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Abstract—With the advent of self-driving cars and autonomous
robots, it is imperative to detect road impairments like cracks
and potholes and to perform necessary evading maneuvers to
ensure fluid journey for on-board passengers or equipment. We
propose a fully autonomous robust real-time road crack and
pothole detection algorithm which can be deployed on any GPU
based conventional processing boards with an associated camera.
The approach is based on a deep neural net architecture which
detects cracks and potholes using texture and spatial features.
We also propose pre-processing methods which ensure real-time
performance. The novelty of the approach lies in using texture-
based features to differentiate between crack surfaces and sound
roads. The approach performs well in large viewpoint changes,
background noise, shadows, and occlusion. The efficacy of the
system is shown on standard road crack datasets.

I. INTRODUCTION

Asphalt surfaced roads and pavements are constantly sub-
jected to heavy traffic and changing weather conditions leading
to their gradual deterioration and degradation resulting in
traffic delays, compromising commuter safety and reducing
efficiency.The deformations often surface in the form of
potholes and cracks which pose a threat to the vehicles in
absence of timely evasive maneuvers. This task of dodging
road malformations has been tackled effectively by trained and
seasoned human operators(drivers) but with the advent of self-
driving cars, it is essential to automate real-time detection of
these road surface deformities for optimal vehicle performance
and safety of passengers.

Pothole and Crack detection approaches can be further
sub-classified into three categories, 3D Scanning[1], vibration
techniques[2] and Vision-based methods[3][4]. The prohibitive
cost of LIDARs limits the adaptability of the first category ap-
proaches whereas reliability in presence of vibrating surfaces
like bridges has plagued the second category. In comparison,
cameras are cheaper, ubiquitous and the current vision-based
systems have enjoyed higher applicability and are more robust
in wide-ranging scenarios, albeit suffering from a higher false
positive rate. Traditionally, handcrafted filters[5][6]have found
widespread use in popular algorithms as they perform well on
the acquired datasets, but they lack the discriminative pow-
ers to differentiate between the deformities and background
noise at low-level resolutions. Other detection schemes use
a combination of gradient features for each pixel followed
by binary classification for prediction. Crack detection using
Local binary patterns[7] and Gabor filters[8] have been pro-
posed. In Crack-It[9],an unsupervised fully integrated system
for crack detection and characterization has been proposed.
Crack-It performs well for different crack types and also
gives the average characteristics of the cracks detected.In [10]
,another unsupervised technique for pothole detection has been

Fig. 1. Finding cracks and potholes over large viewpoint changes in the
presence of noise, shadows, and occlusion is a tedious task. Our proposed
method accurately detects road cracks and potholes using SegNet for road
segmentation and other pre-processing procedures to generate candidates
highly probable to be detected as cracks. Finally, our network a modified
combination of Squeeze-Net and Encoding layer classify these candidates
based on spatial and texture features.

proposed based on image analysis and spectral clustering. they
give a rough estimate of potholes along with the surface. In
[11] a novel crack detection paradigm using convolution neural
nets leveraging the discriminative powers of deeply learned
features has been proposed.It does not make any assumptions
regarding the geometry of the road unlike previous approaches
which require optical axis of the camera be perpendicular to
the road surface. Majority of these techniques perform poorly
against complex backgrounds and the remaining approaches
fail when the images are captured from a mobile platform
making these unsuitable for application on intelligent transport
systems.

In this paper, we present a compact crack and pothole
detection system designed for use on self-driving platforms to
enable them to identify impending hazards. We propose a con-
volution neural net architecture for discriminating potholes and
cracks from the background. Texture-based features learned
in the encoding layer in conjugation with spatial information
form the basis of classification. The major contributions of our
paper can be listed as follows:-

• A deep architecture which learns texture along with
the spatial information. Texture features are important
because we cannot fully rely on spatial information on
classification as it is bound to fail when viewpoints
change. Texture features remain consistent for different
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Fig. 2. Architecture: SqueezeNet and Encoding Layer, We replaced the final convolution and global pooling layer with our encoding layer followed by a
fully connected layer to act as a classifier.

viewpoints and hence are better suited for the problem.

• A pipeline which detects cracks and potholes in real
time, ensured by our rigorous pre-processing methodol-
ogy which provides probable candidates to be further an-
alyzed by our network while most traditional approaches
directly apply CNN to high-resolution images using slid-
ing window, rendering these techniques unusable for real-
time applications.

• A robust classifier which is able to correctly and consis-
tently differentiate between background noise, shadows,
cracks and various other ambiguous scenarios which
cannot be differentiated using traditional approaches.

• The proposed system can be used as a plug and play
module in various autonomous robots and self-driving
cars without changing their base design.

The efficacy of the proposed method is evaluated on the
following standard public datasets[11][12], and in result sec-
tion, we compare our system against the state of the art
techniques where it is shown that our system outperforms
all the other competing techniques. The rest of the paper is
organized as follows:- proposed method, preprocessing and
system architecture are described in section , followed by
Experiments, results, detailed analysis and failure cases in .
In section, we conclude with final remarks.

II. PROPOSED METHOD

We propose an autonomous crack and pothole detection
system. The system is based on deep neural network archi-
tecture which discriminates between road and potholes using
texture-based features. The novelty of the approach lies in
using texture as a basis to differentiate between road filled
with cracks and road free from cracks. The architecture of the
system is shown in Fig 2. It consists of a convolution neural
network which learns the spatial information from the images
and a texture encoding layer to discriminate between images
on the basis of their texture. We now describe our system and
architecture.

A. System

Our system can be easily deployed on processing boards
with an image capturing device attached to it, The board must
support CUDA processing for real-time detection. In our setup,

we mounted an IDS uEye LE camera on NVIDIA Jetson TX-
2 board for real-time performance on a 640x480 resolution
image at 30 Fps.

B. Pre-processing

The frames of a video are quite different from the training
set and hence cannot be directly fed into the model for testing.
So to bring the frame of the video to our domain, we follow
the pre-processing steps as shown in Fig 3. Running the model
directly on the segmented road would be inefficient leading
to non-real time performance. To combat this we generate
candidate regions from the road which are highly probable
to be cracks and potholes. This whole procedure involves
traditional image processing techniques to detect cracks. To
generate candidate potholes and cracks we create two masks
from the image, the first mask is created by passing the
video frame through the modified SegNet[13][14][15], which
segments road from the scene, as we are not concerned with
other parts in the image. To create the second mask, a simple
differentiation-based edge detection algorithm (Canny edge
detection) is performed on the video frame. The Canny edge
detector produces a 2-channel image with lighter pixels as
edges and dark background. But the edges detected are uncon-
nected. To connect these edges dilation is performed several
times, which increases the area of the lighter pixels. Finally,
the two generated masks are combined(AND) and contour
detection is applied to the resultant mask. The bounding boxes
of these contours are extracted from the input image which
forms our candidates for suspected potholes and cracks. We
resize these candidate regions into 64x64 patches, which are
then passed through our deep neural net architecture.

Unwanted edges, especially around the outer boundaries of
the road, are created by shadows of branches and leaves in
trees and are more often worsened by sections of light shining
through. Additionally, other vehicles on the road also create
unwanted edges. These unwanted edges end up existing as
false candidates for our networks.

C. Architecture

We derive our architecture Fig 2. from widely popular
SqueezeNet[16].SqueezeNet has a 1.4x smaller model size
than AlexNet[17] while maintaining or exceeding the baseline
accuracy of AlexNet.For a typical 64x64 image patch it



Fig. 3. Full System Overview: The board mounted camera is used as a capturing device and the board is used as a processing module.

provides 30x speedup as compared to AlexNet, which helps
us to achieve real-time performance. SqueezeNet achieves the
above claims by introducing a Firemodule which consists
of a squeeze convolution layer(which has only 1x1 filters),
feeding into an expand layer that has a mix of 1x1 and 3x3
convolution filters. The 1x1 filters in Fire modules help to
reduce size as of the model since a 1x1 filter has 9X fewer
parameters than a 3x3 filter. We remove the last convolution
layer of the SqueezeNet and incorporate an encoding layer
which is described in the next section. The output of the
encoding layer is fed into a fully connected layer which is used
for classification. Introduction of the encoding layer helps to
learn the texture features alongside the spatial features.

D. Encoding layer

The encoding layer adds dictionary learning and residual
encoding to the network through a single layer of CNN.[18].It
creates a dictionary by assigning each descriptor to K code-
words using some weights.The Encoding Layer acts as a
pooling layer by encoding robust residual representations,
which converts arbitrary input size to a fix length represen-
tation.The encoding layer maps each of the N feature vectors
F =

{
f1, ..fN

}
to K codewords C =

{
c1, ...cK

}
with aiK

as the assignment weights. Given rik = fi − ck and sk as
smoothing factor for each cluster center ck the assignment
weights are given by

aik =
exp (−sk‖ik‖2)

Σk
j=1 exp (−sj‖rik‖2)

(1)

E. Training

Given a training set S =
{
x(i), y(i)

}
which contains m

image patches, where x(i) is the i-th image patch and y(i) ∈{
0, 1

}
is the corresponding class label. If y(i) = 1, then x(i)

is a positive patch, otherwise x(i) is a negative patch. All
convolution filter kernel elements are trained from the data
in a supervised fashion by learning from the labeled set of
examples. The input images is passed through the network,
which produces features,Finally a fully connected layer is used
for classification. Softmax layer is used as last layer of the
network as the classes are mutually exclusive. We use binary
cross entropy loss as our loss function for training. 1

III. EXPERIMENTS

All the experiments have been conducted on a workstation
with 1.2 GHz CPU, 32 GB RAM, NVIDIA P5000 GPU,
running on Ubuntu 14.04. In these experiments, we use Adam
optimizer with a batch size of 64, momentum of 0.9 and a
learning rate of 0.00001 and trained the models for 20 epochs.
For the experiments, we keep the value of K as 32. To test
the speed and accuracy of our model in real time scenarios,
we produce results on the videos captured through our system
mounted on a moving car. We train our model on two different
datasets and compare our accuracy with the baseline accuracy
reported on them by earlier approaches.

A. Datasets

We report our accuracy on two available datasets. All
other publicly available datasets have less than 300 images
combined[6][9], hence they cannot be used for training our
model.

GAPs dataset: The GAPs dataset includes a total of
1,969 gray valued images (8bit), partitioned into 1,418 training
images, 51 validation images, and 500 test images. The image
resolution is 1920x1080 pixels with a per pixel resolution of

1https://github.com/sukhad-app/Crack-Pot.git



Fig. 4. Processing on consecutive frames of a video

1.2mm x 1.2mm. The pictured surface material contains pave-
ment of three different German federal roads. These images
are divided into 64x64 patches and each patch is labeled as a
crack or not. We train our model on 50 training chunks from
the 154 available training chunks. Each chunk contains 32000
64x64 images where each image either contains a crack or is
crack-free.

Zhang dataset: This dataset contains 700 pavement pic-
tures of size 3264 2448 collected at the Temple University
campus using a smartphone as the data sensor. Each image
is annotated by multiple annotators. These images are further
divided into patches where each patch either contains a crack
or is crack-free. Each sample is a 3-channel (RGB) 9999 pixel
image patch generated by the sampling strategy described
by Zhang et al. in [11] There are total 2 million available
annotated samples, where each sample either contains a crack
or is crack free. We train our model on around 1.3 million
samples and use the rest for testing and validation.

B. Results

Precision and Recall are defined as:

P =
TruePositive

FalsePositive + TruePositive
(2)

R =
TruePositive

TruePositive + FalseNegative
(3)

and F1 score as :
F1 =

2PR

P + R
(4)

To compare our results with GAPs dataset we use accuracy as
the measure which is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

We use these metrics to compare our results with the baselines.
Table I compares our results on the dataset with the baselines
given by Zhang et al. in [11]. It shows that our approach
performs much better than traditional approaches and the deep
architecture given by the authors. Table II depicts that our
approach even outperforms recent deep neural networks that
have been developed.

TABLE I
COMPARISON WITH ICIP DATASET

Approach Precision Recall F1 score
SVM 0.8112 0.6734 0.7359

Boosting 0.7360 0.7587 0.7472
ICIP-Conv-net 0.8696 0.9251 0.8965

Ours 0.9237 0.9376 0.9301

C. Results on generic scenes

As we have developed a system which can work on scenes
which the robot or an autonomous vehicle may encounter
while driving. So we also present our results on generic
scenes that a robot may encounter. Fig. 4 represents the results
of our proposed testing pipeline on consecutive frames of a
video. The image shows processing of 5 consecutive frames



TABLE II
COMPARISON WITH GAPS DATASET

Approach Accuracy F1 score
Ours 0.9893 00.7314

ASIVNOS net 0.9772 0.7246
ASIVNOS-mod 0.9723 0.6707

RCD net 0.9732 0.6642

captured through a camera mounted on the dashboard of the
car. The images are outputs of the following respectively
from left to right: Input image, Input image after processing
using SegNet[13][14][15], Input image after edge detection
and dilation, The candidate potholes generated after combining
the SegNet and preprocessing masks, Final candidates detected
by our network as prospective potholes and cracks. Note that
the results are consistent across various frames. Also, it is quite
evident from the images that our architecture is easily able to
remove all the false positives that it may encounter after the
preprocessing. The shadows generated which may seem as a
pothole have been removed.

D. Detailed Analysis

As we see above our architecture performs better than all
traditional approaches and deep neural architectures developed
in the past. This depicts that taking texture features into
account, along with the spatial features make the classifier
robust. If we analyze our results on the generic dataset, we
see that our system gives consistent results on consecutive
frames of a video and is easily able to remove all potential
false positives like shadows etc. This shows that our system
is robust towards change in viewpoint.

E. Failure Cases

Fig. 5. Failure Cases

The above images exemplify the typical failure cases which
result from the structural ambiguity between surface defor-
mities and restoration patches. Generally, the texture of the
restoration patches and repairs are too dissimilar to the texture
of the actual road such that classifying them as cracks or
potholes becomes challenging even for humans. Such cases
end up giving false positives.

IV. CONCLUSIONS

We proposed a novel system for autonomous crack and
pothole detection which performs in real-time and is able

to handle large viewpoint changes, background-noise, partial
occlusion, and shadows, giving robust and consistent results on
datasets and real-life videos as well. A significant increase in
accuracy is observed on standard road crack datasets which
proves the robustness and efficacy of the approach. The
approach performs exceptionally well on live videos but fails
at restoration patches, which are quite difficult to ascertain
even with human brain due to lack of knowledge about depth.
Further, various navigational strategies like A*, PRM can be
applied to evade the detected potholes. The approach can also
be used by Municipal authorities to examine road conditions
with the help of autonomous bots.
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