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Abstract—CNN methods for image super-resolution consume a
large number of training-time memory, due to the feature size will
not decrease as the network goes deeper. To reduce the memory
consumption during training, we propose a memory optimized
deep dense network for image super-resolution. We first reduce
redundant features learning, by rationally designing the skip
connection and dense connection in the network. Then we adopt
share memory allocations to store concatenated features and
Batch Normalization intermediate feature maps. The memory
optimized network consumes less memory than normal dense
network. We also evaluate our proposed architecture on high-
ly competitive super-resolution benchmark datasets. Our deep
dense network outperforms some existing methods, and requires
relatively less computation.

Index Terms—Image super-resolution, Dense connection,
Memory-optimized

I. INTRODUCTION

The process of reconstructing high-resolution (HR) im-
ages from their low-resolution images (LR) is referred to as
super-resolution. SR has a wide range of computer vision
applications, such as remote sensing satellite imaging [17],
medical image processing [4], microscope image processing
[22], multimedia industry [21], and surveillance [15] where
many SR based works are involved.

Single Image SR problem is an underdetermined inverse
problem, and the solution for the problem is not unique.
Early methods include prediction methods [3] generating HR
pixels intensities by weighted averaging neighbouring LR
pixel values, edge based methods which learn priors from edge
features [23] for reconstructing HR images, image statistical
methods predicting HR images from LR images using various
image properties [18]. Currently, deep learning methods are
widely used to learn a mapping from LR to HR patches.

The pioneer CNN model for SR [1] learns the mapping
between input LR image and corresponding HR output via
three convolutional layers and archives superior performance
to classical non-deep learning methods. However, SRCNN [1]
fails to achieve better performance when trains with deeper
structures, which is due to the gradient vanishing problem in
deeper networks. Residual learning is proposed in many pub-
lications [5] [6] [7] to address this problem by adopting skip
connection between layers. However, some studies [24] have
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found residual network behaves like ensembles of relatively
shallow networks and only shallow paths in residual network
contribute to the gradient during training. Furthermore residual
blocks usually consists of only two convolutional layers, which
restricts learning deeper and more expressive features.

Recently, a new dense architecture [19] was introduced in
image super-resolution and achieved great success in terms of
both reconstruction accuracy and computational performance.
It is due to each layer is connected to all the other layers
in the dense blocks, rather than only connected to one early
layers in residual blocks. These connections promote feature
reuse that early-layer features can be utilized by all other
layers. The characteristics of dense architecture make it a very
good fit for image super-resolution as they naturally induce
skip connections. Tong [14] proposed SRDenseNet, using
dense network for image super-resolution by removing pooling
players and transition layers. Zhang et al. [13] also introduces
dense blocks in RDN. Compared to SRDenseNet [14], RDN
[13] uses larger growth rates to construct a wider network
for further improving the performance. But we find directly
applying dense block in image super-resolution will generate
a large number of network parameters, this is because each
layer in dense block uses all previous feature maps as input.
As a result, the number of parameters increases quadratically
with network depth. And the construction of deep network is
commonly limited by GPU memory.

To reduce the training-time memory, many researchers
[25] [26] [27] find that when training a deep convolutional
network, a large proportion of memory is used to store
the intermediate outputs and backward gradients. Chen [25]
implement a 1000 layer memory-efficient ResNet [8] model
using one GPU by dropping the intermediate results into share
memory allocations during training. The ResNet model is
construced by composite Conv-BN-Relu [8] layers, so the
algorithm only keep the result of convolution, but drop the
result of batch normalization and activation function within
each composite layer. The dropped results are recomputed
before each composite layer back-propagation. Plesis et al
[27], observe the feature reuse mechanism of DenseNet [19]
causes large memory consumption. The intermediate feature
maps in DenseNet [19], such as Batch Normalization and
Concatenation, are responsible for most of the memory con-
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Fig. 1. Our network structure with densely connected residual block and deep supervision.

sumption and can be recomputed in share memory allocations
before back-propagation. However, these models are only de-
signed for image classification, which is not suitable for image
super-resolution tasks. Furthermore, deep learning methods for
image super-resolution require more GPU memory than image
classification since the size of feature maps will not decrease
as they are propagated to the network end. Therefore it is
very important to have memory optimized training algorithms
for image SR. In order to efficiently use GPU memory to
train network, we implement a memory optimized deep dense
network for image super-resolution. On the one hand, we
rationally design layer connections in the blocks to reduce
redundant features learning and minimize the model size. On
the other hand, we adopt share memory allocation strategy
to store the concatenated features and Batch Normalization
intermediate feature maps to reduce the training memory
cost of network. The proposed network reaches a promising
performance on the benchmark datasets with less training-time
memory.

II. METHODS

In this section, we first describe the network structure, then
introduce our densely connected residual block, and share
memory allocation for memory optimized deep dense network.

A. Network Structure

Our network configuration is outlined in Fig. 1. The model
consists of three sub-network structures: feature extraction, In-
ference, and reconstruction. Feature extraction sub-architecture
is used to extract feature maps from the low-resolution images
and comprise a set of feature maps into a high dimensional
vector. And then inference is aimed to expand the high dimen-
sional vector into multiple channels vectors and construct a
deep network structure for the task. Finally, the reconstruction
sub-architecture is to generate the output image.

1) Feature Extraction Sub-architecture: It extracts patches
from the interpolated input image X. The interpolated images
are upscaled by bicubic interpolation as the low-resolution im-
ages. In our feature extraction sub-architecture, we implement
a composite function H0() of three consecutive operations:
batch normalization (BN) [11], rectified liner unit (ReLU)
[12] and convolutional filters (Conv) to extract features and
represent them in the form of vectors. Considering a single
low-resolution image (interpolated image) as input X, the

feature extraction sub-architecture output as X0, and X0 is
formulated as below:

X0 = H0(X) (1)

2) Inference Sub-architecture: The inference sub-
architecture is the main part to learn the mapping from the
LR features to HR features. In the inference sub-architecture,
we use our densely connected residual blocks to learn
features and stack them into a chained network. Details
about densely connected residual blocks will be given in
the following subsection. Fig. 1 illustrates the layout of the
dense connectivity in our inference sub-architecture. Denote
the inference sub-architecture contains N densely connected
residual blocks, and the function of ith densely connected
residual block as Di(). Due to inference sub-architecture
is equivalent to the composition of the chained densely
connected residual blocks, we formulate the output of
inference sub-architecture Y N as:

Y N = DN (DN−1(...(D1(X0))...)) (2)

3) Reconstruction Sub-architecture: The reconstruction
layer is a 1-channel convolutional layer. Each densely con-
nected residual block will generate their own reconstructed
images. We then sum the averaged reconstructed images as the
output of reconstruction sub-architecture. Denote the output of
reconstructing the ith densely connected residual block as Yi

Yi = fres(Di(Di−1(...(D1(X0))...))) (5)

Here, Di() and fres() are the functions of the ith densely
connected residual block and reconstruction. Denoting Ŷ as
the reconstruction image, which is produced by adding up the
averaged reconstructed images with the input X. We formulate
the reconstruction image as below:

Ŷ =
Y1 + ..+ Yi + ..+ YN

N
+X (6)

Here we have N densely connected residual blocks to con-
struct the network.

B. Densely Connected Residual Block

Fig. 2 illustrates the layout of the dense connectivity in
densely connected residual block. The ℓth layer in the block re-
ceives the feature channels of all preceding layers X0, ..., Xℓ−1
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Fig. 3. Computation graph of memory optimized network

as input.
Xℓ = Hℓ([X0, X1, ..., Xℓ−1]) (3)

where [] refers to the concatenation function, and Hℓ is the
ℓth layer composite function.

To reduce computation redundancy and enhance feature
reuse, we first keep the extracted feature X0 and concatenated
channel layers [X1, ..., X4] the same channel size. Then sum
them up to get the input for next densely connected residual
block. This skip connection between X0 and the output of the
block takes advantage of residual learning. Denote Y i as the
output of ith densely connected residual block. We formulate
ith densely connected residual block output as below:

Y i = [Xi
1, ..., X

i
4] +X0 (4)

Our densely residual block has two advantages: (1) it delves
the network potential through feature reuse and helps the gra-
dient backpropagate due to the direct connection structure. (2)
replacing transition layers with summation largely reduces the
network parameters and keeps the input feature information
throughout the layers.

C. Share Memory allocation

In the dense network, the intermediate features are mostly
generated from concatenation and batch normalization. So we
create share memory allocations for the output of concatena-
tion and batch normalization.

The network is constructed by composite layers Concat-
BN-ReLU-Conv as shown in Fig. 3(a). The normal plain
dense network keep these intermediate features allocated in
different GPU memory for use during back-propagation. As
we can see in Fig. 3(b), the back propagation is triggered
by the last convolution layer forward propagation. Then the
back propagation is processed in the reverse order of forward
propagation to calculate the layer parameters, input, and output
gradients and update the layer parameters depending on each
layer input.

We use share memory allocations for each concatenation
and batch normalization. Instead of allocating new memory
for concatenating the existing features, we copy pre-processed
features into one share memory storage to concatenate these
features into one tensor as the input for next layer. For batch



TABLE I
Public benchmark test results (PSNR(dB)/SSIM). Red indicates the best performance and blue indicates the second best.

Datasets Scale Bicubic SRCNN VDSR DRCN DRRN MODN(ours)

Set5
2× 33.66/0.9929 36.66/0.9542 37.53/0.9587 37.63/0.9588 37.74/0.9591 37.74/0.9593
3× 30.39/0.8682 32.75/0.9090 33.66/0.9213 33.82/0.9226 34.03/0.9244 34.07/0.9248
4× 28.42/0.8104 30.48/0.8628 31.35/0.8838 31.53/0.8854 31.68/0.8888 31.72/0.8889

Set14
2× 30.24/0.8688 32.42/0.9063 33.03/0.9124 33.04/0.9118 33.23/0.9136 33.25/0.9141
3× 27.55/0.7742 29.28/0.8209 29.77/0.8314 29.76/0.8311 29.96/0.8349 29.97/0.8349
4× 26.00/0.7027 27.49/0.7503 28.01/0.7674 28.02/0.7670 28.18/0.7720 28.25/0.7721

BSD100
2× 29.56/0.8431 31.36/0.8879 31.90/0.8960 31.85/0.8942 32.05/0.8973 32.06/0.8978
3× 27.21/0.7385 28.41/0.7863 28.82/0.7976 28.80/0.7963 28.95/0.8004 28.96/0.8011
4× 25.96/0.6675 26.90/0.7101 27.29/0.7251 27.23/0.7233 27.38/0.7284 27.42/0.7286

Urban100
2× 26.88/0.8403 29.50/0.8946 30.76/0.9140 30.75/0.9133 31.23/0.9188 31.27/0.9191
3× 24.46/0.7349 26.24/0.7989 27.14/0.8276 27.15/0.8276 27.53/0.8378 27.55/0.8384
4× 23.14/0.6577 24.52/0.7221 25.18/0.7510 25.14/0.7510 25.44/0.7638 25.52/0.7649

normalization, we first calculate the mean and variation value
of the input features, and then put the calculated batch nor-
malization result into the share memory allocation. As shown
in Fig. 3(c), the share memory allocations for concatenation
and BN are used by all dense layers, so data in the storages is
changing. Therefore, after the last convolutional layer forward,
the concatenation and BN features are recomputed to restore
the last composite layer corresponding intermediate features.
After the storages storing the right data, back propagation
for the last composite layer is used in the regular way.
Then after the last composite layer back-propagation is done,
the former layer intermediate features will be recomputed to
trigger the back-propagation of the composite layer. We also
analyze the memory efficient property of using share memory
allocation during training in the experiment section, share
memory allocation largely reduces the memory demands for
training the deep network in image SR.

III. EXPERIMENT

In this section, we evaluate the performance of our model on
several datasets. A description of the datasets is first provided,
followed by the introduction of the implementation details.
Then we analyze the depth and memory consumption of the
model. After that, comparisons with state-of-art results are
presented.

A. Datasets

The training dataset contains 291 images, where 91 images
are from Yang et al [18], and other 200 images are from
Berkeley Segmentation Dataset [29]. For testing, we use
four datasets ’Set5’ [20], ’Set14’ [18], ’BSD100’ [30] and
’Urban100’ [31], which contains 5, 14 ,100 and 100 images
respectively.

B. Implementation Details

Before the model setting, we first augment the training
dataset the 291 images into 2328 images with flipping hor-
izontally and rotating the training images by 90o, 180o,
270o, which provide 7 additional augmented images for each

original image. In addition to that, the training data were
processed with multiple scale (×2, ×3 and ×4) augmentation
by following [6] [7] [5].

We use 25 densely connected residual blocks to construct
the training network. Each block contains 4 convolutional
layers with 34 filters of the size 3 × 3. Training images are
split into 31×31 patches with stride 21, so the receptive field
is 31×31. We set the momentum parameter to 0.9 and weight
decay to 0.0001 and 64 patches are used as a mini-batch for
stochastic gradient descent.

The learning rate is initially set to 0.1 and then decreased
half every 10 epochs. Since the initial learning rate is large
in our design, we use the adjustable gradient clipping [6] to
avoid exploding gradients. We clip the gradients to [- θγ , θ

γ ],
where γ denotes the current learning rate and gradient clipping
parameter θ = 0.01. The adjustable gradient clipping makes
the convergence procedure fast, our 25 blocks network takes
about 4 days to train with one Titan X GPU.

C. Comparisons with State-of-Art methods

In this section, we provide quantitative and qualitative
comparisons. Since the training datasets also influence per-
formance, We use SRCNN [1], VDSR [6], DRCN [7] and
DRRN [5] as the compared methods, which use the same
training data as ours. In deploying trained models with test
datasets, the luminance components of the image are applied
for model deploying and the color components are applied
with bicubic interpolation, which is the same as the previous
experiments do. We also crop the image to the same size as [1]
[6] [7] [5] methods.

Table. I illustrates a summary of quantitative evaluation
on several datasets. Generally, our model outperforms all the
other methods in both PSNR and Structural SIMilarity (SSIM)
[10]. In terms of PSNR, our model achieves an average 0.2
dB improvement over VDSR and DRCN. In comparison with
DRRN, our model demonstrates an average 0.03 dB increase
of PSNR than DRRN. Fig. 2 shows qualitative comparisons
among SRCNN, VDSR, DRRN and ours, we can see our
network outperforms all the methods in the experimental
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PSNR and SSIM index in the most cases. For qualitative
comparisons among SRCNN, VDSR, DRRN and ours, our
network obviously produces patterns with sharper and cleaner
edges compared with SRCNN and VDSR. In comparison
with DRRN, our performance is slightly better. However, The
computation complexity using our method is 20 percent less
than DRRN. For 25 blocks, Our network has 11 billion FLOPs,
while DRRN contains 14 billion FLOPs. This is because only
34 feature channels used in each convolutional layer in our
network, while the convolutional layer in DRRN [5] has 128
feature channels.

D. Analysis

1) Depth Analysis: To analyze the influence of the network
depth on the performance, we construct two networks with
9 and 25 blocks respectively and keep other parameters the
same. Note that higher PSNR and SSIM values indicate better
quality. As shown in Table. II, the model with 25 blocks
(MODN-25B) demonstrates better reconstruction accuracy,
which outperforms the model with 9 blocks (MODN-9B) more
than 0.04 dB in PSNR and 0.001 in SSIM. This is mainly
because the network with more parameters can extract more
hierarchical features, which contributes to better performance.
The depth analysis also indicates that our model allows deeper
network for higher performance, so it is necessary to make it
memory optimized for deeper structure.

TABLE II
The depth analysis of network

Datasets Scale MODN-9B MODN-25B

Set5
2× 37.67/0.9590 37.74/0.9593
3× 33.95/0.9234 34.07/0.9248
4× 31.56/0.8867 31.72/0.8889

Set14
2× 33.21/0.9134 33.25/0.9141
3× 29.91/0.8329 29.97/0.8349
4× 28.18/0.7702 28.25/0.7721

BSD100
2× 32.02/0.8970 32.06/0.8978
3× 28.93/0.7993 28.96/0.8011
4× 27.32/0.7265 27.42/0.7286

Urban100
2× 31.04/0.9167 31.27/0.9191
3× 27.39/0.8333 27.55/0.8384
4× 25.36/0.7577 25.52/0.7649

2) Memory Analysis: To investigate the memory efficient
property of the model, we compare the training-time memory
consumption of the models with share memory allocation
and the models without share memory allocation. For fair
comparison, we use one 31 × 31 patch as input for training
these models. As shown in Table. III, for model with 9
blocks depth, the memory optimized implementation (MODN-
9B) consumes about 87% less memory than the 9 blocks
model without share memory allocation (Plain-9B). For model
with 25 blocks depth, the memory optimized implementation
(MODN-25B) consumes 88% less memory than the 25 blocks
model without share memory allocation (Plain-25B). This is



because MODN only stores convolution feature maps and
network parameters in the memory. However, the plain model
also needs to store concatenated and normalized features in
the memory, in addition to the convolution feature maps and
network parameters.

TABLE III
The Memory analysis of network

Model Blocks Memory(GB)

MODN 9B 0.2
25B 0.8

Plain 9B 1.6
25B 6.3

IV. CONCLUSION

In this work, we propose a memory optimized deep dense
network for image super-resolution. First, we reduce the
redundant feature learning by rationally implementing skip
connection and dense connection in the network. Then, we
construct share memory allocation for training the network
to reduce the training-time memory. The memory optimized
model requires less memory than normal deep dense model.
We have demonstrated that our network outperforms the some
state-of-art methods on the benchmark datasets with relatively
less computation complexity.
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