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Abstract—using unmanned aerial vehicles (UAV) as devices for 

traffic data collection exhibits many advantages in collecting 

traffic information. This paper presents an efficient method based 

on the deep learning and handcrafted features to classify vehicles 

taken from drone imagery. Experimental results show that 

compared to classification algorithms based on pre-trained CNN 

or hand-crafted features, the proposed algorithm exhibits higher 

accuracy in vehicle recognition at different UAV altitudes with 

different view scopes, which can be used in future traffic 

monitoring and control in metropolitan areas. 
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I.  INTRODUCTION 

Although vehicle recognition has been an area of great recent 
interest in the machine-learning community [1], most recent 
works consider more lateral and frontal views, either from wide 
area monitoring imaging or from on-board-like camera views 
[2][3]. Little prior research study has used drone imagery to 
build an on-road vehicle recognition. This work is an extension 
of the previous research published in [4]. A small dataset, 
Vehicle Recognition in Drone Imagery (VRDI), designed to 
address the task of small vehicle detection and recognition in 
drone images, was introduced as part of our previous work. The 
handcrafted feature, histogram of oriented gradients (HoG) was 
used for Sequential Minimal Optimization (SMO) training and 
classification. The experimental results showed that the 
classification accuracy was close to 90%. However, the 
classification performance degrades quickly when the number 
of training images at different orientations increase. The 
problem is that HoG is very sensitive to image rotation and the 
capability of handling the robustness to rotation by SMO 
classifier is limited. 

The recent deep convolution neural network (ConvNet), 
which are acknowledged as the most successful and widely used 
deep learning approach in most of recognition and detection 
tasks [5][6] seems to be a solution here. However, new problems 
arise in this proposal. At first, training a deep network from 
scratch is not a feasible option when solving a classification 
problem with a small number of labelled training samples. On 
the other hand, directly training on ConvNets in this case would 
result in overfitting and reduce classification accuracy. At 
present, many recent works [7][8] have demonstrated that the 
features learned with deep CNNs pre-trained on large datasets 
such as ImageNet [9] can be transferable to many other 
recognition tasks with limited training data. The subsequent 
problem is that the features learned with pre-trained deep CNNs 

models are based on the lateral and frontal views, which do not 
represent the top views of objects well in drone imagery. 

Within this context, the motivation for this work is to take 
advantage of features extracted from deep learning and selected 
handcrafted features together to address the task of small vehicle 
recognition in drone images. Vehicles to be recognized have 
different orientations, at different scales, occluded or masked. 
An overview of the complete training framework can be seen in 
Fig. 1. 

 

Fig. 1. The learning framework for vehicle recognition system 

The remainder of this paper is structured as follows: it starts 
describing feature extraction via deep learning in section II. 
Section III details the various hand-crafted features and fine 
tunes parameters in each feature extraction process.  Following 
that, the fusion of two kinds of features is presented in section 
IV. In section V, we thoroughly evaluate the possible 
combinations of handcrafted and deep-learned features that are 
needed to classify small sized vehicles in drone imagery. At last, 
we draw a conclusion in section VI. 

 

II. FEATURE EXTRACTION FROM DEEP LEARNING 

Most ConvNets contains millions of parameters. Directly 
learning so many parameters from only a few thousand training 
images is problematic. Since the target dataset, VRDI, is 
significantly smaller than the base dataset ImageNet in which 
most ConvNets are trained, the internal layers of the CNN can 
act as a generic extractor of mid-level image representation, then 
be re-used on further classification on a smaller dataset. The 
outcome is a classifier that fits the new dataset with significantly 
less work than retraining a new network. 

In this work, Inception-ResNet-v2 (IRv2) [10] is preferred 
as it has been shown to achieve very good performance at 
relatively low computational cost [11]. The IRv2 was trained to 
recognize 1,000 object categories. The architecture of IRv2 is 
described in detail in [10]. Since IRv2 is already a trained model, 
we only fine-tune it to recognize types of vehicles in this work. 



By removing the last two layers, dropout and softmax, we use 
the weights from the average pooling layer (which contains 1792 
neurons) as a global feature representation of the input image. 
Thus, in the case of IRv2, a features vector size is 1792. 

As Inception-ResNet-v2 requires inputs image to have the 
minimum size of 139 by 139 pixels while the size of most of the 
vehicles in drone imagery are small, the original images are 
required to scale up. The reason of up-sampling is as ConvNets 
become increasingly deep, the size of feature maps can vanish 
and “wash out” by the convolution and max-pooling operation 
at multiple layers. Therefore, input image size must be 
reasonable large. 

 

III. HANDCRAFTED FEATURE EXTRACTION 

Several popular hand-crafted feature descriptors have 
emerged in the literature, Local binary patterns (LBP)-based 
[12], histogram of oriented gradients (HoG) [13], and Bag-of-
Visual-Words (BoVW) [14]. 

 

1) Feature Extraction with LBP 
The LBP operator was originally designed for texture 

description. The operator assigns a binary label to every pixel 
of an image by thresholding the P sampling points on a circle 
of radius of R with the center pixel value and considering the 
result as a binary number. Then the binary feature vectors 
obtained through the application of LBP are captured in a 
histogram as a feature descriptor. To obtain a rotation invariant 
descriptor [3] and reduce the dimension of the descriptor, P-1 
bitwise shift operations on the binary pattern are performed, and 
the smallest value is selected. A pattern is defined ‘‘uniform’’ 
if the number of transitions between ‘0’ and ‘1’ of the sequence 
is less or equal to two, with the number of different types of 
uniform patterns that can occur being P + 1. To describe a given 
image, the histogram of dimension P + 2 is extracted. It contains 
the occurrence of the P + 1 types of uniform patterns, and the 
number of non-uniform patterns. 

Due to size of vehicles images are less than 100x100 pixels 
and, in our experiment, the radius parameter R used is set to 2 
(pixels) and the number of points to consider are set to 16 by 
empirical experiment. Therefore, the length of feature vector is 
18. 

 

2) Feature Extraction with HoG 

 
HoG feature descriptor has good performance in 

characterizing object shape and appearance and it is considered 
one of the most accurate feature descriptors for visual 
classification problems. Hence, we include HoG features in this 
work as one of the selected hand-crafted features. 

Considering most training samples are less than 100x100, 
all the images for HoG feature extraction are resized to fit into 
a 64x64 pixel detection window first. Next, we use 2x2 cells, 
which are grouped into a bigger unit called block first and 
normalized based on all histograms in the block. If the number 
of histogram bins is set to 9, concatenating the histograms of 

the four cells within the block during the normalization creates 
a vector with 36 components (4 histograms x 9 bins per 
histogram). Then each component is divided by the magnitude 
of the vector to reduce the light variations or shadowing 
problems. If we overlap 50% of the blocks in a 64x64 detection 
window, it will be divided into 7 blocks across and 7 blocks 
vertically, for a total of 49 blocks. Each block contains 4 cells 
with a 9-bin histogram for each cell, for a total of 36 values per 
block. This brings the final vector size to 49 blocks per 
detection window x 4 cells per block x 9-bins per histogram = 
1764 values.  

 

3) Bag-of-Visual-Words 
BoVW is defined as a histogram of visual words included 

in an image. The basic procedure to extract BoVW from an 
image in this work is the following. 1) The first step is called 
sampling. In this work, due to the training vehicles are less than 
100x100 pixels and resized into 64x64, Dense SIFT features 
instead of SIFT [15] are sampled every 8x8 pixels, leading to 
64 SIFT feature vectors 2) The second step is called dictionary 
generation. In this step, each local descriptor is assigned to the 
nearest cluster centre or visual word. All the visual words are 
combined as a visual dictionary and the size of dictionary, k is 
determined empirically. As shown in Fig.2, the performance in 
terms of precision stabilizes at K=1000. Given the dictionary of 
visual words, then a histogram is computed by counting how 
many descriptors are assigned to each visual word. 3) The last 
step is called the normalization. Term frequency - inverse 
document frequency (TF-IDF) [16] is used to weight the visual 
words. This normalization approach discounts the visual words 
those occur in all the images and concentrates on the ones that 
occur less frequently.  

 

Fig. 2. Precision curve at different K 

 

IV. FEATURE FUSION 

 

After deep learning and handcrafted features extraction, a 
1792-feature vector, denotes as, 𝑿 , extracted from IRv2 is 
concatenated with selected hand-crafted feature vectors, 
denotes as 𝒀, to form a better image representation.  

Due to size of length of deep-learned feature vector, 𝑿, is 
1792 and small sized hand-crafted feature vector has little 
impact on the accuracy, only 1764-HoG and 1000-BoVW 
feature vectors are fused with 𝑿  separately to evaluate the 
classification accuracy. 



 

As the concatenated feature vectors come from different 
sources, two additional dense layers with ReLU activations are 
built to further reduce concatenated feature vectors into 1024 
dimensions. There are two purposes of this dimension reduction. 
The first one is that the property of non-linearity in two ReLU 
layers allows the loss to be back-propagated and the weights to 
be accordingly updated. The second purpose is to reduce the 
processing time with lower dimensions. In such a way, feature 
vector comes from different sources can be fused together and 
characterise images after training. At first, the learning rate is set 
to 0.01, and then programmatically set to 1/1.01 if there is no 
improvement on loss function. At last, another dense layer and 
a soft-max activation layer are added for classification 
prediction. The detailed steps in fusion is illustrated in Fig. 3. 

 

Fig. 3. Fusion of deep learned and handcrafted features, k=1764 for HoG and 

k=1000 for BoVW  

 

V. EXPERIMENT AND DISCUSSION 

 
In this section, experimental results of the proposed method 

on urban traffic videos are presented to analyze the performance 
of our approach. It starts with a brief introduction of the latest 
VRDI dataset. Then a list of performance metrics used in the 
following experiment are given. A novel method of using 
super-resolution on a sequence of low resolution testing images 
to improve classification accuracy is also analysed. Following 
that, results from our proposed method is compared with 
various standard classification methods.  

 

A. VRDI dataset 

The availability of vehicles recognition datasets from drone 
imagery is limited. Several datasets are available for the 
evaluation of vehicles detection tasks either frontal or side 
views of vehicles [17-18]. The current VRDI dataset contains 
5508 images in four vehicle major classes and one background 
class, namely the ‘sedan’, ‘suv’, ‘truck’, ‘bus’, and the 
‘background’ category. To exploit the spatial temporal 
relationship among training images during the tracking, 
vehicles are tracked and extracted as sequence of bounding 
boxes. Given above configurations, Fig. 4 snapshots a few 
images at different orientations per class in current data set. 

 

Fig. 4. Categorized sample images of the VRDI dataset 

 

The process of acquiring training data is described as two 
steps in [4]. At the first step, vehicles images are manually 
cropped from the 1st frame of each video segment and the type, 
the frame ID in each video segment, the top left position of the 
cropped rectangle, the width, and the height of the rectangles 
are annotated. In the second step, object tracking on each 
annotated vehicle is performed to generate a sequence of 
images. Each image within the tracked sequence is fed into 
current classifier and can be re-trained to increase current 
training data set if it is classified with high error probability. In 
such way, the time-consuming work in labelling data during the 
acquisition of training data can be minimized. 

 

B. Performance Metrics 

To quantify the performance of classification, the following 
metrics: precision, recall, and F measure are used. 

Given the definition of TP, FP, FN, and TN in Table I, we 
can then define the precision for each class as follows: 

TABLE I.  PERFORMANCE TABLE FOR INSTANCES LABELLED WITH A 

CLASS LABEL A. 

 True label A True not A 

Predicted label A True Positive (TP) False positive (FP) 

Predicted not A False Positive (FN) True negative (TN) 

 

Precision = TP/(TP + FP) , (1) 

Recall = TP/(TP + FN) , (2) 

𝐹1 = 2(Precision ∗ Recall)/(Precision + Recall) ,  (3) 



 

C. Comparison Methods 

 

We conducted a thorough experimentation on handcrafted 
feature vectors with SMO classifier, CNN-based classifier and 
handcrafted feature + CNN-based as shown in table 2, In the 
first three methods, handcrafted feature vectors were used for 
SMO training and classification.  

 

In the fourth method, each 139*139*3 training image is 
feed-forwarding through IRv2 models pre-trained on ImageNet 
and a 1792 deep-learned feature vector is output first. Then the 
last dense layer and the final softmax layer are modified 
together to output 5 classes. 

 

In the fifth and sixth methods, deep feature vector, 𝑿 , 

learned from IRv2 and handcrafted features, 𝒀 , are 
concatenated together first, then sent to a shallow neutral 
network designed in Fig.3 for final classification prediction. 
The only difference between two different methods is a simple 
element-wise scaling operation 10 ∗ 𝒀 is applied on 1764-HoG 
feature vector 𝒀  before concatenation. The reason of this 
scaling up operation is each element in CNN feature vector 
ranges between 0 to 10 while each element in HOG feature 
vector ranges between 0 and 1.  

TABLE II.  CLASSIFICATION METHODS 

Classification Methods 

LBP+SMO 

HoG+SMO 

BoVW+SMO 

CNN 

CNN+HoG 

CNN+BoVW 

 

D. Super-Resolution to Improve Classification Accuracy 

Although using high quality images for object classification 
would be ideal, this is not always possible in practice in drone 
imagery. In these cases, performing transformations to increase 
image quality at testing stage proves to be useful in the attempt 
to identify and classify relatively small objects. At pre-
processing stage, small testing images are up-sampled to match 
the input image size of the deep learning network. Super-
resolution in our experiment has been shown to outperform 
basic interpolation methods in terms of recognition accuracy.  

Figure 5 below shows that super resolution is applied on 
sequences of low resolution tracked frames to generate higher 
resolution images. 

 

  
(a)                                      (b) 

Fig. 5. Visual Appearance Improved Image (b) after SR on (a) 

In table 3 and 4, 11 image testing sequences are selected 
against CNN+HOG, CNN+ BoVW respectively. The original 
dimension of each testing image varies from 25x25 to 48x48, 
as shown in column 3.  As each testing image is up-sampled to 
139x139 to match the input size in CNN, details are missing in 
high-resolution and accuracy stays poor in column 4. After 
applying SR at scale 2, missing details in high-resolution image 
based on similarities between the low-resolution images are 
recovered, resulting much higher precision as shown in column 
6 of both tables.  

 

TABLE III.  COMPARISON OF THE ACCURACY BEFOR AND AFTER SR 

CNN+HOG. 

 

TABLE IV.  COMPARISON OF THE ACCURACY BEFOR AND AFTER SR 

CNN+BOVW. 

 

 

E. Experimental Results 

To evaluate the performance of those methods, table 5 lists 
the category types and number of images per category in the 1st 
two columns and the results measured in precision, recall and 
F-Measure per class in remaining columns. 

Given the availability of each types of sequence in the 
current testing data set, the performance of deep-learned 
features mixed with traditional features are significant better 
comparing to deep learned features and handcrafted features 



alone. LBP presents the worst performance on average due to 
its poor representation of small objects. Similarly, CNN 
presents the second worst performance on average due to the 
fact extracted features are washed out when small input training 
sample size. HoG based method performs slightly better than 
CNN-based but fails to outperform remaining methods due to 
increasing number of rotated images. BoVW performs almost 
well as deep learned CNN+ HOG due to its rich representation, 
but it still cannot outperform CNN+ BoVW.  

 

It is of note that the experiment result is very promising 
given that both the precision and recall rates are well above 80% 
when deep features are mixed with hand-crafted features. Some 
vehicle classification results from the real-time videos are 
shown in Fig. 6. As we can see, most of the vehicles have been 
correctly classified 

 

VI. CONCLUSION 

In this paper, we present an efficient method which exploits 
learned feature from pre-trained CNNs and mixes traditional 
hand-crafted features to improve classification accuracy for 
small-sized vehicle classification. The proposed method has 
been evaluated and compared with standard classification 
methods on real-world videos. The effectiveness of the 
proposed algorithm to robust vehicle classification is 
demonstrated for a variety of real environments given current 
dataset. 

 

 

Fig. 6. Sample Vehicle Classification Results 

 

TABLE V.  CLASSIFICATION PERFORMANCE. 
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