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Abstract—Hyperspectral images are of high spectral 
resolution and have been widely used in many applications, but 
the imaging process to achieve high spectral resolution is at the 
expense of spatial resolution. This paper aims to construct a 
high-spatial-resolution hyperspectral (HHS) image from a high-
spatial-resolution RGB image, by proposing a novel class-based 
spectral super-resolution method. With the help of a set of RGB 
and HHS image-pairs, our proposed method learns nonlinear 
spectral mappings between RGB and HHS image-pairs using 
class-based back propagation neural networks (BPNNs). In the 
training stage, unsupervised clustering is used to divide an RGB 
image into several classes according to spectral correlation, and 
the spectrum-pairs from the classified RGB images and the 
corresponding HHS images are used to train the BPNNs, to 
establish the nonlinear spectral mapping for each class. In the 
spectral super-resolution stage, a supervised classification is used 
to classify the given RGB image into the classes determined 
during the training stage, and the final HHS image is 
reconstructed from the classified given RGB image using the 
trained BPNNs. Comparisons on three standard datasets, ICVL, 
CAVE and NUS, demonstrate that, our proposed method 
achieves a better spectral super-resolution quality than related 
state-of-the-art methods. 

Keywords—spectral super-resolution, BP neural network, 
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I. INTRODUCTION  
Hyperspectral (HS) images with tens or hundreds of 

spectral bands can provide abundant spectral information, and 
have been widely used in environment monitoring [1][2], 
image classification [3][4], target detection [5][6] and so on. 
However, the imaging process to achieve high spectral 
resolution is at the expense of spatial resolution [7]. Compared 
with HS images, RGB images usually have much higher 
spatial resolution, but only have three spectral bands, and this 
greatly limits its effectiveness in the above-mentioned 
applications. Fortunately, the spectral information lost in RGB 
image may be recovered using the relationship between RGB 
and high-spatial-resolution hyperspectral (HHS) image-pairs 
provided by some generalized image databases. In other words, 
spectral super-resolution of RGB image is an alternative way 
to obtain the HHS image, if we can establish the spectral 
mapping from RGB to the hyperspectral spectral bands, using  

a large number of RGB and HHS image-pair samples. 
Spectral super-resolution methods can be mainly divided 

into two groups: dictionary learning based and neural network 
based methods. Among the dictionary learning based methods, 
Arad et al. [8] have proposed a sparse representation method 
to obtain hyperspectral images from RGB images. Specifically, 
a spectral dictionary for hyperspectral and the corresponding 
RGB image-pairs is learned, using the hyperspectral image 
priors provided by the K-singular value decomposition (K-
SVD) algorithm [9]. The sparse coefficients are estimated by 
the greedy orthogonal matching pursuit (OMP) algorithm [10] 
for the spectral dictionary learned above. To further improve 
the quality of reconstructed HHS image, Aeschbacher et al. 
[11] have re-implemented the above method [8] for better 
accuracy and runtime, and also proposed a shallow learned 
spectral reconstruction method based on the A+ method 
proposed for fast spatial super-resolution [12]. The 
comparable performance of [11] indicates its feasibility in the 
spectral super-resolution.  

In order to further accurately establish the spectral 
mapping under a large number of RGB and HHS image-pair 
samples, neural network based methods have been developed 
very recently. Nguyen et al. [13] have proposed a radial basis 
function network based method to reconstruct a hyperspectral 
response from a single RGB image, with known spectral 
response function. It is a nonlinear mapping with a white-
balancing process to reduce the effect of different illumination 
conditions. Galliani et al. [14] have proposed a deep 
convolutional neural network (CNN) method to learn an end-
to-end mapping from RGB images to hyperspectral images. It 
has 56 layers, and can bring a better performance than that of 
the dictionary learning based methods. Inspired by the above 
methods, Can et al. [15] have proposed a rather shallow CNN 
method with residual blocks to learn the spectral mapping 
from RGB to HHS images. In addition, in order to increasing 
the number of image-pair samples for a better learning result, 
data augmentation [16] is also utilized, such as image rotating, 
flipping and downscaling. The common thread of the above 
CNN based methods is to establish the spectral mapping using 
image patches, such as a patch size of 36×36 used in [15] and 
a patch size of 64×64 used in [14], which means that the index 
space for spectral mapping is the texture provided by the 
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image patches, and the possible combination of such a large 
size image patches may leading to a huge requirements for the 
number of image-pair samples. That is one of the main 
reasons why data augmentation technique is also utilized in 
[16].  

Considering it is more direct and efficient to use spectral 
domain as the index space, and the intrinsic characteristics that 
spectrum-pairs are more similar within each class of material 
than between classes and so do the corresponding spectral 
mapping. Hence in this paper, a novel spectral super-
resolution method in the spectral domain is proposed to 
construct the HHS image from an RGB image, using class-
based back propagation neural networks (BPNNs) [17]. In the 
training stage, unsupervised clustering is used to divide an 
RGB image into several classes according to spectral 
correlation, and the nonlinear spectral mappings for different 
classes are established using the spectrum-pairs from the 
classified RGB images and the corresponding HHS images by 
different BPNNs, respectively. In the spectral super-resolution 
stage, a supervised classification is used for the given RGB 
image to classify it into the classes determined during the 
training stage, and the final HHS image is reconstructed from 
the classified given RGB image using the trained BPNNs 
directly.  

The main contributions of this paper are listed as follows. 
1) To the best of our knowledge, this new framework for 

spectral super-resolution in the spectral domain based 
on the BPNNs is firstly given here. 

2) A class-based BPNN learning method is proposed, to 
guarantee the similarity of spectral mappings from 
RGB to HHS images in each class. 

3) An associative spectral classification is proposed, to 
ensure that the classes in the training and spectral 
super-resolution stages are consistent.  

The rest of this paper is organized as follows. The 
proposed spectral super-resolution method is presented in 
Section II. Section III provides experimental results and 
discussions on different methods and datasets, followed by the 
conclusions in Section IV. 

 
Fig.2 A three-layer BP neural network used in our proposed method. 

II. PROPOSED METHOD 
An RGB image  with three spectral bands can 

be seen as a spectral degradation of an HHS image 
 by the spectral response function : 

 
 (1) 

 
where  represents the number of pixels per band,  
( ) represents the number of spectral bands in , and 

 denotes the zero-mean Gaussian noise in the degradation 
model which is a popular assumption in the imaging process 
modeling [20][21]. 

According to the intrinsic characteristics that the similar 
spectrum-pairs in a single class are more similar than that in 
the total spectral domain and similar spectrum-pairs should 
have similar spectral mappings, the RGB image  is divided 
into  classes. Besides, Fig.1 shows the spectral mappings of 
different classes using typical spectrum-pairs on the CAVE 
dataset [24], which will describe in more detail in Section III. 
As can be seen in Fig.1, the spectral mappings are much 
similar in each class, while they are much different among 
different classes. In this case, the spectral mapping of class  
( ) from RGB to HHS can be described as 
 

 (2) 
 

where  and  denote the spectrums in class  of RGB 
image  and HHS image , respectively. According to 

 
(a) class 1                                          (b) class 2                                          (c) class 3 

Fig. 1 Spectral mappings of different classes using typical spectrum-pairs 
from RGB image (upper row) and the corresponding HHS image (lower row) in the CAVE dataset. 
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Eq.(2), for each class, if the spectral mapping of spectrum-
pairs from RGB to HHS can be learned by our proposed 
method, the spectrums of HHS image can be reconstructed 
from the corresponding ones of RGB image. The details of our 
proposed method are described as follows. 

A. Associative Spectral classification for RGB image 
The classification of RGB image  can be described as 

the following minimization problem, using the minimum 
intra-class distance criterion: 
  

 (3) 

 
where  denotes the th column (i.e., spectrum) of , 

 
denotes the clustering center of class , and  

denotes the distance between the spectrums  and . In 
this paper, spectral correlation is employed as the measure of 
distance, defined as 
 

. (4) 

 
In the training stage, given the number of classes , the 

above spectral classification problem in an RGB image can be 
viewed as an unsupervised clustering problem which can be 
solved by the k-means clustering algorithm [22]. 

In the spectral super-resolution stage, using the clustering 
center  determined during the training stage, each 
spectrum   of the input RGB image  can be classified into 
the  clusters, by the following optimization problem: 
 

. (5) 

 

The above unsupervised clustering and supervised 
classification in the training and spectral super-resolution 
stage respectively, can be seen as an associative classification 
method carried out before the spectral mapping.  

B. Class-based BP Neural Networks and Spectral Mapping 
The spectral mapping from the classified RGB image to 

the corresponding HHS image in Eq.(2) is a challenging 
underdetermined inverse problem. To solve this problem, we 
treat it as a nonlinear spectral mapping to be represented by a 
BP neural network, which has a strong nonlinear mapping 
capability with a few hidden layers. A basic three-layer BP 
neural network used in this paper, including one hidden layer, 
is shown in Fig.2. The output of the BP neural network is  
 

, (6) 
 
where  and  denote the inputs and outputs of BPNN 
respectively,  denotes the nonlinear active function in the 
hidden layer,  denotes the linear active function in the 
output layer, and ( ) are the weights and offsets 
respectively. 

We can see from the above that our proposed method first 
learns the nonlinear spectral mappings of spectrum-pairs of 
RGB and HHS images, and then can reconstruct the HHS 
image from only an RGB image. The two stages of overall 
framework of our proposed method are shown in Fig.3 and 
Fig.4, respectively. In the training stage shown in Fig.3, an 
unsupervised clustering is performed on the spectrums of 
RGB images. Then the classified spectrums of an RGB image 
and those of its corresponding HHS image form the spectrum-
pairs for training different BPNNs for different classes, 
thereby establishing a nonlinear spectral mapping between 
RGB and HHS for each class. In the spectral super-resolution 
stage shown in Fig.4, after an associative spectral 
classification on the given RGB image, each spectrum in its 
corresponding HHS image is reconstructed by using the 

 
Fig.3 The training stage of our proposed method. 

 
Fig.4 The spectral super-resolution stage of our proposed method. 



 

 

established nonlinear spectral mapping of this corresponding 
class.  

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 
To evaluate the super-resolution performance of our 

proposed method, the relative state-of-the-art methods from 
Nguyen et al. [13], Galliani et al. [14], Arad et al. [8], 
Aeschbacher et al. [11] and Can et al. [15] are used for 
comparison on the ICVL [8], CAVE [24] and NUS [13] 
datasets. Additionally, seven full-reference quality metrics are 
used to evaluate the performance of each method, including 
spectral angle mapper (SAM) [20]; absolute RMSE, RMSEG 
and RMSE uint 

G ; relative rRMSE, rRMSE G  and rRMSE uint 
G  

defined in [8], [14] and [15].  

A. Datasets 
The CAVE database [24] captured by a cooled CCD 

camera (Apogee Alta U260) has 32 images with a dimension 
of 512×512×31, ranging from 400 to 700 nm with 10 nm 
increments. Following the experiments of Galliani et al. [14], 
Aeschbacher et al. [11] and Can et al. [15], we use the CIE 
1964 spectral response functions to simulate corresponding 
RGB images of the hyperspectral images. 

The ICVL dataset [8] captured by a line scanner camera 
(Specim PS Kappa DX4 hyperspectral) includes 201 
hyperspectral images with a dimension of 1392×1300 over 
519 spectral bands (400-1000nm). To facilitate comparison 
and reduce computational costs [8], they are downsampled in 
the spectral domain with 31 bands from 400nm to 700nm with 
10nm increments. We also use the CIE 1964 spectral response 
functions to simulate corresponding RGB images of the 
hyperspectral images, like in the original paper. 

The NUS dataset [13] captured by a Specims PFDCL-65-
V10E spectral camera contains 66 spectral images, ranging 
from 400 to 700nm, with 10nm increments. Following the 
experiments of Galliani et al. [14] and Aeschbacher et al. [11], 
Canon 1D Mark III spectral response functions are used to 
obtain the RGB images from the corresponding hyperspectral 
images.  

B. Experimental Results  
Since our proposed method learns the spectral mapping 

based on the classified spectrum-pairs, a different selection of 
training and test spectrums is used in this experiment. For the 
CAVE and ICVL datasets, instead of dividing the images into 
two sets [11], we divide the classified spectrums into two sets 
as 2-fold cross-validation. Similarly, for the NUS dataset, the 
classified spectrums are divided into a training set and a test 
set with the training/test split radio provided in [13]. In the 
training set, the spectrum-pairs are selected randomly from 
each class to training different BPNNs. For the fairness of the 
comparisons, the numbers of training and test spectrums used 
in our proposed method are the same with those of the method 
proposed by Aeschbacher et al. [11]. Additionally, in the 
training process, 85% of the training spectrum-pairs are used 
to train the BPNNs, and 15% of them are used as the 
validation data, to mitigate overfitting. Besides, the loss 
function in the training process is the mean squared error  

Table 1 Parameters in our proposed method on different datasets. 
Datasets CAVE [24] ICVL [8] NUS [13] 

Number of training data 10000×16 2000×100 400×41 
Number of classes 160 100 10 

Number of nodes in BPNNs 3-10-31 3-20-31 3-6-31 
 
between the target spectrums and the mapped spectrums; the 
sigmoid function is used as the active function in the hidden 
layer, and a linear function is used in the output layer; the 
maximum training epochs is set to 100. According to different 
datasets and different numbers of training data, Table 1 shows 
the number of classes and the number of nodes in each layer 
of BPNNs for the three different datasets. 

Table 2 shows the quantitative spectral super-resolution 
results on the CAVE, ICVL and NUS datasets, in which the 
results of other related methods are all taken from their 
original papers, the short lines indicate that there are no 
relevant information available from the original papers, and 
the best results are shown in bold. It can be seen that our 
proposed method (marked as “CBPNN”) shows a better 
spectral super-resolution results in both spectral and spatial 
domain than the other related methods under most metrics. 
Specifically, for the CAVE dataset, our proposed method 
outperforms other methods in RMSE and SAM. Particularly, 
RMSE is reduced over 1.1 than that of the other related 
methods, which indicates an outperformance in spatial 
preservation. Moreover, our proposed method improves the 
performance of spectral reconstruction over 4.7 in SAM than 
the method of [14], which is much significant for the HHS 
image. However, our proposed method performs a bit worse in 
rRMSE than the method of [15]. To further analyze the above 
results, a detailed analysis of the imaging quality of the CAVE 
dataset is shown in Fig.5, as an example. Figs.5(a) and (b) 
show the original glass tiles image from the CAVE dataset in 
band 31 and errors of the reconstructed glass tiles image using 
our proposed method in averaged rRMSE and zoomed in 
detail respectively. The visual results show that the dark strip 
on the left edge of glass tiles image is the major area with 
higher rRMSE errors. Besides, spectrums of the typical pixels 
with and without the dark strip are also shown in Figs.5(c) and 
(d), respectively. We can see from Figs.5(c) and (d) that, 
although the dark strip on the left edge of the glass tiles image 
has not provide much useful spectral information, it does 
result in large spectral super-resolution errors in rRMSE. 
During the experiments, we find that the above phenomenon 
appears in most images of the CAVE dataset; here we just 
took the glass tiles image as an example. In this case, we make 
an additional experiment using our proposed method, by 
simply deleting the left dark strip area with a size of 512×4 for 
the CAVE dataset, shown as the results of “CBPNN-d” in 
Table 2. The spectral super-resolution results in Table 2 show 
that the performance of our proposed method has achieved a 
great improvement, especially in rRMSE, and gives the best 
performance in relative RMSE than the other related methods. 
As for the methods of [14][15] using image patches, due to the 
large size of image patches, i.e. 36×36 or 64×64, only a 4 
pixels wide dark strip at the edge may have a very limited 
effect on the performances of their spectral super-resolution  



 

 

Table 3 Training time and testing time for spectral super-resolution 
of one ICVL image with a size 1300×1392×31. 

 Arad [8] Arad [11] A+ [11] CBPNN 
training time - 2.8h 5.7h 0.45h 
testing time 1.5h+100s 130s 110s 15s 

 
Fig.6 RGB SRFs and the averaged rRMSE at different wavelengths 

of three methods on the ICVL dataset. 

results. 
For the ICVL dataset, Table 2 also indicates the second 

best results (underlined). The spectral super-resolution results 
show that our proposed method is comparable to the method 
of [15] in RMSEG and rRMSEG, and performs the best in 
terms of other quality metrics. Besides, to compare the 
spectral super-resolution results in rRMSE with the results 
provided by [8] and [11], Fig.6 shows the average and 
variance of rRMSE at different wavelengths, and the spectral 
response functions of the RGB image (RGB SRFs) are also 
provided. The results in Fig. 6 show that our proposed method 
performs best with the lowest rRMSE and the smallest 
variance compared with that of the methods [8] and [11], even 

in the wavelength ranges such as 400-420 nm, which are not 
well covered by the spectral response functions of the RGB 
image. Additionally, the training time and the testing time of 
different methods are shown in Table 3, which measure the 
time cost of the training step and the time required to 
reconstruct one image of the ICVL dataset. Our proposed 
method is conducted using MATLAB R2015b on a computer 
with a 3.60 GHz CPU and 28 GB RAM. Similarly to the 
method of [11], any vast parallelism has not been used in this 
comparison. The results in Table 3 indicate that, our proposed 
method uses much less training and testing time than the 
methods of [8] and [11]. Considering the better or comparable 
spectral super-resolution performances shown in Table 2, our 
proposed methods is more efficient with less computing time 
and better performances than the other related methods. 
Besides, for the NUS dataset, our proposed method performs 
the best in both spectral and spatial domains than all the other 
related methods. Particularly, SAM is reduced over 0.88 than 
the method of [14], and RMSE is reduced over 0.4 than all the 
other related methods. From the spectral super-resolution 
results in Table 2, we can see that our proposed method 
performs comparable or better than the recent shallow CNN 
approach of [15], and significantly better than the recent deep 
CNN and sparse representation method of [11] and [8], and 
the approach of [13]. Additionally, the spectral super-
resolution performance of our proposed method on typical 
spectrums of different datasets is shown in Fig.7. As can be 
seen in Fig.7, the spectrums are reconstructed with high 
accuracy using our proposed method. 

C. Discussion on Parameters Selection 
To evaluate the effect of the number of classes  on the 

spectral super-resolution performance of our proposed method, 
the averaged RMSE and SAM curves of the reconstructed 
spectrums of HHS images on the CAVE dataset are shown in  

Table 2 Quantitative comparison on the CAVE, ICVL and NUS datasets. The best results are in bold,  
and the second best are underlined for ICVL. 

 CAVE dataset [24] ICVL dataset [8] NUS dataset [13] 
 Galliani Arad A+ Can CBPNN CBPNN-d Galliani Arad A+ Can CBPNN Nguyen Galliani Arad A+ Can CBPNN 
 [14] [11] [11] [15]   [14] [11] [11] [15]  [13] [14] [11] [11] [15]  

RMSE - 5.61 2.74 2.613 1.5025 1.5080 - 1.70 1.04 0.5754 0.6324 12.44 - 4.44 2.92 2.83 2.4315 
RMSEG - 20.13 6.70 5.80 3.8982 3.9919 - 3.24 1.96 1.33 8.06 1.5433 - 9.56 5.17 4.92 4.4231 
RMSEuint 

G  4.76 - - 3.5275 2.0364 2.0401 1.98 - - 0.8676 1.23 8.06 5.27 - - 3.66 2.9642 
rRMSE - 0.4998 0.4265 0.178 0.3341 0.1059 - 0.0507 0.0344 0.0151 0.0166 0.2145 - 0.1904 0.1420 0.1471 0.1365 
rRMSEG - 0.7755 0.3034 0.239 0.1396 0.1393 - 0.0837 0.0584 0.0399 0.3026 0.0410 - 0.3633 0.2242 0.2168 0.1661 
rRMSEuint 

G  0.2804 - - 0.1482 0.0891 0.0857 0.0587 - - 0.0195 0.0350 0.3026 0.234 - - 0.1747 0.0931 
SAM 12.10 - - - 7.3467 7.0159 - 2.04 - - 1.1686 - 10.11 - - - 9.2271 

 

 
(a)                                     (b)                                                          (c)                                        (d) 

Fig.5 Analysis results on a glass tiles image in the CAVE dataset: (a) original HHS image in band 31; (b) averaged rRMSE and zoomed in 
detail; spectrums of typical pixels (c) with and (d) without the dark strip on the left edge of (a). 
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Fig.8 RMSE and SAM curves on the CAVE dataset 

 as a function of . 

Fig.8, as a function of . As shown in Fig.8, with the increase 
of , the RMSE and SAM curves show a downward trend to 
some extent. It indicates that the reconstructed spectrums of 
our proposed method can preserve more spatial and spectral 
information when the number of classes increases. This may 
be due to the fact that, with more classes, the similarity of 
spectrums in each class is increased, which is more conducive 
for BPNNs to learn the spectral mapping in each class, and 
will further improve the quality of the reconstructed spectrums. 

IV. CONCLUTIONS 
In this paper, we proposed a new spectral super-resolution 

method to reconstruct an HHS image from an RGB image 
using class-based BPNNs. In this method, BPNNs are used to 
learn nonlinear spectral mappings using the classified 
spectrum-pairs of RGB images and their corresponding HHS 
images. Then for a given test RGB image, each spectrum in its 
HHS counterpart is reconstructed from the classified given 

RGB image using the trained BPNNs. Besides, an associative 
spectral classification is adopted to ensure the consistency of 
classes in the training stage and the spectral super-resolution 
stage. Experimental results on three standard datasets 
demonstrate that our proposed method achieves a better 
spectral super-resolution quality than that of the other state-of-
the-art methods.  

REFERENCES 
[1] L. Qin, X. Wang, J. Jiang, X. Yang, D. Ke, H. Li, and D. Wang, “Use 

hyper-spectral remote sensing technique to monitoring pine wood 
nomatode disease preliminary,” International Symposium on 
Optoelectronic Technology and Application 2016. International Society 
for Optics and Photonics, 2016. 

[2] T. Arnold, R. Leitner, and G. Bodner, “Application of NIR 
hyperspectral imaging for water distribution measurements in plant roots 
and soil,” In SENSORS, 2016 IEEE, pp. 1-3, October, 2016.  

[3] M. Jiang, F. Cao, and Y. Lu, “Extreme Learning Machine with 
Enhanced Composite Feature for Spectral-Spatial Hyperspectral Image 
Classification,” IEEE Access, vol. 6, pp. 22645-22654, 2018. 

[4] A. Qin, Z. Shang, J. Tian, T. Zhang, Y. Y. Tang, and J. Qian, “Edge-
Smoothing-Based Distribution Preserving Hyperspherical Embedding 
for Hyperspectral Image Classification,” IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing, 2018. 

[5] M. Díaz, R. Guerra, S. López, and R.  Sarmiento, “An Algorithm for an 
Accurate Detection of Anomalies in Hyperspectral Images With a Low 
Computational Complexity,” IEEE Transactions on Geoscience and 
Remote Sensing, vol. 56, no. 2, pp. 1159-1176, 2018. 

[6] S. Matteoli, M. Diani, and G. Corsini, “Automatic Target Recognition 
Within Anomalous Regions of Interest in Hyperspectral Images,” IEEE 
Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, vol. 11, no. 4, pp. 1056-1069, 2018. 

[7] N. Akhtar, F. Shafait, and A. Mian, “Sparse spatio-spectral 
representation for hyperspectral image super-resolution,” IEEE ECCV, 
pp. 63-78, 2014. 

[8] B. Arad and O. Ben-Shahar, “Sparse recovery of hyperspectral signal 
from natural RGB images,” In European Conference on Computer 
Vision, pp. 19–34. Springer, 2016. 

 

 
Fig.7 Spectrums of the ground truth (red) and the reconstructed result by our proposed method (blue, dashed) 

 on typical pixels of the CAVE (the first row), ICVL (the second row) and NUS (the third row) datasets. 
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