
ar
X

iv
:1

81
0.

03
24

1v
1

 [
cs

.C
V

]
 8

 O
ct

 2
01

8

Diagnosing Convolutional Neural Networks using

their Spectral Response

Victor Stamatescu

Defence Science and Technology Group

Edinburgh, SA 5111, Australia

Email: victor.stamatescu@dst.defence.gov.au

Mark D. McDonnell

Computational Learning Systems Laboratory (cls-lab.org)

School of Information Technology and Mathematical Sciences

University of South Australia

Mawson Lakes, SA 5095, Australia

Abstract—Convolutional Neural Networks (CNNs) are a class
of artificial neural networks whose computational blocks use
convolution, together with other linear and non-linear operations,
to perform classification or regression. This paper explores the
spectral response of CNNs and its potential use in diagnosing
problems with their training. We measure the gain of CNNs
trained for image classification on ImageNet and observe that
the best models are also the most sensitive to perturbations of
their input. Further, we perform experiments on MNIST and
CIFAR-10 to find that the gain rises as the network learns and
then saturates as the network converges. Moreover, we find that
strong gain fluctuations can point to overfitting and learning
problems caused by a poor choice of learning rate. We argue
that the gain of CNNs can act as a diagnostic tool and potential
replacement for the validation loss when hold-out validation data
are not available.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are computational
models made of multiple processing layers whose parameters
are learned from data. CNNs have been applied to a diverse
range of tasks and continue to set new benchmarks in areas of
computer vision, speech recognition and natural language pro-
cessing [1]. Despite their widespread use, however, training on
new data sets or with new models remains a complex process.
This is in large part due to the wide search space of model
architecture and hyper-parameters [2]. Poor choices can cause
problems during training, including high bias (underfitting) or
high variance (overfitting). If left undetected, such issues can
severely degrade CNN performance at test time.

In this work our goal is to measure the response of CNNs
trained for image classification to different input spatial fre-
quencies. We then use this information as a way to probe and
better understand the learning process. Given that some CNN
layers include non-linearities, obtaining a transfer function
for the entire network requires linearizing it first. We are, to
our knowledge, the first to pursue this linearization approach,
which is analogous to the way in which linear systems are
characterized using their transfer functions.

The rest of this paper is organized as follows. Section
II outlines key papers related to the spectral properties of
CNNs. Section III describes the methodology, including how
the spectral response was measured in a number of pre-trained
CNNs. Section IV presents our experimental results, which
demonstrate how spectral response can serve as a diagnostic
tool during training. Finally, Section V concludes with a
summary of our findings.

II. RELATED WORK

Heravi et al. [3] presented 4D visualizations of the fre-
quency response in convolutional filter banks learned by
CNNs. Based on this they proposed that the predictions output
by CNNs may be sensitive to low amplitude additive noise
due to the inability of the filters to suppress high spatial
frequencies. Unlike their study, ours is focused on capturing
the frequency response of the entire CNN, not just its linear
filters.

Recent studies [4], [5], [6] have found that neural networks
tend to fit low frequency components of input data first during
training, while the higher frequencies are modeled more slowly
at later stages. This phenomenon was investigated in terms of
the regression of target functions in the Fourier domain and
is used to explain how neural networks that are capable of
overfitting can still generalize well on test data.

A number of other publications relating to CNN spectral
properties have focused on improving processing speed and
performance through new types of computational units and
operators. These include spectral pooling [7], concatenated
relu [8], spectral features from convolutional layer activa-
tions [9], and wavelet CNNs [10]. In particular, the pool-
ing technique in [7] performs dimensionality reduction via
truncation in the frequency domain, which preserves more
information than spatial pooling.

Unlike those studies our focus is on measuring CNN
spectral response to a specific test image. This is similar in
some aspects to the approach taken in a number of CNN
visualization methods [11], [12], [13], [14], which illustrate
why a network has made its prediction for a particular input
image. These methods provide 2D visualizations the input
saliency or of features in higher layers. Our goal, however, is
to summarize the CNN spectral response using a single metric,
which can then can be used in a similar way to the training
and validation losses to identify problems during training.

III. THE CNN TRANSFER FUNCTION

A. Definition

An artificial neural network is a non-linear function f with
parameters w that are learned during training, which maps an
input tensor x to an output tensor z = f(x;w). This feed-
forward operation is known as as a forward pass or inference.
In the case of CNNs, f is typically composed of multiple

http://arxiv.org/abs/1810.03241v1

computational layers:

z = f(x;w1, . . . ,wL)

= fL(fL−1(. . . f1(x0;w1) . . . ;wL−1);wL),
(1)

where x0 = x is the input and each layer l = 1, . . . , L com-
putes an intermediate output xl = fl(xl−1;wl). Depending
on the task, z may have the dimensions of a multidimensional
tensor, a 2D matrix, a 1D vector or a scalar.

Our aim is to define a transfer function for a CNN. For a
linear system, such as a low-pass filter, the transfer function
is found by taking the Fourier transform of its coefficients or,
alternatively, by measuring its gain and phase using sinusoidal
input signals of different frequencies. CNNs, however, are
highly non-linear, so the gain would depend not only on the
spatial frequency of the input but also on its amplitude. We
therefore need to first linearize the network about a certain
operating point. Fortunately, linear approximations can be
obtained by performing a backward pass through the CNN
using backpropagation [11].

During training, a loss function is added as the final layer
and the output becomes a scalar z. Backpropagation applies the
chain rule to obtain its gradient with respect to the parameters
in each layer:

dz

d(wl)⊤
=

dfL(xL−1;wL)

d(xL−1)⊤
× . . .

×
dfl+1(xl;wl+1)

d(xl)⊤
×

dfl(xl−1;wl)

d(wl)⊤
, (2)

where each intermediate derivative is evaluated at an operating
point set by x0 and uses the current parameter values. The
resulting parameter derivatives are used by gradient descent
optimization algorithms to carry out parameter updates. In
Eqn. (2) we followed the convention used in [15], where data
and parameter tensors are stacked into vectors.

Backpropagation in Eqn. (2) works by passing back each
layer’s data derivative, which is a large Jacobian matrix, to
the layer l below. A memory efficient implementation that
avoids direct handling of the Jacobian involves passing back
a projected derivative instead [16]:

pl =
d〈pl+1, fl+1(xl;wl+1)〉

dxl

. (3)

Here the inner product 〈. , .〉 projects the layer along direction
pl+1, which produces a scalar whose derivative is then evalu-
ated. When this process is repeated sequentially starting from
the output layer, pl becomes the projected derivative of the
network down to this layer.

Considering now the entire network, for a given projection
tensor p and output z = f(x;w), a single backward pass
provides the projected data derivative d〈p, f(x;w)〉/dx of the
network output with respect to its input. This was interpreted
by Simonyan et al. [11] as the derivative in a first order Taylor
approximation for the CNN, evaluated in the neighborhood
given by the forward pass over an input x0:

dz

dx
=

d〈p, f(x;w)〉

dx

∣

∣

∣

∣

x0

. (4)

Following this interpretation, we treat dz/dx as a linear
system and calculate its frequency response by taking the

Fourier transform F and computing the amplitude spectrum
(in dB):

|H | = 20× log10(

∣

∣

∣

∣

F

(

dz

dx

)
∣

∣

∣

∣

), (5)

where H is the transfer function.

B. Toy CNN example

50 100 150 200

50

100

150

200

(a) Color input image

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) Gaussian filter w

Fig. 1: Color image whose red channel is input to a toy CNN
consisting of a conv layer, which applies a Gaussian filter w,
followed by a relu layer.

50 100 150 200

50

100

150

200

-100

-80

-60

-40

-20

0

20

40

(a) Input x

50 100 150 200

50

100

150

200

-100

-80

-60

-40

-20

0

20

(b) conv feature map

50 100 150 200

50

100

150

200

0

5

10

15

20

(c) Output z

Fig. 2: Toy CNN forward pass over the red input channel.

We constructed a two-layer toy CNN to illustrate the above
discussion, applying it to the mean-subtracted red channel of
the image in Figure 1a. The model consists of a linear conv
layer, which convolves the input (Figure 2a) with a 2D filter
w, followed by a non-linear relu layer, which produces an
output map z (Figure 2c) by applying a rectified linear unit to
each pixel in the feature map produced in the previous layer
(Figure 2b). The filter w is a symmetric single-channel 7× 7
pixel Gaussian filter with σ = 1 pixels, shown in Figure 1b.

Following the forward pass, a backward pass was used to
compute the data derivative dz/dx. As shown in Figure 3,
this depends on the choice of 2D projection tensor p, which
has the dimensions of z. In Figure 3a we used p set to 0
everywhere except (150, 100), where it was 1. These coor-
dinates correspond to a non-zero output unit in z and any
such location would yield the same frequency response, which,
barring edge effects, is shift-invariant. Conversely, setting p to
1 at a location where z is 0 would yield 0 everywhere in
dz/dx. As detailed in [13], this effect is due to the relu non-
linearity and is further illustrated by Figure 3b, where p was
set to 1 everywhere.

The data gradient in Figure 3a is simply the flipped impulse
response of the symmetric Gaussian filter at a particular
location in the input image. Hence the toy CNN frequency
response given input x and and our choice of p is the amplitude
of the Fourier transform pair to a low-pass filter, which is the
linear component of the CNN.

50 100 150 200

50

100

150

200

0

0.05

0.1

0.15

50 100 150 200

50

100

150

200

-70

-60

-50

-40

-30

-20

-10

0

(a) Set p = 1 at (150, 100) and p = 0 elsewhere

50 100 150 200

50

100

150

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

40

60

80

(b) Set p = 1 everywhere

Fig. 3: Data derivative dz/dx (left) obtained from the back-
ward pass and the corresponding frequency response (right, in
dB) for two choices of projection tensor p.

50 100 150 200

50

100

150

200

0

50

100

150

200

250

(a) Input x

50 100 150 200

50

100

150

200

0

5

10

15

20

25

30

35

40

(b) Output z

50 100 150 200

50

100

150

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) dz/dx obtained by set-
ting p = 1 everywhere

50 100 150 200

50

100

150

200

-140

-120

-100

-80

-60

-40

-20

0

20

(d) Frequency response

Fig. 4: The toy CNN frequency response (in dB) obtained via
a forward and backward pass over an impulse image.

Next we computed the toy CNN frequency response for
the synthetic image of a 2D Dirac-Delta function (Figure 4a),
whose channels have values of 255 in the central pixel and
are 0 elsewhere. Using an impulse image input is motivated
by its Fourier transform pair, which is a constant at all
spatial frequencies. Performing a forward pass (Figure 4b)
and setting p to 1 everywhere yields a data gradient that
is a superposition of filter impulse responses about the non-
zero input pixel location (Figure 4c). Before computing the
Fast Fourier Transform of dz/dx for impulse images, a Hann
window was applied to reduce edge effects. The resulting
frequency response is shown in Figure 4b.

C. ImageNet CNNs

In order to measure the frequency response of CNNs
such as AlexNet [17], which was trained to perform image
classification on ImageNet [18], the tensor p must match the

dimension of the output vector of class probabilities z. This
is given by the application of the softmax function to the logit
vector l of units in the final layer:

zi =
exp(li)

∑N

j=1
exp(lj)

, (6)

where i = 1, . . . , N is the class index and, for ImageNet,
N = 1000 object classes. The predicted class index and its
confidence score are extracted as i = argmax z and score =
max z, respectively.

We consider only the frequency response for the winning
class by using the projection tensor to extract a data derivative
with respect to the output unit i by setting all other elements
in p to zero. Given that scaling p also scales dz/dx by
the same factor (see Eq. (4)), to enable comparison between
different CNNs we set its non-zero element to pi = 1/score.
This normalizes the frequency response for the different CNN
scores obtained from respective forward passes over the same
input image.

Figure 5 shows the data derivative and frequency response
for the red channel of a natural image and an impulse image,
both obtained using AlexNet. The impulse image had the same
input repeated across its red, green and blue channels. Si-
monyan et al. [11] refer to examples like those in Figure 5b as
image-specific class saliency because they indicate which input
pixels have most impact on the score. We found it difficult to
characterize the shape of the resulting 2D amplitude spectra
in Figure 5c with a single metric (e.g. bandwidth), however, in
terms of the overall gain, taking the surface maximum provides
the Maximum Gain (in dB) of the frequency response.

D. Results: pretrained models

We used 18 CNNs trained on ImageNet from MatConvNet1

to compare their frequency response. Figure 6 shows the data
derivative and frequency response obtained for the impulse
image red channel and the top-5 error rate achieved by
each model on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012 validation data set. We observe
that the best performing models are also the most sensitive
to perturbations in the input so that their frequency response
tends to have higher gain. Figure 7 shows the Maximum Gain
versus the error rate for each input channel in the impulse
image. The best performing models tend to have maximum
gains above ∼ −20 dB whereas the worst performing models
tend to have Maximum Gains below this. This trend persists
if setting pi = score because all models have comparable, low
scores from their forward pass over the impulse image.

IV. DIAGNOSE TRAINING WITH MAXIMUM GAIN

Given the previous results for pre-trained CNNs, we ex-
amined the behavior the frequency response during training in
an effort to answer empirically the following questions:

• Does the Maximum Gain increase as the CNN learns?

• Is Maximum Gain a useful quantity in deciding when
the CNN has converged?

1http://www.vlfeat.org/matconvnet/pretrained/

bell pepper (946), score 0.224

50 100 150 200

50

100

150

200

-60

-40

-20

0

20

40

60

80

bubble (972), score 0.008

50 100 150 200

50

100

150

200

0

50

100

150

200

250

(a) Input Red Channel x

50 100 150 200

50

100

150

200

-4

-3

-2

-1

0

1

2

3

4
10-4

50 100 150 200

50

100

150

200

-4

-3

-2

-1

0

1

2

3

4
10-4

(b) Data Derivative dz/dx

50 100 150 200

50

100

150

200

-60

-50

-40

-30

-20

-10

0

50 100 150 200

50

100

150

200

-60

-50

-40

-30

-20

-10

0

(c) CNN frequency response (dB)

Fig. 5: The data derivative and frequency response of AlexNet [17], computed using the pre-processed red channel of a natural
image (top) and an impulse image (bottom). The predicted class, its index in the output vector of probabilities and the resulting
confidence score obtained following the forward pass are also given for each input image.

To this end we trained CNNs on two public data sets using
publicly available code2 that performs Stochastic Gradient
Descent (SGD) using backpropagation. We then measured the
Maximum Gain from the impulse image induced frequency
response for snapshots of the same CNN saved after each
training epoch.

We followed this approach across a set of experiments that
examine the impact of learning rate on performance, as this
is a known source of problems when not set appropriately.
This enabled us to explore the potential for using Maximum
Gain to detect such problems by comparing it to training and
validation loss curves, which are normally used to probe the
learning process.

A. Training on MNIST

We examined the behavior of Maximum Gain for an
impulse image while training on the MNIST handwritten digit
image data set [23], which contains 10 classes and consists of
60, 000/10, 000 training/validation grayscale images that are
28 × 28 pixels in size. For these experiments we chose to
use the simple and well understood LeNet architecture [24],
which does not require a complex learning rate schedule to
train properly. The CNN was made of three conv layers and
one fully-connected layer, interspersed with non-linearities in
the form of two max pool layers and a relu layer.

We began by training the CNN using a default learning rate
of 0.001 over 20 epochs, the results of which are the red curves
in Figures 8 and 9. Here the Maximum Gain rises initially, then
remains flat after ∼ 10 epochs. The corresponding training
loss decreases over all epochs as the fit to the training data
improves, while the validation loss decreases slowly up to
epoch ∼ 12 after which it too becomes flat. The corresponding
error rates have similar behavior. Here the Maximum Gain
provides a similar diagnostic information as the validation loss.

In Figure 8 the learning rate was increased by ×2, ×3
and ×4, which progressively increased the variability of the

2http://www.vlfeat.org/matconvnet/training/

Maximum Gain curves. In the case of the largest learning
rate, training and validation losses begin to rise beyond epoch
7, which indicates that the CNN is not learning, and the
Maximum Gain curve no longer exhibits smoothly increasing
or constant behavior, as was the case for a learning rate of
0.001.

The learning rate was next reduced by factors 1/3 and
1/10 in Figure 9. Maximum Gain is not as sensitive to these
changes, however, for the lowest learning rate, it slowly rises
over 20 epochs. This indicates that the network would continue
to learn if trained for longer. Given the fixed number of
epochs, these Maximum Gain curves indicate that the two
higher learning rates are more appropriate. This is confirmed
by the validation errors, which provide the additional insight
that after 20 epochs the learning rate of 0.001 performs better
than the learning rate of 0.001/3.

B. Training on CIFAR-10

We next measured the Maximum Gain during training on
the CIFAR-10 image data set [25], which contains 10 classes
and consists of 50, 000/10, 000 training/validation color images
that are 32×32 pixels in size. The Maximum Gain obtained for
each input color channel was averaged in order to only have
one value per model. As this is a more difficult data set than
MNIST, a larger LeNet architecture was deployed, with four
conv layers, two average pool layers and one fully-connected
layer together with two max pool layers and four relu layers.
Results from a second architecture [26] are compared in the
discussion below (IV-C2).

The CNN was initially trained with a learning rate of 0.05
over 45 epochs and this corresponds to the red curves in
Figures 10 and 11. The Maximum Gain drops at first, then
remains steady up to epoch ∼ 27, where it becomes more
variable. This corresponds to a rise in validation loss coupled
with decreasing training loss and shows that the Maximum
Gain curve is able to detect the problem of strong overfitting.

Figure 10 shows that increasing the learning rate leads to
additional variability in the Maximum Gain curve at all epochs.

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(a) ResNet-152 [19] 6.7%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(b) ResNet-101 [19] 7.0%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(c) ResNet-50 [19] 7.7%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(d) MatConvNet-VGG-v.deep-16 9.5%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(e) VGG-v.deep-19 [20] 9.9%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(f) VGG-v.deep-16 [20] 9.9%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(g) GoogleNet [21] 12.9%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(h) VGG-s [22] 15.3%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(i) MatConvNet-VGG-m 15.5%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(j) MatConvNet VGG-s 15.8%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(k) VGG-m-2048 [22] 15.8%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(l) VGG-m [22] 15.9%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(m) VGG-m-1024 [22] 16.1%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(n) VGG-m-128 [22] 18.4%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(o) VGG-f [22] 18.8%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(p) MatConvNet-VGG-f 19.1%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(q) MatConvNet-Alex 19.2%

50 100 150 200

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

50 100 150 200

50

100

150

200

-80

-60

-40

-20

0

20

(r) Caffe-Alex [17] 19.6%

Fig. 6: Data derivative dz/dx (left) and frequency response
(right) of 18 CNNs pre-trained on ImageNet data, where x
was an impulse image in the red channel. The top-5 error rate
on the ILSVRC 2012 validation data is listed for each model.

This corresponds to higher training and validation losses and
error rates due to a degradation of the learning process. The
effect of reducing rate by factors 1/3 and 1/10 is shown in
Figure 11. The Maximum Gain curves become smooth and
increase between epochs ∼ 7 and 45. In particular, the black
curve for the lowest learning rate of 0.005 suggests that the
CNN has not yet converged. The blue curve, on the other hand,
which corresponds to a learning rate of 0.05/3, also has higher
variability at later epochs where the model overfits.

C. Discussion

1) Using Maximum Gain to select the learning rate and
detect overfitting: Based on the preceding experiments, we
summarize the key aspects of the learning process that Maxi-
mum Gain curves can diagnose:

• High variability across all epochs indicates that the
learning rate is set too high.

• Smooth gradual rise across all epochs indicates that
the learning rate is too low or that training for longer
would noticeably improve performance.

• A rise followed by a smooth flattening suggests that
the model has begun to converge.

• Smooth, flat behavior followed by high variability
indicates when strong overfitting occurs and that it
is time to stop training.

A caveat of this is that one must determine empirically what
constitutes ‘high variability’ for a particular CNN architecture
and data set by trialing a few learning rates. In terms of
detecting model overfitting, however, what is ‘high’ or ‘low’
variability can be determined from the same curve.

2) Impact of model architecture: We trained a Network
in Network (NIN) [26] on CIFAR-10 using a learning rate
of 0.005 for 100 epochs. Figure 12 shows that this achieves
lower validation error than LeNet, which experiences strong
overfitting beyond epoch 70. The LeNet Maximum Gain curve
is flat up to this point, after which it becomes more variable
and comparable to that of NIN, which is flat. This demonstrates
that absolute value of Maximum Gain is not a reliable indicator
of performance.

The impact of model capacity in shown in Figure 13,
where we reduced and increased the number of filters in each
LeNet conv layer by ×1/4 and ×4, respectively. The smaller
model underfits, but its Maximum Gain curve is similar to
the original, albeit with some additional variability. Hence,
Maximum Gain does not detect underfitting, however, this is
already highlighted by the high training error. The larger model
overfits from epoch 15 and this is reflected in its Maximum
Gain curve, which becomes increasingly variable.

V. CONCLUSION

In this work we have defined the transfer function of a
CNN by using its input data derivative, which is obtained for
a given input image via backpropagation. We characterized
the resulting frequency response in terms of its peak value,
which we called the Maximum Gain. Comparing CNNs with
different architectures that were trained for image classification

5 10 15 20
top 5 err (%)

-40

-30

-20

-10

0

10

20

M
ax

im
um

 G
ai

n
(d

B
)

(a) Red Channel

5 10 15 20
top 5 err (%)

-40

-30

-20

-10

0

10

20

M
ax

im
um

 G
ai

n
(d

B
)

(b) Green Channel

5 10 15 20
top 5 err (%)

-40

-30

-20

-10

0

10

20

M
ax

im
um

 G
ai

n
(d

B
)

(c) Blue Channel

Fig. 7: Maximum Gain for channel of an impulse image input to the ImageNet models of Figure 6 versus their top-5 error rate
on the ILSVRC 2012 validation set.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epoch

-40

-35

-30

-25

-20

-15

M
ax

im
um

 G
ai

n
(d

B
)

LR x4
LR x3
LR x2
LR = 0.001

(a) Maximum Gain

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epoch

10 -4

10 -3

10 -2

10 -1

Lo
ss

LR x4

LR x3

LR x2

LR = 0.001

(b) Train & Validation Loss

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epoch

0

0.5

1

1.5

2

2.5

3

3.5

4

E
rr

or
 (

%
)

LR x4

LR x3

LR x2

LR = 0.001

(c) Train & Validation Error Rate

Fig. 8: Training LeNet on MNIST: separate training runs illustrate the effects of increasing a learning rate of 0.001 (red) by ×2
(green), ×3 (blue) or ×4 (black) on the maximum gain as well as on the training/validation (solid/dashed lines) losses and error
rates.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epoch

-40

-35

-30

-25

-20

-15

M
ax

im
um

 G
ai

n
(d

B
)

LR/10
LR/3
LR = 0.001

(a) Maximum Gain

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epoch

10 -3

10 -2

10 -1

Lo
ss

LR/10

LR/3

LR = 0.001

(b) Train & Validation Loss

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epoch

0

0.5

1

1.5

2

2.5

3

3.5

4

E
rr

or
 (

%
)

LR/10

LR/3

LR = 0.001

(c) Train & Validation Error Rate

Fig. 9: Training LeNet on MNIST: separate training runs illustrate the effects of reducing a learning rate of 0.001 (red) by × 1

3

(blue) or × 1

10
(black) on the maximum gain as well as on the training/validation (solid/dashed lines) losses and error rates.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Epoch

-80

-70

-60

-50

-40

-30

-20

-10

0

M
ax

im
um

 G
ai

n
(d

B
)

LR x4
LR x3
LR x2
LR = 0.05

(a) Maximum Gain

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Epoch

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Lo
ss

LR x4

LR x3

LR x2

LR = 0.05

(b) Train & Validation Loss

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Epoch

10

20

30

40

50

60

70

E
rr

or
 (

%
)

LR x4

LR x3

LR x2

LR = 0.05

(c) Train & Validation Error Rate

Fig. 10: Training LeNet on CIFAR-10: separate training runs illustrate the effects of increasing a learning rate of 0.05 (red) by
×2 (green), ×3 (blue) or ×4 (black) on the maximum gain as well as on the training/validation (solid/dashed lines) losses and
error rates.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Epoch

-80

-70

-60

-50

-40

-30

-20

-10

0

M
ax

im
um

 G
ai

n
(d

B
)

LR/10
LR/3
LR = 0.05

(a) Maximum Gain

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Epoch

0.4

0.6

0.8

1

1.2

1.4

1.6

Lo
ss

LR/10

LR/3

LR = 0.05

(b) Train & Validation Loss

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Epoch

5

10

15

20

25

30

35

40

45

50

55

E
rr

or
 (

%
)

LR/10

LR/3

LR = 0.05

(c) Train & Validation Error Rate

Fig. 11: Training LeNet on CIFAR-10: separate training runs illustrate the effects of reducing a learning rate of 0.05 (red) by
× 1

3
(blue) or × 1

10
(black) on the maximum gain as well as on the training (solid lines) and validation (dashed lines) losses and

error rates.

on ImageNet, we found that better performing models tend to
have higher Maximum Gain for an impulse image. Intrigued
by this observation, we examined the behavior Maximum Gain
during training and found that, when the learning process
works well, it rises with training epoch and then saturates.

Experiments on MNIST and CIFAR-10 showed that Max-
imum Gain can provide similar information about the learning
process as the validation loss. We propose that Maximum
Gain could serve as a stand-in replacement for validation loss,
which would be useful in situations where validation data
are not available. This can happen in practice, for example
during a final training stage in which the validation set has
been combined with the training set to have more training
data. Furthermore, the method is fast because it operates
on a single impulse image. As caveats, we note that while
Maximum Gain does detect overfitting, it does not reliably
detect underfitting, nor the degree of overfitting, which is
typically gauged from the gap between validation and training
losses or errors. Moreover, it does not provide an absolute
measure of performance on new data, which is provided by the
validation error. Future work will explore further the impact of
CNN architecture on Maximum Gain, as well as its application
to new data sets.

ACKNOWLEDGMENT

Discussions with Dr Sebastien Wong of University of South
Australia and Dr Hugh Kennedy of DST Group are gratefully
acknowledged.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” nature, vol.
521, no. 7553, p. 436, 2015.

[2] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transfer-
able Architectures for Scalable Image Recognition,” arXiv:1707.07012,
2017.

[3] E. J. Heravi, H. H. Aghdam, and D. Puig, “Analyzing Stabil-
ity of Convolutional Neural Networks in the Frequency Domain,”
arXiv:1511.03042, 2015.

[4] N. Rahaman, D. Arpit, A. Baratin, F. Draxler, M. Lin, F. A. Hamprecht,
Y. Bengio, and A. Courville, “On the Spectral Bias of Deep Neural
Networks,” arXiv:1806.08734, 2018.

[5] Z.-Q. J. Xu, Y. Zhang, and Y. Xiao, “Training behavior of deep neural
network in frequency domain,” arXiv:1807.01251, 2018.

[6] Z. J. Xu, “Understanding training and generalization in deep learning
by Fourier analysis,” arXiv:1808.04295, 2018.

[7] O. Rippel, J. Snoek, and R. P. Adams, “Spectral Representations for
Convolutional Neural Networks,” in Advances in Neural Information

Processing Systems (NIPS), 2015, pp. 2449–2457.

[8] W. Shang, K. Sohn, D. Almeida, and H. Lee, “Understanding and
Improving Convolutional Neural Networks via Concatenated Recti-
fied Linear Units,” in International Conference on Machine Learning

(ICML), 2016, pp. 2217–2225.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoch

-80

-70

-60

-50

-40

-30

-20

-10

0

M
ax

im
um

 G
ai

n
(d

B
)

LeNet
NIN

(a) Maximum Gain

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoch

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
2.4

Lo
ss

LeNet

NIN

(b) Train & Validation Loss

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoch

0

5

10

15

20

25

30

35

40

45

50

55

E
rr

or
 (

%
)

LeNet

NIN

(c) Train & Validation Error Rate

Fig. 12: Training on CIFAR-10 with learning rate of 0.005: comparison of the maximum gain as well as the training (solid lines)
and validation (dashed lines) losses and error rates for the LeNet (red) or NIN (black) architectures.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoch

-80

-70

-60

-50

-40

-30

-20

-10

0

M
ax

im
um

 G
ai

n
(d

B
)

Model x0.25
Model x1
Model x4

(a) Maximum Gain

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoch

10 -2

10 -1

100

Lo
ss

Model x0.25

Model x1

Model x4

(b) Train & Validation Loss

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoch

0

5

10

15

20

25

30

35

40

45

50

55

E
rr

or
 (

%
)

Model x0.25

Model x1

Model x4

(c) Train & Validation Error Rate

Fig. 13: Training LeNet on CIFAR-10 with learning rate of 0.005: scaling the original number of filters (red) in conv layers by
×4 (black) and by ×1/4 (blue). Training/validation losses and error rates are shown as solid/dashed lines.

[9] S. H. Khan, M. Hayat, and F. Porikli, “Scene Categorization with
Spectral Features,” in International Conference on Computer Vision

(ICCV), 2017, pp. 5639–5649.

[10] S. Fujieda, K. Takayama, and T. Hachisuka, “Wavelet Convolutional
Neural Networks,” arXiv:1805.08620, 2018.

[11] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolu-
tional Networks: Visualising Image Classification Models and Saliency
Maps,” arXiv:1312.6034, 2013.

[12] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolu-
tional Networks,” in European Conference on Computer Vision (ECCV).
Springer, 2014, pp. 818–833.

[13] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning Important
Features Through Propagating Activation Differences,” in International

Conference on Machine Learning (ICML), 2017, pp. 3145–3153.

[14] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, “Visualiz-
ing Deep Neural Network Decisions: Prediction Difference Analysis,”
arXiv:1702.04595, 2017.

[15] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional Neural Networks
for MATLAB,” in Proceedings of the 23rd ACM International Confer-

ence on Multimedia. ACM, 2015, pp. 689–692.

[16] A. Vedaldi, K. Lenc, and A. Gupta, “MatConvNet - Convolutional
Neural Networks for MATLAB,” arXiv:1412.4564, 2014.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural

Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proc. IEEE Conf. on Comput. Vis. and Pattern

Recog. (CVPR), 2016, pp. 770–778.

[20] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv:1409.1556, 2014.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,”
in Proc. IEEE Conf. on Comput. Vis. and Pattern Recog. (CVPR), 2015,
pp. 1–9.

[22] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of
the Devil in the Details: Delving Deep into Convolutional Nets,” in
British Machine Vision Conference (BVMC), 2014.

[23] Y. LeCun, C. Cortes, and C. Burges, “The MNIST database of hand-
written digits,” http://yann.lecun.com/exdb/mnist/ , 1998.

[24] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” in Proceedings of the

IEEE, 1998, pp. 2278–2324.

[25] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images,” University of Toronto, Tech. Rep., 2009.

[26] M. Lin, Q. Chen, and S. Yan, “Network in Network,” arXiv:1312.4400,
2013.

http://yann.lecun.com/exdb/mnist/

	I Introduction
	II Related Work
	III The CNN Transfer Function
	III-A Definition
	III-B Toy CNN example
	III-C ImageNet CNNs
	III-D Results: pretrained models

	IV Diagnose Training with Maximum Gain
	IV-A Training on MNIST
	IV-B Training on CIFAR-10
	IV-C Discussion
	IV-C1 Using Maximum Gain to select the learning rate and detect overfitting
	IV-C2 Impact of model architecture

	V Conclusion
	References

