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Abstract—A novel system has been designed where colour
analysis algorithms facilitate grading ripeness of packed straw-
berries on a fast-paced production line. The Strawberry quality
system acquires images at the rate of 2punnets/s, and feeds
the images to the two algorithms. Using CIELAB and HSV
colourspaces, both underripe and overripe colour features are
analysed resulting in F1 scores of 94.7% and 90.6% respectively,
when measured on multiple defect samples. The single defect
class results scored 80.1% and 77.1%. The algorithms total time
for the current hardware configuration is 121ms maximum and
80ms average, which is well below the required time window of
500ms.

105, 542 punnets have been assessed by the algorithm and has
rejected 4, 952 in total (4.9%), helping to ensure the quality of the
product being shipped to customers and avoiding costly returns.

I. INTRODUCTION

Real-time colour grading is an essential part of quality
assessment of fruits and vegetables in order to determine
ripeness or consistency, and can be used to detect skin blem-
ishes caused by rots, mould, pests, or mishandling [1]. Histor-
ically, this has been performed by the people harvesting and
packing them, however, the industry has recently been utilizing
new technologies instead of relying on manual intervention
for sorting/grading produce [2]. Automating these processes
can be very difficult to achive in agriculture, particularly in
fast-paced environments where tons of produce flows from
field and through to the supply chain for consumers daily.
Modern advances in both computers and vision systems have
allowed this type of analisis to be integrated in many produc-
tion/packing lines around the world. Discussed in this article,
the colour analysis method used by our vision system on a
commercial strawberry packing line.

Colour analysis is commonly used as an indication of the
quality of fruits and vegetables, where these features can be
used to grade/sort items into categories [3], [4], to detect skin
blemishes [1], [5], size and volume estimation [6], [4], and
texture analysis [3], [7]. Multiple cameras have been used
(often requiring multiple processors) to minimise uninspected
surfaces [8], [9], to assess multiple defects [10], counting [11],
3D reconstruction [12] or to allow speed increases[13].

Other methods for fruit and vegetable quality analysis have
been adopted such as infra-red image analysis or spectroscopy
[14], [15], [16], and hyperspectral imaging [17] [18], [19],
[20]. These acquisition systems can be used to detect defects

such as internal structure estimation, soluable solids content,
under-skin defects and pests, and maturity. Utilizing different
wavelengths, it is a common approach to find a suitable
spectral position to observe the best contrast for defects,
making these features easier to extract[21], [22]. The system
under development is intended to use a combination of colour
(RGB) and infra-red (IR) bands in the future, to assess specific
types of reject class such as brusing and potentially pest
infestation.

Using a conveyor system, L. Xu et al [23] achieved very
good results in classifying shape, ripeness, and size of straw-
berries. The measurements are attained by using a K-means
clustering method to find 7 vertical and 7 horizontal axis
lines. Size feature was calculated by performing experiments
to find the ratio of pixels/mm and simply dividing the pixel
measurements of the berry by this ratio. Using the CIELAB
colour space, a dominant colour was found in the berry
by means of a histogram windowing method. Liming et al
[24] used a similar approach to grade single strawberries on
a conveyor in real-time. They extracted shape features by
using normalised line segments on the contour with a K-
means clustering method to evaluate the shape, size features
by experimentally attaining the camera-object distances in
terms of mm/pixel, and colour features using a CIELAB a-
channel histogram windowing method to find the dominant
red colour. The CIELAB colour space was also used by Lin
et al [25] when they developed a strawberry calyx removal
system. The single strawberries entered the vision enclosure
on roller rods, before being analysed using image processing
to find orientation, and finally a high pressure water jet was
used to cut the green parts of the strawberry off and discarding.

The strawberry field-harvesting robot commissioned by
Hayashi et al [26] within a greenhouse, used a method of
calculating the *Maturity Level’ by analysing specific bands
of the HSI colour space which represented ripe and underripe
colours and intensities. As it was determined that the strawber-
ries would be either underripe or ripe, with the event of over-
ripeness ignored due to the constant operation of the harvester.
They chose values of H,S, and I that equated to the colours
red for ripe, whilst green, light pink, and dark pink were used
for underripe in order to evaluate the ripeness before the robot
picked the berries. Satoshi et al [27] also developed a robot
harvester which used a red LED, green LED, and white LED
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to illuminate the scene in different colours before acquiring
images with the same camera in order to best extract the subtle
differences in shades of red and pink on the berries.

All methods researched involved imaging single strawber-
ries, either stationary or moving on a slow conveyor. This
assumption is both inefficient and impractical given the high
throughput of packing facilities and delicate flesh of the
strawberry.

The proposed system in this article will perform quality
grading of all fruits after they are packed in a real-time, fast-
paced environment. This unique and novel vision system is
designed to be capable of efficient and accurate in-line quality
control for a large agricultural business.

II. MATERIALS AND METHODS

The enclosure has been designed to have a robust structure,
due its placement on the production floor, and is equipped
with safety systems, signals, and controls for operator use.
The shell is made from 5mm stainless steel sheeting bolted
to a 40mm aluminium frame. The enclosure houses all elec-
tronics, hardware and software required for sensing punnets,
acquisition, and controlling the system.

A. Image Acquisition

The system encloses part of the production line for lighting
control, using DC power and cross polarizers to stabilize
the intensity [28]. In order to capture the punnets without
motion blur, the shutter speeds of the cameras must be less
than 3ms due to the production line speed of 16.6m/min
(0.276m/s). Given this shutter speed restriction, along with
the added diffusers and cross-polarizers, the total illumination
power required is 1200W. Figure la shows a CAD drawing
of the enclosure, lighting and diffuser positions, the camera
set up above and below the v-belt conveyor, and the com-
puter/electronic componet section underneath the conveyor.

The colour (BFLY-U3-23S6C-C) and mono (BFLY-U3-
23S6M-C) cameras are both manufactured by Point Grey (Flir
Integrated Imaging Solutions, Inc.) using the Sony IMX249
sensor with a resolution of 1920x1200 and USB3 interface.
As the Quantum Efficiancy (QE) is much higher on the mono
camera, it is used for NIR imaging due to the higher responses
at these wavelengths.

The computer is a standard desktop PC with an ASUS
P8Z68 motherboard and an 8-core i7 CPU. An Advantec PCE-
USB4-00A1E four port dedicated USB3 PCI-e card is installed
to ensure bandwidth is sufficient for all of the cameras. The
enclosure, in Figure 2, shows the front view of the system
with control panel and display, as well as the punnet conveyor
infeed and outfeed.

As each punnet enters the enclosure, it is detected by a
photoelectric sensor which triggers the acquisition sequence.
The 100W LED chips generate large amounts of heat due to
the compact array of 100-1W individual LED’s. Therefore,
thermal control is required to keep the LED chips from over-
heating. A combination of strategies has been integrated such
as using 5mm thick stainless steel plates for heat dissipation

(a)

(b)

Fig. 1: Top: Components of the full system - conveyors,
diffusers and polarisers, as well as electronic/computer storage.
Bottom: Close up of the v-belt conveyor system and the
camera set up.

(sink), thermal compound between LED and heatsink, and
strobing the LED to reduce the duty cycle and allow cooling
between images.

B. Colour Analysis

The colour analysis (and all other accompanying analyses)
performed must execute and complete within 500ms in order
to assess each and every punnet. As each image is processed
by up to 10 algorithms, the runtime duration of each must be
reduced where possible. Although machine learning strategies
such as SVM and nueral networks may improve accuracy,
initial experiments showed that these classifiers require large
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Fig. 2: Lighting enclosure showing control panel and punnet
conveyor

datasets that are well labelled to perform adequate training.
The time complexity of neural networks also poses a problem
due to the restricted processing time [29][30].

The colour analysis described in this paper is used to
distinguish under ripe and over ripe punnets. Each punnet
is processed as a discrete unit, as single berries cannot be
physically removed, therefore the punnet is assessed as either
pass or fail in totality, with the reject berries to be replaced
after inspection. This corresponds to the customer quality per-
formance reports which indicate number of punnets rejected
as opposed to number of berries.

Market conditions, weather, supply chain, and seasonality
can greatly affect the quality of crops in general, but par-
ticularly for strawberries as they are not considered a hardy
fruit unlike apples and oranges. As these adversarial factors
occur, the impact seen on the strawberry market can change
dramatically from pricing and quality to short supply. The
packing operators must be able to account for these dynamic
conditions by increasing and decreasing the acceptable stan-
dard. This means that under certain circumstances, underripe,
overripe, misshapen or even fruit usually considered to be too
small will be packed and shipped due to market availability.
Given this variation of requirements by the operators, the
system must have the ability to adjust the thresholds of each
quality characteristic, and therefore only reject punnets based
on current market conditions or recent weather.

In order to overcome speed concerns, and to reduce overall
processing time, the colour algorithm is designed to scale each
image down from a high resolution to a fraction of the original,
and assess regions comprised of less pixels. This direction is,
again aligned with the customer expectations due the inherrant
fact that very small regions (< 3mm) will be largely ignored
by visual inspections. It is only the larger, connected regions
which determine overall ripeness.

The saturation channel of the HSV colourspace is used
initially find the berries in each frame, due to the more
colourful berries and punnet when compared to the dark
background.

To extract HSV colourspace given three channels R, G, B

However, as the colour white has low saturation and can
appear on underripe berries, this must be identified, extracted
and concatenated to the region in order to properly calculate
the underripe region areas. The red berry and white berry
usually converge gradually so that the regions overlap when
extracted. This means that simply taking the intersection of
all white regions with known red berry regions will yield
only those which are overlapping red berry as described in
equations 4, 5, and 6.

P
Rpea =Y _t1 < S; < max(S) 4)
1=0
P
Ronite = ZtQ <Vi< max(V) (5)
=0
Rm)erlap = Rwhite N Rred (6)

where the red and white regions (R) are found by using
threshold values ¢1 and ¢2 over the number of pixels P, on
the saturation (.5) and value (V') channels of the transformed
image, respectively. If R,yeriqp 1S greater than zero, then
R hite 1s concatenated with the known red regions.

Fig. 3: CIELAB colourspace

The CIELAB colourspace axes values fit this colour
analysis problem well, in that the a* channel axis contains
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red and green hues, and the b* channel blue and yellow (fig
3).

Strawberries are member of the nonclimacteric class of fruit,
meaning that ripening halts once harvested. Strawberries are
more firm and will transport better when harvested just before
full ripeness, although are not as full in flavour as entirely
ripened fruit[31], therefore it is acceptable for customers and
realistic for pickers to expect some amount of underripeness
as well as overripeness.

1) Underripe Features: The ripening process, in terms of
colour, for most fruit will start green and slowly transition
through phases of yellow/orange, then pink before bright red
and finally dark red. Figure 4a shows an image containing
underripe berries, the yellow and white regions clearly seen.

Once the berry contour has been found and the image
domain reduced to that region, underripe pixels are extracted
by simply taking the difference of the a* channel and the
b* channel. After contrast enhancement, areas with no red
pixels are highlighted. The process is visualised in Figure 4.
Perfoming this analysis on the entire image results in many
false positives, but this method has been found to be very
effective when applied to the known berry region.

(a) (b)

(©) (d

Fig. 4: Left to right: (a)Original image with visible white
and yellow regions, (b)HSV saturation channel and berry
contours after addition of white berry regions, (c)Diff(a*, b*)
result highlighting absence of red colour, (d)Result of post-
processing indicating underripe areas.

2) Overripe Features: The colour difference between ripe
and overripe berry is much narrower than the comparrison

(a) (b)

(© (d)

(e) ()

Fig. 5: Left to right: (a)Berry region extracted using method
from underripe algorithm, (b)Result of thresholding expanded
HSV hue channel to find light colour berries, (c)Difference
region of a and b, (d)V channel used to illiminate edges.
e)Intersection result of ¢ and d, (f)Overripe berries extracted.

with underripe. Underripe colours may be white, green, yellow,
or pink whereas overripe colour is a slightly darker red than
perfectly ripened berries appear. This small variation combined
with the many occlusions make the overripe features difficult
to extract.

Shadowy areas of the punnet can be falsely classified as
overripe berry, as the colour profiles are very similar. There-
fore, the algorithm must exclude the edges of the berries in
order to improve the accuracy of identifying overripe features.

Using a known vector range in the HSV colourspace
{Ho, S0, Vo},{H1,51,V1}, ... {Hpn, Sn, Vi }, the good qual-
ity berry colour is extracted and compared to the entire
berry region as shown in Figure 5a, 5b and Sc. Note that
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TABLE I: Results of algorithm testing.
Algorithm Defects FP FN TP TN Precision(%) Recall(%) F1 score(%)  Y-Index(%)
Underripe Single 19 90 220 198 92.1 71.0 80.1 62.2
Multiple 7 25 285 210 97.6 91.9 94.7 88.7
Overripe Single 44 82 212 177 82.8 72.1 77.1 522
Multiple 19 35 259 202 93.2 88.1 90.6 79.5

if there is sufficient underripe regions the algorithm will end
before this point. Therfore, the vector range is inclusive of
underripe colours ensuring only darker pixels are extracted in
the difference of the two regions.

In order solve the problem of berry edges, an intensity
threshold is applied which ignores the darker areas of the
punnet including voids, berries too dark to grade, and edges
where shadows occur (Fig. 5d). Performing an intersection
of these regions with the dark pixels found ensures that any
overripe candidate must lie on the un-occluded surfaces of
berries in order to be classified properly.

Rcand = Rberry - Rgood (7)
P

Ruorm = Zti’) < Vi < maz(V) (8)
=0

Roverripe = Rcand n Rnorm (9)

Rcanag is the candidate overripe region which may still
contain false-positive pixels. The threshold to find the surface
normal (R, .;m») of the berries is then intersected with the
candidates to highlight only confident matches as shown in
Figures Se and 5f.

III. APPLICATION AND RESULTS

The colour analysis algorithms have been implemented on
the production line and, at the date of this paper, graded
105,542 punnets of which 4952 punnets were rejected due
to failing to meet colour requirements. Continuous grading
on-line will ensure that the quality of the product being
packed will meet the customer requirements, and prevent reject
shipments. Reject shipments can occur even when just a few
poor quality punnets are observed forcing costly returns, loss
of product, and reduced reputation in the industry.

Both algorithms have input sensitivity levels to help deal
with seasonality. As discussed in section II-B, the seasonality
determines the acceptability of the fruit. This allows operators
to, for example, change the sensitivity and allow slightly
poorer quality fruit to pass, whilst still maintaining a threshold
to remove moderate and severe cases.

Due to this variability in reject level, the quantitative anal-
ysis was split into two different measurements - single defect
and multiple defects. Multiple defects meaning that there exist
more than one region of the same reject class in each image.
For example, a multiple defect underripe punnet will have

TABLE II: Confusion matrix for single defect underripe tests.

n = 527 Predicted: Good  Predicted: U/R
Actual: Good 198 19
Actual: U/R 90 220

TABLE III: Confusion matrix for multiple defect underripe
tests.

n = 527 Predicted: Good  Predicted: U/R
Actual: Good 210 7
Actual: U/R 25 285

greater than one region (that meets certain conditions) with
underripe features.

Table I lists the results of testing for both algorithms where
the test set was ground truthed with 310 out of 527 punnets
underripe, and 294 out of 515 punnets overripe in a separate
set. In order to best compare the single and multiple defect
classes, the same test punnets were used with the addition of
more defect fruit for the multi-defect instances. The confusion
matrices for the tests are detailed in tables II, III, IV and V.

The number of punnets for each test is broken into false
positive, false negative, true positive, and false negative, used
to calculate precision, recall, and F1-score as well as Youden’s
index or J statistic. Youden’s index (Y-Index) is the measure
of the performance of a dichotomous diagnostic test where
informedness is the generalization of this method to a multi-
class set.

F1-Score results for multiple defects are calculated as

TABLE IV: Confusion matrix for single defect overripe tests.

n = 515 Predicted: Good  Predicted: O/R
Actual: Good 177 44
Actual: O/R 82 212

TABLE V: Confusion matrix for multiple defect overripe tests.

n = 515 Predicted: Good  Predicted: O/R
Actual: Good 202 19
Actual: O/R 35 259
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94.7% and 90.6% for the underripe and overripe algorithms
respectively. The single defect class results scored 80.1% and
77.1% given the high probability of occlusion and shadows,
and rotational variance of each berry.

Recall takes the ratio of the relevant class selected over the
entire relevant class. For example, how many underripe detec-
tions were made compared to the total amount of underripe
punnets. Precision measures the amount of correct detections
compared to all detections.

This indicates for both the underripe and overripe results the
flase negatives are greater than the false positives. This was
an intentional bias in development in order to gain maximum
acceptance from operators and managers at the facility. If the
system was to have low precision (even with high recall), it
may be seen as more of a burden than a benifit to smooth
operation of the packing line.

The total propogation time of both algorithms had a max-
imum of 121ms and average of 80ms when tested on a
series of 100 images. The processing window is 500ms (time
between punnets at max speed) and therefore computes and
makes a decision within the required timeframe.

IV. CONCLUSION

Two colour analysis algorithms were developed to assist in
grading packed strawberries in a real-time production envi-
ronment. Multiple defect detection results indicate the validity
of the system and it’s accuracy, and operators can tune the
system to suit the market conditions. However, further work is
required in order to detect single defect cases more accurately.

The inspection system, along with these algorithms have
already helped in reducing the amount of poor quality berries
being shipped by the company, leading to increased Quality
Assurance, Quaity Control, and mitigating potential financial
losses.

A. Future Work

With images being acquired daily from the production line,
labelling can begin in order to provide a large enough dataset
to enable deep learning strategies. For example, an SVM
classifier could be trained with a few hundred labelled images,
but tens of thousands would be required for training a neural
network which is the ultimate goal.
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