
“© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works.”



Deep Bi-Dense Networks for Image
Super-Resolution

Yucheng Wang∗1, Jialiang Shen∗2, and Jian Zhang2

1Intelligent Driving Group, Baidu Inc
2Multimedia and Data Analytics Lab, University of Technology Sydney

wangyucheng@baidu.com, jialiang.shen@student.uts.edu.au, jian.zhang@uts.edu.au

Abstract—This paper proposes Deep Bi-Dense Networks (DBD-
N) for single image super-resolution. Our approach extends pre-
vious intra-block dense connection approaches by including novel
inter-block dense connections. In this way, feature information
propagates from a single dense block to all subsequent blocks,
instead of to a single successor.

To build a DBDN, we firstly construct intra-dense blocks,
which extract and compress abundant local features via densely
connected convolutional layers and compression layers for further
feature learning. Then, we use an inter-block dense net to
connect intra-dense blocks, which allow each intra-dense block
propagates its own local features to all successors. Additionally,
our bi-dense construction connects each block to the output,
alleviating the vanishing gradient problems in training. The
evaluation of our proposed method on five benchmark data sets
shows that our DBDN outperforms the state of the art in SISR
with a moderate number of network parameters.

Index Terms—Image super-resolution, CNN, Dense connection

I. INTRODUCTION

The process of reconstructing high-resolution (HR) images
from their low-resolution images (LR) is referred as super-
resolution (SR). SR has a wide range of applications, such
as medical imaging [4], satellite imaging [23], and security
surveillance [21]. Image SR methods can be roughly divided
into three categories: (1) interpolation-based methods, such
as nearest neighbouring interpolation, bilinear interpolation,
and bicubic interpolation [3], which assume that the intensity
at a position on the HR image can be interpolated from
its neighbouring pixels on the corresponding LR image. (2)
Optimisation-based methods [12] often model the problem by
finding the optimum of an energy function, which consists of
a data observation term from LR image and a regularisation
term from various assumptions and hypotheses. (3) Learning-
based methods, directly learn the mapping function from the
LR image to the HR image [24].

Driven by the emergence of large-scale data sets and fast
development of computation power, learning-based methods
especially using deep neural networks [1] [5] [6] [7] have
proven effective for image SR. However, as CNNs become
increasingly deep, a new problem emerges: as the gradient
passes through many layers, it can vanish by the time it reaches

∗ equal contribution

HR
(PSNR/SSIM)

Bicubic
(24.38/0.6429)

EDSR
(27.89/0.7945)

RDN
(27.96/0.7948)

DBDN+(ours)
(28.59/0.8402)

DBDN(ours)
(28.30/0.7948)

Fig. 1. Super-resolution result of our method on 4× enlargement compared
with existing algorithms

the beginning of the network. Many recent publications, such
as VDSR and DRCN [6] [7] address this or related problems.
These approaches vary in network topology and training
procedure, but they share a common characteristic: they create
short skip connections from early to later layers. Among these
methods, the most well-known one is SRResNet [8]. To ease
optimization, SRResNet adds skip connections that bypass
the non-linear transformations with identity functions. Lim et
al. optimize the residual network in EDSR [14] for image
SR by removing unnecessary modules and achieve excellent
performance on the benchmark datasets. Tai et al. propose
multiple memory-efficient residual network structures by using
recursive-supervision, such as DRRN [5] and MemNet [25].
Although residual networks have proven to facilitate gradient
flow in training, performance is limited by constraining feature
reuse to one early layer, rather than all of the layers in a block.

In order to maximize the use of feature layers in the block,
Dense Convolutional Network (DenseNet) [26] was proposed
to archive higher performance than ResNet [8]. In contrast
to ResNets, DenseNet has two modifications. First, instead of
summation, DenseNet concatenates layers to preserve features
for subsequent reuse. Second, instead of connecting two layers
in the residual block, DenseNet [26] connects all the layers



in the block. This modification helps DenseNet to achieve
better performance with fewer parameters than ResNet. This
result indicates that feature learned at the early layers of the
network matter to the task of SR, Therefore, by making more
use of information in the feature layers, performance can be
boosted. Inspired by the success of DenseNet [26] in image
classification, Tong et al. [15] propose SRDenseNet for image
SR. They remove the pooling layers of DenseNet [26] to make
it more suitable for image SR. Then they add skip connections
between the blocks to mitigate the training of SRDenseNet
[15]. Zhang et al. [13] also introduce the dense blocks in
RDN. Compared with SRDenseNet [15], RDN [13] uses larger
growth rates and deep supervision to further improving the
performance. However, all of these methods only reuse the
local feature layers in the dense block, and pass on the block
information to one neighbour block for feature learning. Haris
et al. [32] propose DBPN which is constructed by iterative up-
and down- sampling blocks. All the early upsampling blocks
are concatenated as the input for the next downsampling block,
or all the early downsampling blocks are concatenated as the
input for the next upsampling block. Therefore, each block
information can’t be reused by all the other blocks, which
restricts the block information flow during propagation.

In order to make better use of block information, we propose
a deep bi-dense network (DBDN) to enhance block informa-
tion flow by introducing a novel inter-block dense connection
to the network. DBDN is built by intra-dense blocks and an
inter-block dense net. Each layer connects to all the other
layers in the intra-dense block and the output of the intra-
dense block is the compressed concatenation of each layer
features in the block. Then, we use an inter-block dense net
to connect these blocks. So each intra-dense block propagates
its own local features to all successors. We reconstruct the SR
image through concatenating all the blocks’ outputs, forming
a direct supervision pattern. For this reason, each block has
direct access to the gradient from the loss function and ground
truth. Due to the bi-dense architecture in the network, our
DBDN outperforms the state-of-art methods on the benchmark
datasets.

In summary, our work provides the following contributions:
1) Bi-dense architecture : We propose a novel model called

DBDN for image SR tasks. The model not only reuses local
feature layers in the dense block, but also reuses the block
information in the network to archive excellent performance
with moderate parameter numbers.

2) Intra-block dense connection: We propose a compact
intra-dense block where each layer is connected to every
other layer to learn local features. Then, in order to preserve
feature information and keep the model compact, we use the
compressed concatenation of all layers’ output in the block as
the block output.

3) Inter-block dense connection: We introduce an inter-
block dense net for high-level feature learning. Since the
features learned in the early blocks of the network matter to
the task of SR, we use inter-block dense connection to allow
all of the early block information to be reused to learn the later

block features. Furthermore, as all blocks have access to the
output, the ground truth will directly supervise each block. The
direct supervision alleviates the effect of vanishing/exploding
gradients, and further improves the directness and transparency
of the network.

II. RELATED WORKS

Since we overview learning-based methods in the introduc-
tion section, in this section we will focus on the three works
that are most related to ours: DenseNet [26], SRDenseNet [15],
and RDN [13]. To not lose generality, only two blocks are
shown in Fig. 2. to describe these models.

A. DenseNet

The main idea of DenseNet [26] is to connect each layer
to every other layer in a feed-forward network, in order
to alleviate the vanishing gradient problems, strengthen fea-
ture propagation, and encourage feature reuse in the training
of very deep networks. To implement the idea, the author
proposes a dense connectivity mechanism as shown in Fig.
2(a), where each layer obtains additional inputs from all the
preceding layers and passes on its own feature maps to all
subsequent layers. Denoting the input of each block as x0,
and the ℓth layer in the dense block as Hℓ, then the output of
the ℓth layer xℓ in the block can be described as:

xℓ = Hℓ([x0, x1, ..., xℓ−1]) (1)

Here [x0, x1, ..., xℓ−1] refers to the concatenation of layers
produced before the ℓth layer. Hℓ(.) is a composite function of
three consecutive operations: Batch Normalization (BN) [11],
followed by a rectified linear unit (ReLU) [12], and a 3 × 3
Convolution (Conv). Supposing the bth dense block structure
has ℓ layers, then the output of the bth dense block is:

Bb = [x0, x1, ..., xℓ−1, xℓ] (2)

Transition layers and pooling layers connect such dense
blocks into line and change the block feature dimensions to
construct the network. Although the dense connectivity in the
dense blocks fulfills the idea of connecting each layer to all
the other layers in the blocks. Stacking the dense blocks to
construct DenseNet [26], restricts the block information flow.
Furthermore, the dense block in DenseNet [26] is designed for
image recognition task, but it is not suitable for image SR and
therefore needs to be adjusted for SR design.

B. SRDenseNet

Observing the efficiency of the dense block in DenseNet
[26], SRDenseNet [15] first introduces the dense connectivity
into image SR. As shown in Fig. 2(b), the dense block in
SRDenseNet [15] has the same structure as DenseNet [26].
However, SRDenseNet [15] removes the transition layers and
pooling layers. To keep the image detail information, removing
the pooling layers is necessary in SR tasks. However, removing
the transition layers will limit the setting of the feature layer
channels. Then SRDenseNet adds skip connection between
each block output and the network input, which helps to



(a) DenseNet

(b) SRDenseNet

(c) RDN

(d) DBDN

BN Re
LU Co
nv

inp
ut BN Re
LU Co
nv BN Re
LU Co
nv BN Re
LU Co
nvBN Re
LU Co
nv

ou
tpu

t

inp
ut

Co
nv

ou
tpu

t

inp
ut

Co
nv

ou
tpu

t

Co
nv

Co
nca

t

inp
ut

Co
nv

ou
tpu

t

Co
nv

Co
nca

t

Co
nv

Co
nca

t

Po
olin

g

Co
nv

Co
nv

BN Re
LU Co
nv BN Re
LU Co
nv BN Re
LU Co
nv BN Re
LU Co
nv

Po
olin

g

BN Re
LU Co
nv BN Re
LU Co
nv BN Re
LU Co
nv BN Re
LU Co
nv BN Re
LU Co
nv BN Re
LU Co
nv

Re
LUCo
nv

Re
LUCo
nv

Re
LUCo
nv

Re
LUCo
nv

Re
LUCo
nv

Re
LUCo
nvCo
nv

Co
nv

Re
LUCo
nv

Re
LUCo
nv

Re
LUCo
nv

Co
nv

Re
LUCo
nv

Re
LUCo
nv

Re
LUCo
nv

Co
nv

Fig. 2. Simplified structure of (a) DenseNet [26]. The green lines and layers denote the connections and layers in the dense block, and the yellow layers
denote the transition and pooling layer. (b) SRDenseNet [15]. The green layers are the same dense block structures as those in DenseNet. The purple lines
and element-wise

⊕
refer to the skip conection. (c) RDN [13]. The yellow lines denote concatenating the blocks output for reconstruction and the green

layers are residual dense blocks. (d) DBDN. The yellow lines and layers denote the inter-block dense connection and the green layers are the intra dense
blocks. The output goes into upsampling reconstruction layers. The orange layers after input are the feature extraction layers in all models.

improve the network performance compared to only stacking
the dense blocks. Therefore the output of the bth dense block
can be defined as

Bb = [x0, x1, ..., xl−1, xl] + x (3)

Here x is the low level extracted features after convolutional
layer. Furthermore, SRDenseNet [15] has proven that adding
a reasonable amount of skip connection between the blocks
in the DenseNet [26] can improve the SR reconstruction
performance. For this reason, ensuring more block information
flow will potentially boost the image reconstruction accuracy.

C. RDN

Compared with SRDenseNet [15] and DenseNet [26], RDN
[13] is more suitable for SR tasks. There are several notes
for RDN: (1) Unlike SRDenseNet [15] and DenseNet [26]
that use a composite function of three consecutive operations
Hℓ(.) : BN, ReLU and Conv for each layer in dense block,
inspired by EDSR [14], RDN removes the BN module in the
layer. The adjusted dense layers achieve better performance
with fewer parameters compared with the original dense layers
design in the SRDenseNet and DenseNet. (2) RDN [13] uses
a larger growth rate in covolutional layers, which allows it
to learn more features compared with SRDenseNet [15]. In
SRDenseNet, the growth rate is 16, but RDN has 64 growth
rates. The wider network design benefits RDN and helps it
to achieve higher performance. (3) They concatenate all the
block output for reconstruction, which alleviates the gradient
vanishing problems in the deep network structure. Therefore,
the output of the bth residual dense block structure Bb can be
defined as

Bb = Fb([x0, x1, ..., xl−1, xl]) + x0 (4)

, Here Fb denotes the feature fusion function in the bth residual
dense block. And The output for the reconstruction layer R can

be described as

R = F ([B0, B1, ..., Bb−1, Bb]) +B0 (5)

, Here F denotes the global feature fusion function in the
network. Although RDN concatenates all of the blocks’ output
for reconstruction at the end of the network, they don’t reuse
the block information by dense connection to learn features.
Since the block only receives one early block information, and
can’t reuse all the early blocks information. It may lead to the
block information and gradient loss during propagation. In this
reason, we propose DBDN to reinforce the block information
flow in the network.

III. METHODS

A. Network structure

The network is used to estimate a HR image ISR from
a given LR image ILR , which is downscaled from the
corresponding original HR image IHR. Our proposed network
structure is outlined in Fig. 3. The network can be divided
into several sub-network structures: feature extraction layers
for learning the low-level features, inter-block dense net for
learning the high-level features, and upsampling reconstruction
layers to learn upsampling features and to produce the target
HR image. Here, Conv(f, n) denotes one convolutional layer,
where f is the filter size and n is the number of filters.

We use one convolutional layer to extract the low-level
features L0 from input images ILR:

L0 = Conv(3, nr)(ILR) (6)

Here the feature extraction layer produces nr channel features
for further feature learning and global skip connection.

Following the initial feature extraction layer is the inter-
block dense net. The Inter-block dense net is the main com-
ponent to learn features for SR, where intra-dense blocks are
densely connected to learn high-level features. Then we further



Co
nv

De
co

nvIntra Dense
Block

Intra Dense
Block

Intra Dense
Block

Intra Dense
Block

T G

Feature
extraction Inter-block dense net

Upsampling
reconstruction

𝐿𝐿0
𝐻𝐻1 𝐻𝐻2 𝐻𝐻𝐵𝐵−1 𝐻𝐻𝐵𝐵 𝐹𝐹𝑢𝑢𝑢𝑢 𝐹𝐹𝑟𝑟𝑟𝑟

Sh
uff

le

Co
nv

𝐼𝐼𝐿𝐿𝐿𝐿
𝐼𝐼𝑆𝑆𝐿𝐿

Co
nv

Co
nv

Fig. 3. Network structure

use the compression layer to compress the output features and
skip connection between the inter-block dense net input and
output to mitigate the training of network. The output of the
inter-block dense net G can be obtained by

G = HInter(L
0) (7)

Here HInter denotes the function of the inter-block dense net.
More details about the inter-block dense net will be given in
the next subsection.

For upsampling layers, there are two different types of
upsampling sub-networks, which are illustrated in Fig. 4.
One is called the deconvolution [20] layer and is an inverse
operation of a convolution layer, which can learn diverse
upsampling filters that work jointly for predicting the HR
images. The other one is called the sub-pixel convolutional
layer [19], where the ISR image is achieved by the period
shuffling features produced by the previous convolution layer.
In order to have a fair comparison with EDSR [14] and
RDN [13], we propose the baseline models with deconvolution
layer for upsampling as DBDN and the model with sub-pixel
upsampling layer as DBDN plus (DBDN+). Finally the target
HR image is formulated as:

ISR = Conv(3, 3)(Fup(G)) (8)

Here, Fup denotes the upsampling layer and the reconstruction
layer is a three-channel output convolutional layer.

B. Inter-block dense net

Now we present more details about our proposed inter-block
dense net. As shown in Fig. 3, Our inter-block dense net con-
sists of inter-block dense connections, a global compression
layer and a global skip connection .

1) Inter-block dense connection: In order to enhance the
block features and gradient flow, we densely connect the intra
dense blocks to further reuse the blocks’ information. The
input for each block is the concatenation of all preceding
blocks and the output of each block passes on to all the
subsequent blocks. Supposing we have B intra dense blocks.
The input of the Bth intra-dense block can be formulated as:

LB = [H1,H2, ..., HB−1] (9)

Here Hb denotes the output of the bth intra-dense block. More
details about the intra-dense block will be shown in next
subsection. And The output of the densely connected B intra-
dense blocks H can be formulated as:

H = [H1,H2, ..., HB ] (10)

Our inter-block dense connection makes more use of the fea-
ture layers and archives better SR performance compared with
RDN [13] and SRDenseNet [15]. RDN and SRDenseNet use
skip connections between blocks to pass only one early block
information to the block, but our inter-block dense connection
preserves and passes on all early blocks to the block. We also
demonstrate the effectiveness of inter-block dense connection
in experiment section, and the results indicate that inter-block
dense connection is crucial for image SR.

2) Global compression layer: After producing high level
features, we compress the concatenation of all block features
into nr channel features with one compression layer. We use
one 1× 1 convolutional layer as the compression layer.

T = Conv(1, nr)(H) (11)

Here T denotes the output of the global compression layer.
3) Global skip connection: We add the global skip con-

nection between the input L0 and the output T of inter-block
dense net.

G = T + L0 (12)

Here, G denotes the output of global skip connection. Since the
input and output features are highly correlated in SR. Adding
a global skip connection that bypasses the input features with
an identity function can help gradient flow and mitigate the
training of network.

C. Intra-dense blocks

The intra-dense block is presented in Fig. 4, which con-
tains input compression layer, densely connected layers, out-
put compression layer and the skip connection. Here, let
convib(f, n) be the ith convolutional layer in the bth intra-
dense block, where f is the filter size and n is the number of
filters.



Co
nv

Re
lu

Re
lu

Re
lu

Re
lu

Co
nv

Co
nv

Co
nv

Co
nv

𝐿𝐿𝑏𝑏 𝐿𝐿𝑏𝑏0 𝐿𝐿𝑏𝑏1 𝐿𝐿𝑏𝑏1 𝐿𝐿𝑏𝑏𝐿𝐿−1 𝐿𝐿𝑏𝑏𝐿𝐿 𝐻𝐻𝑏𝑏Co
nv

𝐶𝐶𝑏𝑏

Fig. 4. Intra dense blocks

1) Input compression layer: Since the input of the bth intra-
dense block Lb is the concatenation of all the preceding blocks,
as the block number increases, the dimension of Lb becomes
very large. In order to keep the model compact, the input
compression layer is used to reduce the feature dimension into
nr before entering the dense layers.

We denote the result of input compression layer in the bth
intra-dense block as L0

b and it can be formulated as:

L0
b = conv0b (1, nr)(Lb) (13)

2) Densely connected layers: After reducing the feature
vector dimension, a set of densely connected layers are used to
learn the high-level features. The ith layer receives the features
of all the preceding layers as input. We assume the densely
connected layers have L layers and each convolution layer is
followed by an ReLU function. Let Li

b be the ith layer output
in the bth intra dense block. The layer can then be expressed
as:

Li
b = max(0, convib(3, ng)([L

0
b , L

1
b , ..., L

i−1
b ])) (14)

Here [L0
b , L

1
b , ..., L

i−1
b ] refers to the concatenation of the

features produced in all preceding layers of the ith layer in the
bth intra dense block. Since each layer generates ng dimension
features and passes on the ng dimension features to all the
subsequent layers, the output of dense connected layers will
have nr + ng × L features.

3) Output compression layer: In order to make the model
more compact, we need to reduce feature dimension after
densely connected layers. Inspired by the bottle neck structure
[31], We add one convolutional layer convb(1, nr) as the
output compression layer after the densely connected layers
to compress the feature dimension from nr + ng × L to nr.

Cb = convL+1
b (1, nr)([L

0
b , L

1
b , ..., L

L
b ]) (15)

Here Cb denotes the features of output compression layer in
the bth intra-dense block. The reason for adding compression
layer is that as model gets deeper and ng becomes larger, the
deep densely connected layers without a compression layer are
more likely to overfitting and will consume a larger number of
parameters without a better performance than the model with

the compression layer [26]. In experiment section, we discuss
the importance of compression layer in our model.

4) Local skip connection: Local skip connection is added
between the input and output compression layer to help
gradient flow during the training of network. Therefore the
output of intra-block dense blocks Hb is:

Hb = Cb + L0
b (16)

It should be noted that our intra dense block is different from
the dense blocks used in DenseNet [26], SRDenseNet [15], and
RDN [13]. As shown in Fig. 2, compared with the dense block
used in DenseNet and SRDenseNet, our intra-dense block is
more suitable for SR tasks, by removing BN module to keep
the image details and adding compression layer to allow wider
and deeper network design. Because of our inter-block dense
connection, we add an input compression layer in the intra-
dense block to develop the network which is different from
the residual dense block in RDN.

IV. EXPERIMENT

A. Implementation and training details

In the proposed networks, the convolutional layers in the
dense connected blocks, transition layer and reconstruction
layer are 3 × 3 filter size convolutional layers with one
padding and one striding. The feature vector of the ex-
traction layer, transition layer and deconvolutional layer is
nr = 64 dimension. The base model structure has 16 intra-
dense blocks and each block has 8 dense layers. Here we
set the feature dimension in each dense connected layer as
ng = nr. In the upsampling sub-network of DBDN, for 2×
augmentation, we use a 6 × 6 deconvolutional layer with
two striding and two padding. Then, for 3× augmentation,
we use a 9 × 9 deconvolutional layer with three striding
and three padding. Finally, for 4× augmentation, we use two
successive 6× 6 deconvolutional layers with two striding and
two padding. In the upsampling sub-network of DBDN+, we
use a Conv(3, a2∗nr) convolutional layer followed by a pixel
shuffle layer for a× augmentation, (a=2,3,4). We use the same
training datasets as EDSR [14], the images from Flicker. To
generate the LR image, we downscale the HR images using the
bicubic interpolation with scale factors of 2×, 3× and 4×. In



TABLE I
Public benchmark test results and Manga109 results (PSNR(dB)/SSIM). Red indicates the best performance and blue indicates the second best.

Datasets Scale Bicubic VDSR [7] LapSRN [16] DRRN [6] SRDensenet [15] EDSR [14] RDN [13] DBPN [32] DBDN(ours) DBDN+(ours)

Set5
2× 33.66/0.9929 37.53/0.9587 37.52/0.9591 37.74/0.9591 -/- 38.11/0.9601 38.24/0.9614 38.09/0.9600 38.30/0.9617 38.35/0.9618
3× 30.39/0.8682 33.66/0.9124 33.82/0.9227 34.03/0.9244 -/- 34.65/0.9282 34.71/0.9296 -/- 34.76/0.9299 34.83/0.9303
4× 28.42/0.8104 31.35/0.8838 31.54/0.8855 31.68/0.8888 32.02/0.8934 32.46/0.8968 32.47/0.8990 32.47/0.8980 32.54/0.8991 32.70/0.9006

Set14
2× 30.24/0.8688 33.03/0.9124 33.08/0.9130 33.23/0.9136 -/- 33.92/0.9195 34.01/0.9212 33.85/0.9190 34.20/0.9224 34.34/0.9239
3× 27.55/0.7742 29.28/0.8209 29.77/0.8314 29.96/0.8349 -/- 30.52/0.8462 30.57/0.8468 -/- 30.63/0.8478 30.75/0.8495
4× 26.00/0.7027 28.01/0.7674 28.19/0.7720 28.21/0.7721 28.50/0.7782 28.80/0.7876 28.81/0.7871 28.82/0.7860 28.89/0.7890 29.00/0.7908

BSD100
2× 29.56/0.8431 31.90/0.8960 31.80/0.8950 32.05/0.8973 -/- 32.32/0.9013 32.34/0.9017 32.27/0.9000 32.39/0.9022 32.45/0.9028
3× 27.21/0.7385 28.82/0.7976 28.82/0.7973 28.95/0.8004 -/- 29.25/0.8093 29.26/0.8093 -/- 29.31/0.8104 29.37/0.8112
4× 25.96/0.6675 27.29/0.7251 27.32/0.7280 27.38/0.7284 27.53/0.7337 27.71/0.7420 27.72/0.7418 27.72/0.7400 27.76/0.7426 27.84/0.7446

Urban100
2× 26.88/0.8403 30.76/0.8946 30.41/0.9101 31.23/0.9188 -/- 32.93/0.9351 32.84/0.9347 32.51/0.9321 32.98/0.9364 33.36/0.9389
3× 24.46/0.7349 26.24/0.7989 27.14/0.8272 27.53/0.8378 -/- 28.80/0.8653 28.79/0.8655 -/- 28.96/0.8682 29.17/0.8715
4× 23.14/0.6577 25.18/0.7524 25.21/0.7553 25.44/0.7638 26.05/0.7819 26.64/0.8033 26.61/0.8028 26.38/0.7945 26.70/0.8050 27.00/0.8117

Manga109
2× 30.80/0.9339 37.16/0.9739 37.27/0.9740 37.60/0.9736 -/- 38.96/0.9769 39.18/0.9780 38.89/0.9775 39.46/0.9788 39.65/0.9793
3× 26.95/0.8556 31.48/0.9317 32.19/0.9334 32.42/0.9359 -/- 34.17/0.9473 34.13/0.9484 -/- 34.46/0.9498 34.80/0.9512
4× 24.89/0.7866 27.82/0.8856 29.09/0.8893 29.18/0.8914 27.83/0.8782 31.11/0.9148 31.00/0.9151 30.91/0.9137 31.23/0.9169 31.68/0.9198

training batch, we use a batch size of 16 HR patches with the
size of 96×96 as the targets and the corresponding LR patches
with the size corresponding to the scale factors as inputs. We
randomly augment the patches by flipping and rotating before
training. To keep the image details, instead of transforming
the RGB patches into a YCbCr space and only training the
Y-channel image information, we use the 3-channel image
information from the RGB for training. The entire network
is optimized by Adam [18] with L1 loss by setting β1 = 0.9,
β2 = 0.999, and ϵ = 10−8. The learning rate is initially set to
10−4 and halved at every 2× 105 minibatch updates for 106

total minibatch updates.

B. Comparison with state-of-art models

To confirm the ability of the proposed network, we per-
formed several experiments and analyses. We compared our
network with seven state-of-the-art image SR methods: VDSR
[7], LapSRN [16], DRRN [6], SRDenseNet [15], EDSR [14],
RDN [13] and DBPN [32]. We carried out the test exper-
iments using five datasets: Set5 [27], Set14 [28], BSD100
[29], Urban100 [30], and Manga109 [17]. Set5, Set14 and
BSD100 are about nature scenes. Urban100 contains urban
building structures and Manga109 is a dataset of Japanese
manga. Table. I shows the quantitative results comparisons
for 2×, 3×, 4× SR. For comparison, we measure PSNR and
SSIM [10] on the Y-channel and ignore the same amount of
pixels as scales from the border. Note that higher PSNR and
SSIM values indicate better quality. Our methods qualitatively
outperform other CNN models with all scale factors in PSNR
and SSIM. Compared to the light version CNN networks,
DBDN outperforms them more than 1 dB in PSNR; Compared
with the recent heavy version CNN networks, DBDN excels
EDSR, RDN and DBPN about 0.1 dB in PSNR. Specifically,
for the Manga109 test dataset, our models exhibit significant
improvements compared with the other state-of-art methods.
Furthermore, DBDN plus surpasses DBDN about 0.1 dB.

We also provide visual comparison results as qualitative
comparisons. Fig. 5 shows the visual comparisons on the 2×
scale. For image ’barbara’, all our methods can recover sharper
and clearer pattern that are subjectively closer to the ground
truth, while most of the compared methods generate blurred
or biased cloth pattern. Similarly, for image ’img061’ in the

Urban100 dataset, all our methods can accurately recover
the building structures. However, all the compared methods
produce biased building lines. Fig. 6 illustrates the qualitative
analysis on the 4× scale. Our methods suppress the blurring
artifacts, recover patterns closer to the ground truths and
exhibit better-looking SR outputs compared with the previous
methods. This comparison demonstrates the effectiveness of
our methods for image SR tasks.

C. Model analysis

1) Number of parameters: To demonstrate the compactness
of our model, we compare the model performance and network
parameters of our model with existing deep networks for
image SR in Fig. 7. Our model shows the trade-off between
the parameter demands and performance. Since VDSR [7],
DRRN [6], LapSRN [16]and SRDenseNet [15] are all light
version networks, they all visibly concede the performance
for the model parameter numbers. Although DBDN has more
parameters than DBPN [32], DBDN has about 0.1dB higher
performance than DBPN on Set5 for 4× enlargement. Com-
pared with EDSR [14], which is one of the previous best
performances, our DBDN network achieves the higher per-
formance with about 58% fewer parameters. Compared with
RDN [13], DBDN achieves about 0.1 dB higher performance
on Set5 for 4× enlargement with the same parameter numbers
as RDN. Moreover, our DBDN+ outperforms all the other
methods by a large margin with the same parameter numbers
as DBDN.

2) Ablation investigation: In this section, we will analyze
the effects of different network modules on the model perfor-
mance. Since skip connection has been discussed in many deep
learning methods [13] [6] [15], we focus on the effects of the
compression layer and the inter-block dense connection in our
model. To demonstrate the effectiveness of the compression
layer, we create a network without compression layer between
the blocks. In order to form a fair comparison with the baseline
model, the depth and number of parameters are kept the same
for both methods. Therefore we set the model to have 128
convolutional layers in the block, each layer with 16 filters
of the size of 3 × 3 and only one dense block to construct
the total network. We denote this model as DBDN-W/O-
Comp. To demonstrate the effectiveness of the inter-block



HR Bicubic VDSR LapSRN

EDSR RDN DBDN(ours)

DRRN
(PSNR/SSIM) (26.67/0.8313) (26.89/0.8667) (27.06/0.8668) (26.47/0.8655)

(28.99/0.8988) (30.41/0.9132) (30.57/0.9187)

(PSNR/SSIM) (25.24/0.8283) (27.01/0.8926) (27.41/0.9047) (27.79/0.9122)

(31.66/0.9541) (30.62/0.9475) (33.63/0.9657)

DBDN+(ours)

(32.44/0.9577)

(31.37/0.9291)

HR Bicubic VDSR LapSRN DRRN

EDSR RDN DBDN(ours) DBDN+(ours)

(29.30/0.9013)
DBPN

DBPN
(30.52/0.9434)

Fig. 5. Qualitative comparison of our model with other works on ×2 super-resolution. Red indicates the best performance and blue indicates the second
best.

(PSNR/SSIM) (15.26/0.4182) (16.55/0.5567) (17.01/0.5981) (17.11/0.6121)

(19.13/0.6779) (19.18/0.6769) (19.57/0.6906) (19.58/0.6908)

HR Bicubic VDSR DRRN SRDenseNet

EDSR RDN DBDN(ours) DBDN+(ours)

(PSNR/SSIM) (23.34/0.7760) (25.32/0.8402) (25.61/0.8583) (25.85/0.8433)

(29.04/0.9243) (28.25/0.9121) (29.31/0.9263) (29.67/0.9312)

HR Bicubic VDSR DRRN SRDenseNet

EDSR RDN DBDN(ours) DBDN+(ours)

(18.92/0.6601)
DBPN

(28.27/0.9079)
DBPN

Fig. 6. Qualitative comparison of our model with other works on ×4 super-resolution. Red indicates the best performance and blue indicates the second
best.

VDSR

LapSRN

DRRN

SRDenseNet

EDSR

RDN

DBDN

DBDN+

DBPN

31.2

31.4

31.6

31.8

32

32.2

32.4

32.6

32.8

0 10000 20000 30000 40000 50000

PS
N

R(
dB

)

Number of parameters(k)

Fig. 7. Performance vs number of parameters. The results are evaluated
with Set5 for 4× enlargement. Red indicates the best performance and blue
indicates the second best.

dense connection, we chained the intra-dense blocks into line
to construct a DBDN-W/O-Inter for learning the mapping
function between the LR and HR image. The parameter setting

33

33.2

33.4

33.6

33.8

34

34.2

34.4

34.6

1000 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

PS
N

R(
dB

)

Updates

DBDN

DBDN_W/O_Comp 

DBDN_W/O_Inter

Fig. 8. Discussion about transition layer, skip connection and inter-block
dense connectivity in DBDN. The results are evaluated with Set5 for 3×
enlargement in 200 epochs

of DBDN-W/O-Inter is also the same as DBDN. We visualize
the convergence process of these models. As we can see from
Fig. 8, The models without the compression layers and the



inter-block dense connection suffer performance drop in the
training, even when the models have the same condition of
parameters . Especially for the inter-block dense connection,
the best performance of DBDN on Set5 for 3× augmentation
in 200 epoches is 0.6 dB higher than DBDN-W/O-Inter.
Therefore, the inter-block dense connection is crucial for
image SR performance.

V. CONCLUSION

We have proposed a DBDN for single image SR. Unlike
the previous methods that only reuse several feature layers
in a local dense block by using a dense connection, our pro-
posed network extends previous intra-block dense connection
approaches by including inter-block dense connections. The
bi-dense connection structure helps the gradient and feature
flows between the layers to archive better performance. The
proposed method outperforms the state-of-art methods by
a considerable margin on five standard benchmark datasets
in terms of PSNR and SSIM. The noticeable improvement
can also visually be found in the reconstruction results. We
also demonstrate that the different modules in our network
improve the performance at different levels, and the inter-
block dense connection has key contribution to our outstanding
performance. Further work will focus on training bi-dense
network with perceptual loss.

REFERENCES

[1] C. Dong, C. Loychen, H. Kaiming, and T. Xiaoou. “Learning a deep
convolutional network for image super-resolution,” European conference
on computer vision. pp. 184-199, September 2014.

[2] K. Kwangin, and K. Younghee. “Learning a deep convolutional network
for image super-resolution,” IEEE Trans. Pattern Anal. Mach. Intell. vol.
32, pp. 1127–1133, 2010.

[3] K. Robert. “Cubic convolution interpolation for digital image process-
ing,” IEEE Trans. Signal Process. vol. 29, pp. 1153–1160, 1981.

[4] W. Shi, J. Caballero , and C. Ledig et al. “Cardiac image super-
resolution with global correspondence using multi-atlas patchmatch,”
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Berlin. Heidelberg, pp. 9-16, 2013.

[5] Y. Tai, J. Yang, and X. Liu. “Image super-resolution via deep recursive
residual network,” IEEE Conference on Computer Vision and Pattern
Recognition. 2017.

[6] K. Jiwon , K. Leejung, and M. Leekyoung. “Deeply-recursive con-
volutional network for image super-resolution,” IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1637–1645. 2016.

[7] K. Jiwon , K. Leejung, and M. Leekyoung. “Accurate image super-
resolution using very deep convolutional networks,” IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1646–1654. 2016.

[8] H. Kaiming, Zhang. Xiangyu, Ren. Shaoqing, and S. Jian. “Deep
residual learning for image recognition,” IEEE conference on computer
vision and pattern recognition. pp. 770–778. 2016.

[9] D. Chao, L. Chenchange, H. Kaiming, and T. Xiaoou. “Image super-
resolution using deep convolutional networks,” IEEE Trans. Pattern
Anal. Mach. Intell. vol. 38, pp. 295–307, 2016.

[10] Z. Wang, C. BovikAlan, R.SheikhHamid, and P. SimoncelliEero. “Image
quality assessment: from error visibility to structural similarity,” IEEE
Trans. Signal Process. vol. 13, pp. 600–612, 2004.

[11] S. Ioffe, and C. Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” International
Conference on Machine Learning. pp. 448–456, 2015.

[12] V. Nair, and E. HintonGeoffrey. “Rectified linear units improve restricted
boltzmann machines,” International conference on machine learning. pp.
807–814, 2010.

[13] Z. Yulun, T. Yapeng, Y. Kong, Z. Bineng, and F. Yun. “Residual dense
network for image super-resolution,” IEEE Conference on Computer
Vision and Pattern Recognition. 2018.

[14] B. Lim, S. Son, H. Kim, S. Nahet, and K. MuLee. “Enhanced deep
residual networks for single image super-resolution,” IEEE conference
on computer vision and pattern recognition workshops. vol. 1, p. 4, 2017.

[15] T. Tong, G. Li, X. Liu, and Q. Gao. “Image super-resolution using dense
skip connections,” IEEE International Conference on Computer Vision.
2017.

[16] L. WeiSheng, H. JiaBin, A. Narendra, and Y. MingHsuan. “Deep
Laplacian Pyramid Networks for Fast and Accurate Super-Resolution,”
IEEE Conference on Computer Vision and Pattern Recognition. Vol. 2.
No. 3. 2017.

[17] Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki,
and K.Aizawa. “Sketch-based manga retrieval using manga109 dataset,”
Multimedia Tools and Applications. May 2017.

[18] D. Kingma, and J. Ba. “Adam: A method for stochastic optimization,”
ICLR. May 2016.

[19] W. Shi, J. Caballero, F. Huszr, J. Totz, A.P. Aitken, R. Bishop, D.
Rueckert, and Z. Wang. “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,”
IEEE Conference on Computer Vision and Pattern Recognition. pp.
1874-1883, 2016.

[20] C. Dong, L. ChenChange, and T. Xiaoou. “Accelerating the super-
resolution convolutional neural network,” European Conference on Com-
puter Vision. pp. 391-407, 2016.

[21] W. W. Zou, and P. C. Yuen. “Very low resolution face recognition
problem,” IEEE Trans. Image Processing. 2012.

[22] D. Martin, C. Fowlkes, D. Tal, and J. Malik. “A database of human
segmented natural images and its application to evaluating segmenta-
tion algorithms and measuring ecological statistics,” IEEE International
Conference on Computer Vision. pp. 416–423, 2001.

[23] W. M. Thornton, M.P. Atkinson, and D. Holland. “Sub-pixel mapping
of rural land cover objects from fine spatial resolution satellite sensor
imagery using super-resolution pixel-swapping,” International Journal of
Remote Sensing. pp. 473–491, 2006.

[24] Y. Jianchao, J. Wright, T.S. Huang, and Y. Ma. “Image super-resolution
via sparse representation,” IEEE Trans. Image Processing. pp. 2861–
2873, 2012.

[25] Y. Tai, Y. Jian, L. Xiaoming, and X. Chunyan. “Memnet: A persistent
memory network for image restoration,” IEEE Conference on Computer
Vision and Pattern Recognition. pp. 4539-4547. 2017.

[26] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. “Densely
Connected Convolutional Networks,” IEEE Conference on Computer
Vision and Pattern Recognition. 2017.

[27] M. Bevilacqua, A. Roumy, C. Guillemot, and M. Alberi-Morel. “Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,” 2012.

[28] R. Zeyde, M. Elad, and M. Protter. “On single image scale-up using
sparse-representations,” International conference on curves and surfaces.
pp.711–730. 2010.

[29] R. Timofte, V. De Smet, and L. Van Gool. “A+: Adjusted anchored
neighborhood regression for fast super-resolution,” Asian Conference
on Computer Vision. pp.111–126. 2014.

[30] H. Jia-Bin, S. Abhishek, and A. Narendra. “Single image super-
resolution from transformed self-exemplars,” IEEE Conference on Com-
puter Vision and Pattern Recognition. pp.5197–5206. 2015.

[31] M. Lin, C. Qiang, and Y. Shuicheng. “Network in network,” Neural and
Evolutionary Computing. 2013.

[32] H. Muhammad, S. Greg, and U. Norimichi. “Deep Back-Projection
Networks For Super-Resolution,” IEEE Conference on Computer Vision
and Pattern Recognition. 2018.


