6 82.1 89.2 83.8 84.6

NKTM #2 85.1 88.8 82.0 87.6 76.3 82.1 83.3 78.3 90.3 81.0 89.2 79.3 83.6

NKTM #3 85.1 88.4 80.8 89.9 74.4 82.1 83.6 76.4 90.0 81.3 90.0 82.3 83.7

Figure 6: Comparison of the proposed method with the best performing RGB-only and Depth-

only methods on the UWA 3D-II dataset. V12-3 indicates that view 1 and 2 are used for

training while view 3 is used for testing.

Table 2, summarizes the quantitative comparison of the proposed approach

with the existing methods. In the table, the proposed method achieves 84.6%

average recognition accuracy, which is 7.7% higher than its nearest competitor

HPM+TM [5]. In Fig. 6 we compare our approach to the the best performing

RGB-only method [6] and the best performing Depth-only method [5]. Note

that, for all of the train-test view combinations, the proposed method provides

a significant improvement in the recognition accuracy. The maximum reduction

in the error rate, i.e. 36.4%, is achieved when view 2 and 3 are used for training

and view 4 is used for testing. Based on these results, we can argue that our

method effectively integrates the advantages of RGB and Depth video streams to

enhance the recognition accuracy, especially for the large viewpoint variations.
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Table 2: Comparison of action recognition accuracy (%) on the UWA3D-II dataset. Each

time two views are used for training and the remaining two views are individually used for

testing.

Training views V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4 Mean

Testing view V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

Input: RGB images

AOG [46] 47.3 39.7 43.0 30.5 35.0 42.2 50.7 28.6 51.0 43.2 51.6 44.2 42.3

Action Tube [48] 49.1 18.2 39.6 17.8 35.1 39.0 52.0 15.2 47.2 44.6 49.1 36.9 37.0

LRCN [49] 53.9 20.6 43.6 18.6 37.2 43.6 56.0 20.0 50.5 44.8 53.3 41.6 40.3

NKTM [6] 60.1 61.3 57.1 65.1 61.6 66.8 70.6 59.5 73.2 59.3 72.5 54.5 63.5

Input: Depth images

DVV [26] 35.4 33.1 30.3 40.0 31.7 30.9 30.0 36.2 31.1 32.5 40.6 32.0 33.7

CVP [28] 36.0 34.7 35.0 43.5 33.9 35.2 40.4 36.3 36.3 38.0 40.6 37.7 37.3

HON4D [50] 31.1 23.0 21.9 10.0 36.6 32.6 47.0 22.7 36.6 16.5 41.4 26.8 28.9

SNV [35] 31.9 25.7 23.0 13.1 38.4 34.0 43.3 24.2 36.9 20.3 38.6 29.0 29.9

HOPC [34] 52.7 51.8 59.0 57.5 42.8 44.2 58.1 38.4 63.2 43.8 66.3 48.0 52.2

HPM+TM [5] 80.6 80.5 75.2 82.0 65.4 72.0 77.3 67.0 83.6 81.0 83.6 74.1 76.9

Input: RGB + Depth images

Ours (RGB-D) 86.9 89.8 81.9 89.5 76.7 83.6 83.6 79.0 89.6 82.1 89.2 83.8 84.6

4.2. Northwestern-UCLA Dataset

The Northwestern-UCLA Multiview Action 3D Dataset [46] contains RGB-D

videos captured simultaneously by 3 Kinect cameras from 3 different viewpoints.

There are 10 action classes: (1) pick up with one hand, (2) pick up with two

hands, (3) drop trash, (4) walk around, (5) sit down, (6) stand up, (7) donning,

(8) doffing, (9) throw, and (10) carry. The three viewpoints available in the

dataset are: (a) left, (b) front, and (c) right. Every action in this dataset is

performed by 10 subjects. In Fig. 7, we show representative sample RGB and

Depth image pairs from the three viewpoints. This dataset is challenging for

two reasons. Firstly, many action categories share the same “walking” pattern

before and after the actual occurrence of the action of interest. Secondly, some

actions such as “pick up with on hand” and “pick up with two hands” are very

similar, which makes them to distinguished in the presence of the viewpoint
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Figure 7: RGB and Depth pairs of a single action from three different views in the

Northwestern-UCLA Multiview Action 3D Dataset [46].

Table 3: Comparison of action recognition accuracy (%) on the Northwestern-UCLA dataset

using different NKTM networks from Figure 3.

Training view V1&V2 V1&V3 V2&V3 Mean

Testing view V3 V2 V1

Input: RGB + Depth images

NKTM #1 92.9 82.8 72.5 82.7

NKTM #2 92.5 82.4 71.9 82.3

NKTM #3 92.9 82.6 71.3 82.3

variations.

For this dataset, we also use videos captured from two different views for

training and the third view for testing. Again, we first provide the relative

performance comparison of the proposed approach using the three network ar-

chitectures shown in Fig 3 in Table 3. We can see that NKTM #1 is also the

most suited architecture for this dataset. In Table 4, we summarize the per-

formance comparison of the proposed method with the existing methods. The

proposed RGB-D method achieves an average accuracy of 82.7%, which is 3.0%

higher than the nearest competitor HPM+TM.
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Table 4: Comparison of action recognition accuracy (%) on the Northwestern-UCLA Multi-

view Action 3D Dataset.

Training view V1&V2 V1&V3 V2&V3 Mean

Testing view V3 V2 V1

Input: RGB images

Hankelets [19] 45.2 - - -

DVV [26] 58.5 55.2 39.3 51.0

CVP [28] 60.6 55.8 39.5 52.0

AOG [46] 73.3 - - -

nCTE [1] 68.6 68.3 52.1 63.0

NKTM [6] 75.8 73.3 59.1 69.4

Input: Depth images

DVV [26] 52.1 - - -

CVP [28] 53.5 - - -

HON4D [50] 39.9 - - -

SNV [35] 42.8 - - -

HOPC [34] 80.0 - - -

HPM+TM [5] 92.2 78.5 68.5 79.7

Input: RGB + Depth images

Ours (RGB-D) 92.9 82.8 72.5 82.7

4.3. NTU RGB+D Human Activity Dataset

The NTU RGB+D Human Activity Dataset [47] is a large-scale RGB+D

dataset for human activity analysis. It was collected using the Kinect v2 sensor

and it includes 56,880 action samples each for the RGB videos, depth videos,

skeleton sequences and the infra-red videos. In our experiments, we only make

use of the RGB and the depth videos from the dataset. In these videos, there

are 40 human subjects performing 60 types of actions including 50 single per-

son actions and 10 two-person interactions. Three sensors were used to capture

the data simultaneously from three horizontal angles: ´45˝, 0˝, 45˝, and every

action performer performed the action twice, facing the left or the right sensor.

Moreover, the height of the sensors and their distances to the action perform-

ers were also adjusted to get further variations in the viewpoints. The NTU

RGB+D dataset is one of the largest and the most complex cross-view action
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Figure 8: RGB and depth samples from the NTU RGB+D Human Activity Dataset [47].

Three sensors C-1, C-2 and C-3 are used to record the data. The left group of images shows

the actions recorded with the performer facing the sensor C-3, and the right group of images

are recorded when the action performer faces the sensor C-2.

dataset of its kind to date. Figure 8 illustrates the RGB and the depth sample

frames in the NTU RGB+D dataset.

We follow the standard evaluation protocol [47], which includes cross-subject

and cross-view evaluations. For the cross-subject protocol, 40 subjects are par-

titioned into the training and the testing groups, where each group consists of

20 subjects. For the cross-view protocol, the videos captured by the sensor C-2

and C-3 are used as the training samples, and the videos captured by the sensor

C-1 are used as the testing samples.

Table 5 summarizes the comparison of our method with the existing ap-

proaches on the NTU dataset. The second column of the table indicates the

data type used by the approaches from this dataset. As can be seen, most of the

existing approaches reporting result on this challenging dataset mainly exploit

skeletal information. Using only the RGB frames or the Depth frames generally

does not result in reasonable performance on this dataset. Similar to our ap-

proach, the DSSCA-SSLM [51] also uses both RGB and Depth information in

their approach. However, the proposed method is able to achieve a significant
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improvement over the performance of that DSSCA-SSLM.

5. Conclusion

We proposed an RGB-D human action recognition method that capitalizes

on the view invariant characteristics of both Depth and RGB data streams,

thereby making action recognition largely insensitive to the viewpoint varia-

tions in the videos. The proposed method processes the RGB and Depth streams

separately to fully exploit the individual modalities. We extract dense action

trajectories are using the RGB frames to encode motion information, and then

pass them through a deep network to get the viewpoint invariant features. For

the Depth frames, we exploit the human pose model [5] to extract the appear-

ance information. The CNN fc7 layer viewpoint invariant features are encoded

by Fourier Temporal Pyramid to incorporate the temporal dimension. Spatio-

temporal features from both RGB and Depth streams are normalized and com-

bined to form a set of heterogeneous features that are used to collaboratively

represent the test features. A convex combination of dense and sparse collabo-

rative representations is eventually used to predict the label of the test feature.

Experiments on three standard multi-view RGB-D dataset and comparison to

twelve existing methods demonstrate the effectiveness of the proposed approach.
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Table 5: Action recognition accuracy (%) on the NTU RGB+D Human Activity Dataset.

Method Data type Cross Subject Cross View

Baseline

HON4D [50] Depth 30.6 7.3

SNV [52] Depth 31.8 13.6

HOG-2 [53] Depth 32.4 22.3

Skeletal Quads [54] Joints 38.6 41.4

Lie Group [55] Joints 50.1 52.8

Deep RNN [47] Joints 56.3 64.1

HBRNN-L [56] Joints 59.1 64.0

Dynamic Skeletons [57] Joints 60.2 65.2

Deep LSTM [47] Joints 60.7 67.3

LieNet [58] Joints 61.4 67.0

P-LSTM [47] Joints 62.9 70.3

LTMD [59] Depth 66.2 -

ST-LSTM [60] Joints 69.2 77.7

Two-stream RNN [61] Joints 71.3 79.5

Res-TCN [62] Joints 74.3 83.1

DSSCA-SSLM [51] RGB-D 74.9 -

Proposed

Ours (RGB-D) RGB-D 77.5 84.5
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