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Abstract—Spatial visual attention mechanisms have achieved
significant performance improvements for image captioning. To
quantitatively evaluate the performances of attention mecha-
nisms, the “attention correctness” metric has been proposed
to calculate the sum of attention weights generated for ground
truth regions. However, this metric cannot consistently measure
the attention accuracy among the element regions with large
size variance. Moreover, its evaluations are inconsistent with
captioning performances across different fine-grained attention
resolutions. To address these problems, this paper proposes a
size-invariant evaluation metric by normalizing the “attention
correctness” metric with the size percentage of the attended
region. To demonstrate the efficiency of our size-invariant metric,
this paper further proposes a high-resolution residual attention
model that uses RefineNet as the Fully Convolutional Network
(FCN) encoder. By using the COCO-Stuff dataset, we can achieve
pixel-level evaluations on both object and “stuff” regions. We use
our metric to evaluate the proposed attention model across four
high fine-grained resolutions (i.e., 27 × 27, 40 × 40, 60 × 60,
80 × 80). The results demonstrate that, compared with the
“attention correctness” metric, our size-invariant metric is more
consistent with the captioning performances and is more efficient
for evaluating the attention accuracy.

Index Terms—image captioning, size-invariant attention cor-
rectness, high-resolution residual attention, attention accuracy,
quantitative evaluation metric

I. INTRODUCTION

Image captioning automatically generates captions based on
a comprehensive understanding of the real-world scene [1]–
[16]. It is a challenging multi-modal scene understanding task,
requiring a deep understanding of two completely different
types of media data, i.e., vision and language. Particularly, the
joint modelling of vision and language is the key challenging
part. As a method to address this issue, the spatial visual
attention mechanism has attracted a great deal of research
interests, leading to significant performance improvement for
image captioning [1]–[9], [14], [15]. Generally, the spatial
visual attention mechanism has two roles in bridging the image
encoder and the caption decoder together. The first one is to
map language feature and visual feature into a shared feature
space for joint learning. The second one is to seek the semantic
alignment between words/phrases and relevant visual regions
for extracting a fine-grained visual context feature. In this
way, an accurate attention model can extract a precise visual
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Fig. 1. The overview of our proposed framework. Image (a) and image (b)
are two input examples having the “bus” element of different size. Ground
Truth (GT) attention maps are provided for both images. The “bus” regions
are highlighed with green color.

information for the language decoder to generate high-quality
captions.

However, a proper metric or approach for the quantitative
evaluation on spatial attention mechanism had always been
absent until [15] proposed the first evaluation metric “atten-
tion correctness”. This metric can quantitively evaluate the
attention accuracy by measuring the consistency between the
generated attention map and human-annotated region mask
for the relevant caption word. Specifically, the “attention
correctness” metric is defined as the sum of attention weights
generated for ground truth regions. Using this metric, [15] has
successfully evaluated the improvement of attention accuracy
brought by adding explicit supervision on the attention model.

However, this “attention correctness” metric has three lim-
itations. 1) It cannot consistently measure the attention accu-
racy among elements of the same class but having different
region sizes in the image. Specifically, the numeric value of
this metric tends to be larger for elements of larger size, and
vice versa. Therefore, for the element with large size variance,
this metric would have large evaluation error. Fig. 1 uses a
simple example to illustrate this problem. Image (a) and image



(b) have the same size, but the “bus” element (occupying 83%
area) in the image (a) is much larger than the one (occupying
15% area) in the image (b). For simplicity, lets assume the
attention model can generate the same uniform weight map for
all regions in the image during the caption decoding process.
Accordingly, the “attention correctness” value for the larger
“bus” in the image (a) is 0.83, which is much larger than
the value 0.15 for the smaller one in the image (b). Different
evaluation scores are obtained by the same attention model just
because of the size difference. However, such large numeric
difference is conflicting with the same attention accuracy.
In other words, the numeric value of “attention correctness”
is not equivalent to the ability of attention model across
different element sizes. 2) Moreover, it shows the limited
ability to evaluate attention models in different fine-grained
resolutions either, as our experiment results demonstrate that it
cannot reflect the improvement boosted by higher fine-grained
resolution. 3) Moreover, [15] uses the imprecise bounding box
labels to evaluate the attention accuracy on object regions via
the Flicker30 dataset, which leads to inaccurate evaluations.

To overcome these limitations, we propose an improved
evaluation metric “normalised attention correctness” by nor-
malizing the “attention correctness” metric with the size
percentage of the attended region. By calculating the ratio
of attention correctness to the size percentage, our metric
can capture the density of attention weights in the ground
truth region RGT . This size-invariant feature enables our
metric to perform consistent evaluations on elements across
different sizes and attention resolutions. In particular, it can
be applied to the fine-grained attention model based on the
FCN(Fully Convolutional Network)-LSTM(Long Short-Term
Memory) framework proposed by [8].

To demonstrate the efficiency of our novel metric, we
propose a novel high-resolution residual attention model by
applying the residual attention model [3] into the FCN-LSTM
framework (Fig. 1). To enable high resolutions, we design the
FCN encoder based on the RefineNet [17] model, which is the
state-of-the-art model for high-resolution semantic segmenta-
tion. Specifically, we utilize four high fine-grained resolutions
(i.e., 27 × 27, 40 × 40, 60 × 60, 80 × 80). Furthermore, by
using the COCO-Stuff [18] dataset, we can achieve pixel-
level evaluations on both object and “stuff” regions. Object
regions (e.g., bus, car, bike) have well-defined shapes and
identifiable parts, whereas stuff regions (e.g., sky, grass, water)
are amorphous backgrounds with a strong texture. Moreover,
the size variance of stuff regions is much larger than that of
object regions. Therefore, the size-invariant merit of our metric
can be fully demonstrated by evaluations on stuff regions.

Therefore, targeting the novel high-resolution residual at-
tention model, we use the novel “normalised attention cor-
rectness” metric to perform pixel-level evaluations of attention
accuracy improved by residual attention and fine-grained reso-
lution respectively. Compared with the “attention correctness”,
our metric is more rational and has higher consistency with
the captioning performances. To sum up, this paper has four
major contributions:

1) We propose a high-resolution residual attention model
for image captioning using the RefineNet [17] (Fig. 1)
as the FCN encoder. Compared with [3], our model
is based on the FCN-LSTM framework and supports
fine-grained attention in multiple high-resolutions. Our
attention model is the first one using such high resolution
80× 80.

2) We propose a size-invariant “normalized attention cor-
rectness” metric that can rationally and consistently
evaluate the attention accuracy across different fine-
grained resolutions. Besides the novel metric, we also
use the COCO-Stuff [18] dataset to achieve pixel-level
evaluations on both object and stuff regions.

3) We perform a detailed analysis of the improvement,
for the first time, that the residual attention model has
contributed to the captioning performance, by jointly
analyzing the quantitative evaluations on both attention
model and captioning model.

4) We further demonstrate that our “normalized attention
correctness” metric can more effectively evaluate the
improvements that higher fine-grained resolutions (i.e.,
27× 27, 40× 40, 60× 60, 80× 80) have contributed to
both attention accuracy and captioning performance.

This paper is organized into five sections: This first section
is an introduction, which is followed by the second section
about related works. In section three, our methodology will be
described in detail. Section four will provide the experiment
details. The last section will be a conclusion of this study.

II. RELATED WORKS

Most state-of-the-art spatial visual attention models are
based on the encoder-decoder framework in an end-to-end
trainable way [1]–[5], [8], [14], [15], [19], [20]. The attention
mechanism serves as an agent between the image encoder and
the caption decoder. In generating each word, the mechanism
makes joint inferences and adaptively attends to those semanti-
cally relevant image regions by generating a distinct attention
weight for each region. Based on this weight map, a visual
context feature is summarized through the weighted sum of
all-region features encoded by the image encoder. Then, it
is sent into the caption decoder for language inference and
generation.

Specifically, an accurate attention model should achieve not
only spatial region accuracy but also semantic weight accuracy.
1) The spatial region accuracy means that the attention model
can capture relevant visual regions at a fine-grained level.
It is generally contributed by a powerful image encoder,
which has an accurate way of capturing image regions and
extracting features. 2) The semantic weight accuracy means
that the attention model should accurately assign importance
to relevant regions via a spatial weight map. It needs a
well-designed structure that can strongly seek the semantic
alignment between visual region features and language state
features. 3) However, it is not enough to use captioning per-
formances to compare the performances of attention models.
The quantitative comparison among all attention models needs



an evaluation metric or approach. Therefore, all related works
are discussed based on below three categories:

A. Spatial Region Accuracy Based on Different Image En-
coders

Grid-level attention based on CNN encoder. This atten-
tion model splits the image into equally sized grid regions
based on the grid structure of CNN’s last convolutional layer.
[4] firstly proposed a 14 × 14 grid-resolution soft attention
model based on VGG19 for image captioning. [3] further
proposed a time-wise adaptive attention model, at a 7×7 grid
resolution (ResNet), by introducing a visual sentinel. For each
word generation, this model can automatically determine when
to attend to the image regions and when to simply rely on the
decoder knowledge. Based on the nature of CNN structure, [2]
proposed a novel channel-wise and multi-layer spatial attention
model, which additionally attend to related channels among the
multi-layer feature maps. However, all these attention models
have a fixed low grid resolution, which is difficult to convert
to high resolution to capture fine-grained attention regions.
Specifically, a large object is usually split into different grid
regions, and one grid region usually contains portions of
several objects. This damages the semantic correspondence of
region features.

Object-level attention based on R-CNN encoder. This
attention model can capture object-level regions via the bound-
ing box. [20] proposed an alignment model, based on Region-
CNN (R-CNN) and Bidirectional RNN (BRNN), to infer the
latent alignments between image regions and segments of
sentences by treating the sentences as weak labels. Then, an
end-to-end multimodal RNN model was proposed to generate
descriptions for image regions. To be able to automatically lo-
cate and describe object regions, [19] proposed an end-to-end
trainable Fully Convolutional Localization Network (FCLN)
model to resolve a dense captioning problem, namely local-
izing and describing the salient regions of images. However,
the bounding box is still not fine-grained enough due to the
irregular shape of the object boundary. It inevitably includes
some portions of other objects at its corners. Moreover, it
ignores amorphous stuff regions [18] that does not have a
well-defined shape (e.g., sky, grass, water).

Pixel-level attention based on FCN encoder. This at-
tention model segments the image into all semantic regions
at pixel level. As the only pioneer, [20] proposed the fine-
grained and semantic-guided attention model based on a
novel FCN-LSTM framework. However, constrained by the
GPU computation power, the practical attention resolution was
only increased to 27 × 27. Fine-grained attention in higher
resolutions are not studied so far. In this paper, our attention
model uses the RefineNet [17] as the FCN encoder, which
enables the fine-grained attention model to support a high
resolution up to 80× 80.

B. Semantic Weight Accuracy Based on Different Structures

To improve the structure for semantic alignment, most atten-
tion models focus on how to encode the language state feature.

Soft-attention mechanism [4] is the first spatial visual attention
model proposed for image captioning. It is designed as a
two-layer perception based on the CNN-LSTM framework,
which is used by most state-of-the-art attention models [3],
[8], [9], [15], [19], [20]. They use the hidden state ht−1
of LSTM decoder at previous time t − 1 as the language
state feature. For each time t, it predicts attention weights
by aligning each visual region feature with the hidden states
ht−1 at previous timestep. This model is a weights predictor
because the hidden states ht−1 only contains the knowledge
of previously generated words. The underlying idea is to use
such previous knowledge until t−1 to attend to relevant visual
regions that are responsible for generating a word at the next
time t. However, the knowledge in ht−1 is limited for inferring
relevant regions for a future word.

To resolve this limitation, [3] proposed a novel state-of-
the-art spatial attention model by integrating the idea of the
residual network [21]. Different from the soft-attention model,
it uses the hidden states ht at current timestep t as the
language state feature to generate the attention weights. Here,
ht is generated by an independent LSTM language decoder
and represents the language knowledge until the current time
t. Then, the summarized context feature ct serves as the
residual visual information to rectify the language information
included in ht for generating the next word yt. As a visual
residual model, this attention model plays a role of “corrector”
and rectifies the output of the LSTM language model to
generate an accurate caption. However, no direct evaluations
are provided to demonstrate the improved accuracy of these
attention models in either qualitative or quantitative manner.

C. Quantitative Evaluation on Attention Accuracy

So far, only [15] proposed a metric “attention correctness
to quantitatively evaluate the accuracy of attention model.
However, it only studied whether adding explicit supervision
on attention model can boost the attention accuracy and
captioning performances based on bounding-box labels. More
importantly, its metric is limited for consistently evaluating
the attention accuracy across varying object size and attention
resolutions. In this paper, we improve this metric with size nor-
malization and propose a novel metric “normalized attention
correctness for evaluating our fine-grained residual attention
model based on pixel-level labels.

To the best of our knowledge, our model is the first work to
propose a high-resolution residual attention up to 80× 80 and
perform quantitative evaluations of attention accuracy with a
size-invariant metric across different resolutions.

III. METHOD

We firstly describe our captioning model with high-
resolution residual attention model in Section A, and then fur-
ther introduce our novel “normalized acctention correctness”
metric in Section B.
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Fig. 2. The detailed structure of our high-resolution residual attention model. (Best viewed in color.)

A. Image Captioning Model with High-Resolution Residual
attention

Our image captioning model is based on the FCN-LSTM
framework. Given an image and its corresponding caption, our
image captioning model maximizes the probability of word
sequence:

θθθ∗ = argmax
θ

∑
(III,yyy)

log p(yyy|III;θθθ) (1)

where θθθ represents the model parameters, III is the image, and
y = {y1,y2, · · · ,yt} is the word sequence of corresponding
caption. Based on chain rule, the log likelihood of the joint
probability distribution over y is comprised of TTT conditional
probabilities:

log p(yyy) =

T∑
t=1

log p(yt|yt−1, · · · , y1, III) (2)

where TTT is the total length of the caption. Here, the depen-
dency on model parameters θθθ is removed for convenience.
During the training phase, (III,yyy) is a training image-caption
pair, and the overall optimization objective is the sum of log
probabilities over all training pairs in the training set. During
the testing phase, only image III is fed into the model for
caption generation.

Specifically, our captioning model consists of three com-
ponents: the FCN encoder, the LSTM decoder, and the high-
resolution residual attention model (Fig. 1). It firstly uses the
FCN encoder to extract spatial visual features from the image
at the pixel level. Then, the high-resolution residual attention
model summarizes all relevant region features as the visual
context feature ct for the LSTM decoder to generate captions.

1) FCN Encoder: Particularly designed for the semantic
segmentation task, FCN can directly perform the pixel-wise
classification. To encode the image, our model employs the
FCN to directly extract visual feature for each different pixel
in the image. Specifically, the N × N sized image III can be
represented by the spatial visual features:

V = FCN(III) = {v1, v2, · · · , vk} (3)

where k = N2 is the number of image pixels. Each feature
vi ∈ Rd is a d dimensional representation corresponding

to an image pixel. Our FCN encoder uses the RefineNet
[17], which is a multi-path refinement network based on the
encoder-decoder structure. It is a state-of-the-art model for
high-resolution semantic segmentation. Therefore, we use the
output of the last decoder block RefineNet-1 as the pixel-level
features.

To allow joint modelling of the spatial visual feature V and
the language state feature ht under shared feature space, the
spatial visual features V is mapped to the embedded visual
feature Ve through below feature embedding layer:

Ve = ReLu(WveV + bve) (4)

where ReLu stands for the rectified linear unit.
2) LSTM Decoder: We use the LSTM as the language

decoder to model each conditional probability in (2). At
time t, the previous conditional variable-length word sequence
{y1, y2, · · · , yt−1} and image I are represented by the fixed-
length hidden state ht of LSTM as following:

xt =Weyt−1 (5)

ht = LSTM(xt, ht−1) (6)

Here, yt−1 is the output word at time t − 1. As the current
new input, xt is the word embedding of yt−1 based on the
embedding matrix We. Each word yi is simply encoded as
the one-hot vector. Note that the LSTM is an independent
language decoder that does not use the visual context feature
ct summarized by our attention model. The hidden state ht
is used as the language state feature for attention model to
jointly model both vision and language.

To work in the same shared space with the embedded visual
feature Ve, the language state feature ht is mapped to the
embedded language state feature ht e through below feature
embedding layer:

ht e = ReLu(Wheht + bhe) (7)

Finally, the probability of generating word yt at time t is
modeled based on the embedded language state feature ht e
and the visual context feature ct as follow:

p(yt|yt−1, · · · , y1, III) = softmax(WpZf + bp) (8)

Zf = tanh(Whc(ht e + ct) + bhc) (9)



3) High-Resolution Residual Attention Model:
High-Resolution Attention. Based on the FCN-LSTM

framework, our attention model can employ the RefineNet-
based FCN encoder to capture semantic regions at the pixel
level. Specifically, the FCN encoder can extract visual features
for all pixels, which enables our attention model to attend
to relevant regions with pixel-level accuracy. Practically, con-
strained by limited GPU memory and computation power,
both RefineNet and attention model cannot achieve the full
resolution of the input image. However, by designing an
efficient structure, our attention model can still achieve the
super-pixel-level accuracy at a relatively low resolution. This
is equivalent to a fine-grained grid-wise resolution, where
the super-pixel is a small patch, which can distinguish the
object/stuff boundary more precisely.

Residual Attention. As an independent language model,
the LSTM decoder output the hidden state ht to represent
the language state. The word prediction layer can generate
rational word using only language state feature ht. However,
the residual model can accurately attend to relevant regions
and summarize their visual features as the context feature ct.
This context feature can function as a residual visual feature
and rectify the error of ht. In this way, our high-resolution
residual attention model can help the word prediction layer
to generate high-quality captions. The detailed structure is
illustrated in Fig. 2.

Specifically, our attention model aims to generate an accu-
rate attention weight map based on the embedded spatial visual
feature Ve and embedded language state feature ht e, both of
which share the same feature space. The model is defined as
below:

ct = fatt(ht e, Ve) (10)

Specifically, this attention generation model is specifically
designed as a two-layer perception. The first layer is mainly
responsible for features embedding (11 and 12) and fusion
(13). The overall process can be illustrated in Fig. 2. The fused
feature zt is then fed into the second layer with a softmax
function to generate the attention weights over k grid regions.

Vae =Wv ae(Ve + bV ae) (11)

hae =Wh ae(ht e + bh ae) (12)

zt = tanh(Vae + hae1̂̂1̂1) (13)

αtαtαt = softmax(Wattzt + batt) (14)

where αti represents the attention distribution for the region
location i = 1, 2, ..., k at the time t.

Based on the attention weight map αt, the visual context
feature ct is computed as the weighted sum of embedded visual
features Ve:

ct = αtαtαt · Ve =
k∑
i=1

αtivei (15)

B. “Normalized Attention Correctness” Metric

For the evaluation on attention models in different fine-
grained resolutions, the attention map is rescaled back to
the original resolution of input image with needed weight
normalization. At time t, the binary mask of generated word
is extracted from the ground-truth semantic label map as the
ground truth region for calculating the metric. The “attention
correctness” metric proposed by [15] is defined as:

ACt =
∑

i∈RGT

αti (16)

where αti is the attention weight at location i at time t, and
RGT is the ground truth attention region for the generated
word yt. The metric value ranges from 0 to 1. The value 0
means that the attention model is not working at all and the
value 1 indicates complete correctness. Between 0 and 1, there
is no consistent value point indicating that the attention model
start to function normally.

we propose an improved evaluation metric by normalizing
the “attention correctness” metric with the size percentage of
the attended element in the image. By calculating the ratio
of “attention correctness” to size percentage, our metric can
capture the density of attention weights in the ground truth
region RGT as follow:

ACNt =
ARGT

AImg

∑
i∈RGT

αti (17)

where ARGT
is the area of the ground truth region and AImg

is the image area. The metric value ranges from 0 to ∞ with
the value 1 as the working point. A value larger than 1 means
that the attention model is working and vice versa.

IV. EXPERIMENT

This section firstly specifies datasets, evaluation metrics,
and experiment settings. Then, we discuss the results of two
experiments that evaluate image captioning performances and
the efficiency of “normalized attention correctness”. They can
demonstrate that overall improvements of captioning perfor-
mance are more consistent with this size-invariant attention
accuracy metric.

A. Datasets and Metrics

Our experiments use three datasets. MSCOCO [22] is the
largest dataset for image captioning, with 82,783 training
images, 40,504 validation images, and 40,775 testing images.
This dataset is used for training and testing our captioning
model. For the offline evaluation, we use the same data split
as [4], [6], containing 5000 images for validation and test
respectively. The length of the captions is truncated to be
no larger than 16. The word vocabulary is built with only
those words occurring at least 5 times in the training caption
set, containing about 8443 words. COCO-Stuff [18] is a
semantic-complete dataset for semantic segmentation. In total,
it provides full annotations for all MSCOCO images, including
80 objects, 91 stuff, and 1 unknown background. This dataset
is used for the quantitative evaluation on attention models. Our



TABLE I
PERFORMANCES OF DIFFERENT MODELS ON MSCOCO TEST SPLIT ON ALL METRICS

Attention Model Fine-Grained Resolution B@1 B@2 B@3 B@4 METEOR CIDEr

Soft-Attention

27 × 27 0.688 0.482 0.336 0.238 0.232 0.767
40 × 40 0.692 0.485 0.341 0.241 0.232 0.772
60 × 60 0.692 0.486 0.342 0.243 0.233 0.778
80 × 80 0.693 0.489 0.346 0.247 0.235 0.791

Residual Attention

27 × 27 0.698 0.496 0.357 0.261 0.236 0.810
40 × 40 0.703 0.500 0.360 0.264 0.237 0.815
60 × 60 0.703 0.500 0.361 0.265 0.239 0.821
80 × 80 0.706 0.505 0.366 0.269 0.241 0.838

Original Image Soft-Attention 27×27: A group of sheep standing in a field.

Residual Attention 80×80 (Our): A herd of sheep standing on top of a grass covered field.

Fig. 3. Qualitative Analysis of the Advantages Provided by Higher-Resolution Residual Attention. The attention maps of differently colored boundaries (i.e.,
blue, green, orange and red) correspond to the different words (highlighted by blue, green, orange, or red) in the captions. The three attention maps in the
first row are generated by the soft-attention model in resolution 27×27. The four in the second row are generated by our residual attention mode in 80×80.
The attention-word pairs highlighted blue, green and orange colors are generated by both attention models. The red color pair is only generated by our model.
(Best viewed in color and high resolution.)

RefineNet encoder is pre-trained on the ADE20K dataset [23]
to extract high-quality visual feature, which is a dataset for
scene parsing and includes 150 scene classes.

For image captioning, we use BLEU@N (B@1, B@2,
B@3, B@4) [24], METEOR [25], and CIDEr [26] as the eval-
uation metrics. Our performance comparison mainly focuses
on CIDEr, METEOR, and BLEU@4. For attention accuracy,
we use “Attention Correctness” and our novel “normalized
attention correctness” as the evalution metrics to analyze our
high-resolution residual attention model.

B. Experiment Settings

This section describes the implementation details of our
model and experiments.

Captioning model: The high-resolution RefineNet [17],
designed based on the ResNet-152, is used as the FCN
encoder. The output of the last decoder block RefineNet-1
is extracted as the pixel-level spatial visual features with the
dimension of 256d. The resolution of the extracted feature
map is 1/4 of the original image resolution and is generally
larger than 100× 100. It is still too high for the 15G memory

of Nvidia P5000 GPU. Therefore, we down-scale our highest
resolution to 80×80 by average pooling. A single-layer LSTM
with the hidden size of 1024 is used as the LSTM decoder in
our model. The dimension of word embedding or visual feature
is 512.

Attention model: We use four fine-grained attention res-
olutions (i.e., 27 × 27, 40 × 40, 60 × 60, 80 × 80) to
demonstrate the improvement of captioning performances that
is contributed by increasing fine-grained resolution based on
both soft-attention model and our residual attention model. In
addition, the improvements of attention accuracy is quantita-
tively evaluated via two metrics: “attention correctness” and
our novel “normalized attention correctness”. Furthermore,
attention accuracy is analyzed for object and stuff regions.

Training details: We use the Adam optimizer with a base
learning rate of 0.0001 and dropout ratio 0.5 for training our
image captioning model. The network is trained for up to 30
epochs with early stopping if the CIDEr [26] score had not
improved over the last 4 epochs. We use the beam size of 3
when sampling the caption for MSCOCO.
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Fig. 4. The comparisons of captioning performances between soft-attention model and our residual attention model across four fine-grained resolutions (i.e.,
27 × 27, 40 × 40, 60 × 60, 80 × 80). (Best viewed in color.)
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C. Experiment-1: Evaluation on Image Captioning Perfor-
mance by Increasing Resolution and Using New Residual
Attention Model

This experiment aims to evaluate the captioning perfor-
mance that is improved by two dimensions: 1) high fine-
grained resolution and 2) novel residual attention model. The
captioning performances of both soft-attention model and
residual attention model are all evaluated in four fine-grained
resolutions (i.e., 27×27, 40×40, 60×60, 80×80). From Table
I, all metric scores consistently demonstrate that 1) higher fine-
grained resolution lead to a better captioning performance for
both attention models and 2) the residual attention model is
significantly better than the soft-attention model in all fine-
grained resolutions. By comparing the performances of the
soft-attention model in resolution 80 × 80 and the residual
attention model in 27 × 27, we can see that the contribution
of residual attention is larger than that of higher resolution.
Also, these improvements are clearly shown by Fig. 4. The
residual attention model in resolution 80 × 80 has the best

performance. This ablated study uses captioning results to
demonstrate that the high-resolution residual attention is a
better attention model.

The qualitative analysis of attention maps and captions
are shown in Fig. 3. For words “sheep” and “field”, our
residual attention model (80 × 80) can accurately attend to
relevant regions , particularly in boundary regions. For word
“standing”, our model can attend to those leg regions that are
most relevant to the action “standing”. Moreover, our model
can attend to regions of “grass” field.

D. Experiment-2: Evaluation on the Efficiency of the Proposed
“normalized attention correctness” Metric for Measuring At-
tention Accuracy

This experiment aims to evaluate the efficiency of our
“normalized attention correctness” metric for measuring the
extent, to which attention accuracy is improved by 1) high
fine-grained resolution and 2) novel residual attention model.

Our intuitive expectation is that the region accuracy of atten-
tion model would be increased by high fine-grained resolution



because of that boundary regions can be distinguished more
precisely. At the object/stuff boundary, the grid patch contains
pixels of both this object/stuff and its neighbors (including
other object/stuff). Higher attention resolution means smaller
grid patch, which could decrease noisy pixels from neighbor
objects/stuff. As object is usually small in size and have
identified parts, the improvement to boundary regions would
be significant. For stuff with large size and repeated texture,
this improvement would be minor.

Firstly, we use both metrics to evaluate the accuracy
performances of residual attention and soft-attention models
across four fine-grained resolutions. In Fig. 5 chart (b), the
performances of residual attention model evaluated by “atten-
tion correctness” is conflicting with both our expectation and
captioning performances in experiment 1. The metric values
of resolution 40 × 40 and 60 × 60 are unexpectedly lower
than that of resolution 27 × 27. For resolution 60 × 60, the
performance of residual attention is significantly lower than
that of soft-attention model. However, the performances of our
“normalized attention correctness” metric shown in Fig.4 chart
(a) are quite consistent with our expectation and captioning
performances. Therefore, our metric is more rational and
efficient than the “attention correctness”.

Then, for our residual attention model, we further compare
two metrics’ evaluations on both object and stuff regions.
In Fig. 6 chart (a), the accuracy performances of our metric
are quite consistent with our expectation. Increasing attention
resolution can significantly boost attention accuracy for object
regions, but rather slightly for stuff regions. However, the
results in Fig. 6 chart (b) shows inconsistent improvements
from resolution 27×27 to 60×60 for object and stuff regions.

V. CONCLUSION

In this paper, we proposed a rational metric “normalized
attention correctness” for the quantitative evaluation on atten-
tion accuracy. To demonstrate the efficiency of our metric, we
also proposed the high-resolution residual attention model for
image captioning based on the FCN-LSTM encoder. By using
the MSCOCO and COCO-Stuff datasets, our experiments
demonstrate that both high fine-grained resolution and residual
attention can boost the attention accuracy and hence captioning
performances. Moreover, our “normalized attention correct-
ness” metric is more consistent with intuitive expectations
and captioning performances for the quantitative evaluation
on the attention accuracy. Future researches can focus on the
object-size analysis of high-resolution attention or the explicit
supervision on attention model.
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