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Abstract—Semantic image segmentation plays a pivotal role
in many vision applications including autonomous driving and
medical image analysis. Most of the former approaches move
towards enhancing the performance in terms of accuracy with
a little awareness of computational efficiency. In this paper, we
introduce LiteSeg, a lightweight architecture for semantic image
segmentation. In this work, we explore a new deeper version
of Atrous Spatial Pyramid Pooling module (ASPP) and apply
short and long residual connections, and depthwise separable
convolution, resulting in a faster and efficient model. LiteSeg
architecture is introduced and tested with multiple backbone
networks as Darknetl9, MobileNet, and ShuffleNet to provide
multiple trade-offs between accuracy and computational cost.
The proposed model LiteSeg, with MobileNetV2 as a backbone
network, achieves an accuracy of 67.81% mean intersection over
union at 161 frames per second with 640 x 360 resolution on the
Cityscapes dataset.

Index Terms—semantic image segmentation, atrous spatial
pyramid pooling, encoder decoder, and depthwise separable
convolution.

I. INTRODUCTION

Semantic image segmentation is defined as the assigning
of every pixel in a given image to a specific categorical label.
Semantic segmentation [ ]-[4], and similar to image classifica-
tion [5]-[7] and object detection [&], [9], has seen considerable
progress due to the employment of deep learning architectures,
especially convolutional neural networks (CNN). This progress
has resulted in a much better quality of real-world applications,
such as autonomous driving, medical diagnosis [10], and aerial
image segmentation [11].

Despite the high accuracy achieved by recent proposed
architectures [2], [3] for semantic segmentation, they are not
computationally efficient especially for the applications that
are needed to be run on edge devices, such as autonomous
driving cars, robots, or augmented reality kits. Numerous
attempts have been investigated in providing lightweight se-
mantic segmentation architectures, such as ERFNet [12], ESP-
Net [13], Enet [14], CCC [15], and DSNet [16]. Some of these
lightweight architectures attempts aimed at obtaining real-
time performance with a considerable reduction in network
parameters which significantly causes a loss in accuracy mea-
sures [13]-[15], [17]. Other methods paid more attention to
both accuracy and real-time performance which leads to gain
a better real-time performance when compared to complex
networks and a better accuracy than the first group [12], [16].
Semantic segmentation. The Fully Convolutional Network
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(FCN) [1] is a pivotal approach which paves the way to employ
deep learning methods into the semantic segmentation prob-
lem. In FCN, a classification model such as, GoogleNet [7]
or VGG [18] was used as an encoder to extract features from
tested images and then these feature maps were upsampled to
pixelwise dense predictions by cascaded layers of unpooling
and deconvolution operations. Accuracy of this architecture
was improved by using skip architecture, in which semantic
information from deep layer and spatial information from the
earlier layers were combined to get better results. Despite the
breakthrough of FCN architecture, it has suffered from low
resolution prediction. Many variant of FCN are proposed to
solve this problem. For example, the work in [19] proposed a
multi-scale network which employed a different three scale to
generate a fine, high resolution predictions. Another solution
was proposed by [20], in which a more complex deconvolu-
tion network was used to produce high resolution predictions
instead of the used one in [!] which used a single bilinear
interpolation layer. A different approach [21] employed dilated
convolution to increase the receptive field without any increase
the in number of parameters and computational cost, followed
by bilinear interpolation layers to scale up the feature maps
to the input image size. Then a conditional random field
(CRF) [22] was used as a post processing to refine the result
image. PSPNet [3], Deeplabv3 [4], Deeplabv3+ [2] capture
information at multiple scales by either applying pooling
operations with different kernel size and they called it pyramid
pooling module (PPM) or employing dilated convolution with
different rate and that was called Atrous Spatial Pyramid
Pooling (ASPP).

Real-Time Segmentation. Most of the mentioned ap-
proaches are not efficient for real-time applications as they
employed large backbone networks such as GoogleNet [7],
Xcepetion [18], or ResNet [0], or employed a large CNN
architectures for both the encoder or decoder sides. This has
lead to having a large number of parameters to be tuned and
a large floating point operations (FLOPS), even though they
are efficient form accuracy perspective. Many approaches have
been proposed to deal with this problem, e.g., ERFNet [12]
employed a residual connection and depthwise separable con-
volution to increase receptive field to achieve high accuracy
with a reasonable performance. Alternatively, ESPNet [13]
proposed an efficient module called efficient spatial pyramid
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Fig. 1. General LiteSeg diagram including the encoder module with its components backbone network and DASPP module, and the decoder module. Encoder
module takes an input image and generates a high dimensional feature vector. The decoder module restores the spatial information from this feature vector.

(ESP), which uses point wise convolution and spatial pyramid
of dilated convolution. ESPnet along with Enet provide a
lightweight architectures but with a degradation in accuracy.
RTSeg [17] provided a decoupled encoder-decoder architec-
ture which allows to plug any encoder (i.e., VGG16 [18],
MobileNet [23], ShuffleNet [24], ResNetl8 [6]) or decoder
(i.e., UNet [10], Dilation [25], SkipNet []) architectures inde-
pendently. They have found out that using SkipNet architecture
along with MobileNet and ShuffleNet provided the best trade-
off between accuracy and performance.

Motivated by the encoder-decoder architecture, Atours Spatial
Pyramid Pooling (ASPP), dilated convolution, and depthwise
separable convolution, we design a novel architecture called
LiteSeg which is capable of adapting any backbone network.
This capability would allow a variety in trade-offs between
computational cost and accuracy to fit multiple needs by
choosing different backbone networks.

In summary, our main contributions are:

o LiteSeg, a real time competitive architecture is pre-
sented and tested with three different backbone networks,
Darknet19 [8], MobileNetV2 [23], and ShuffleNet [24],
achieving performance 70.75%, 67.81%, and 65.17%,
respectively on Cityscapes dataset.

o A new deeper version of ASPP module is adapted to
improve the results along with using long and short
residual connection.

The rest of the paper is organized as follows. Section 2
describes the proposed architecture, LiteSeg, in details. In
Section 3, both the accuracy and the computational efficiency
of the proposed model is evaluated and the paper is finally
concluded in Section 4.

II. METHODS

Here, we will describe our architecture LiteSeg and its new
deeper version of ASPP module called Deeper atrous Spatial

Pyramid Pooling (DASPP) module (Figure 1). In addition, the
atrous convolution, depthwise separable convolution and long
and short residual connection are briefly introduced. Then,
Deeplabv3+ [2] which is used as the decoder module will
be reviewed.

A. Atrous Convolution

In convolutional architecture, decreasing the receptive field
size will result in a spatial information loss that can be at-
tributed to the strided convolution and pooling layers. To over-
come this problem, the dilated convolution was used in [21],
[25] to increase the receptive field without any reduction in the
feature map resolution and an increase in trainable parameters.
This allows network to learn global context features across the
entire image for refining full-resolution predictions.

B. Depthwise Separable Convolution

Standard convolution is computationally an expensive oper-

ation due to the large number of parameters to be tuned and
thus the needed FLOPS. To tackle this problem, depthwise
separable convolution is a suggested solution to replace stan-
dard convolution without compromising the accuracy.
The main idea of depthwise separable convolution is to split
both the input and the kernel into channels -they share the
same number of channels-, and each input channel will be
convolved with the corresponding kernel channel. Then, the
pointwise convolution is performed using a 1 x 1 kernel to
project the output of the depthwise convolution into new chan-
nel space. Employing depthwise separable convolution [26]
was empirically proven to reduce the computational cost with
similar or better performance.

C. Long and short residual connection

He et al. [6] proposed a residual learning framework to
allow training of very deep networks. Unlike the traditional
feedforward neural network, ResNets introduce an identity
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Fig. 2. Visualization of the output after encoder module, to show the effectiveness of short residual connection (SRC), long residual connection (LRC), and

DASPP module on our model performance.

shortcut connection. Let X is the input feature map, F(X)
is the residual, and H(X) is the output of residual block, the
residual learning takes the form H(X) = F(X)+X such that,
if there is no residual it will work as identity mapping, that
means it can eliminate the effect of the DASPP module if it
turns out to be an unnecessary. The resulting learned residual
assures that the proposed network would not perform worse
than without it.

Fusion and reusing of low-level features -which include color
blobs or edges- from bottom layers and high-level features
from top layers have been proven to be helpful for high
resolution segmentation [27]. This fusion can be done between
feature maps from close layers by short residual connection
(SRC) and far layers by long residual connection(LRC). These
connections act as memory units [28] in the network as they
allow preserving the information from the bottom layers to the
top layers.

There are two approaches to carry out residual connections,
one by element-wise addition [0] and the other by concate-
nating the feature maps [28]. Here, we employed the concate-
nation approach as an element-wise addition that require the
residual output and the input have the same dimension width,
height, and depth instead of the conventional concatenation
which requires the same dimension of width and height only.
The mismatch in width and height can be maintained by
upsampling and optionally a 1 x 1 convolution can be used to
reduce the depth of the features for computational efficiency. It
was found out that long skip connection helps to make clearer
semantic boundaries and short skip connections with DASPP
help in fine tuning the semantic segments and thus providing
richer geometrical information (Figure 2).

D. Proposed Encoder

The proposed encoder contains a backbone network archi-
tecture which acts as an image classification architecture for
feature extraction. These architectures were chosen to meet
our performance criteria, so we tested the architecture with
different three lightweight models MobileNet, ShuffleNet, and
Darknet19. Not only is the type of the backbone network
controls the performance, but also the output stride [4] which
is defined as the ratio between the input image size and the
last feature map of the encoder. Let height H, width W, and
depth C be the input image dimension and the outputs of
the backbone network are h,w, and ¢, so the output stride is
defined as os = H x W/h x w. Decreasing the output stride
leads to having high resolution feature map and also better
results [4] as more spatial information throughout the network
is preserved but it comes with computational cost. The output
stride of backbone networks is controlled by removing max
pool layers and modifying the stride for the last convolution
layers. Deeplabv3+ [2] with output stride equal to 16 is the
best trade-off between accuracy and computational efficiency.
Moreover, they found out that the accuracy can be greatly
improved using output stride equal to 8 but with huge compu-
tational cost and the computational efficiency can be improved
by increasing the output stride to 32 with a compromise
in accuracy. Therefore, the proposed backbone network is
configured with output stride of 32 for MobileNetV2 [23]
and ShuffleNet [24] and output stride of 16 for Darknet19
to achieve different trade-offs between accuracy and speed.
DeepLabv3 [4] employs Atrous Spatial Pyramid Pooling
(ASPP) module with different dilation rates to capture
multi-scale information, following the presented approach in



ParseNet [29]. Here, a new deeper version of ASPP module
is proposed (called Deeper Atrous Spatial Pyramid Pooling
(DASPP)), by adding standard 3 x 3 convolution after 3 x 3
atrous convolutions to refine the features and also fusing the
input and the output of the DASPP module via short residual
connection. Also, the number of convolution filters of ASPP
is reduced from 255 to 96 to gain computational performance.

E. Deeplabv3+ as a Decoder

Deeplabv3+ [2] presented a simplified decoder that is com-
posed of standard 3 x 3 convolution and upsampling layers.
Here, we added another 3 x 3 convolution layer and reduced
the number of filters in all 3 x 3 convolution from 256 to 96
for computational performance gain. Additional, the output of
the encoder is augmented with low level features from earlier
layers of the backbone network via long residual connection.
These low level features might have large number of feature
maps, and in order to resolve this problem, a 1 x 1 convolution
is utilized to reduce the number of channels of low level
feature. Otherwise, with some light backbone networks, there
will be no need to apply the 1 x 1 convolution on low level
features because of the low number of channels (e.g., 24 in
case of using MobileNet).

III. EXPERIMENTAL RESULTS AND VALIDATION

In our evaluation of the proposed method, the effectiveness
of LiteSeg with different backbone networks is empirically
tested and the results are compared with the lightweight
state-of-the-art architectures on Cityscapes [30] dataset. The
performance of the proposed model is measured in terms
of mean intersection over union (mlOU), giga floating point
operations (GFLOPs), and the number of parameters (Params)
in millions.

A. Dataset and Computing Environment

The Cityscapes dataset is a large-scale dataset for semantic
understanding of urban scenes. It contains 5000 images with
fine annotations divided into 2975 images for training, 500
images for validation, and 1525 images for testing. It also
contains about 20000 images with coarse annotations that can
be used as extra data for fine-tuning the models.

The experiments were carried out on a computer with
Intel Core 17-8700 @ 3.2GHZ, 16GB memory, and NVIDIA
GTX1080Ti GPU card. This computer runs Ubuntu 18.04 and
PyTorch [31] version 0.4.1 with CUDA 9.0 and cudnn 7.0.5.

B. Training Protocol

Stochastic Gradient Descent with Nesterov [32] was used
with a momentum value of 0.9 and an initial learning rate
of 10~7 for ShuffleNet and MobileNetV2 backbone networks
and 10~8 for Darknetl9 backbone network, and a weight
decay 4 x 107°. We applied multiple learning rate policies
where the learning rate changes after every five epochs such
that the learning rate of the current epoch is calculated by
initial_learning_rate x (1—epoch/max_epochs)P°"*" with
power 0.9.

C. Encoder Options

Baseline Model. First our experiments are conducted with
a baseline architecture which employs ASPP and decoder
modules from the Deeplabv3+ [2]. This baseline was tested
with three different backbone networks, MobileNetV2 [23],
ShuffleNet [24], and Darknet19 [8] with output stride of 32
during both training and testing phases. As shown in the
first row of Table I, employing Darknet19 as the backbone
network for LiteSeg produces an appreciable improvement in
the accuracy when compared to MobileNetV2 and ShuffleNet
as it is a more efficient classification model [8]. This can
be attributed to the fact that the generated features for the
decoders make the architecture more efficient as a classifier.

Employing DASPP Module. As shown in the second row of
Table I, employing DASPP module along with decreasing out-
put stride from 32 to 16, considerably increases the accuracy
of the network by 2.37% when using Darknet19 as a back-
bone network. It also shows that employing DASPP module
along with keeping output stride at 32 for MobileNetV2 and
ShuffleNet increases the accuracy of the network by 0.1% and
0.9%, respectively. For DASPP module, we employed dilation
rates (3,6,9) for the three 3 x 3 convolutions in the first layer,
and used standard 3 x 3 convolution in the second layer of
convolutions.

Pre-Training on The Coarse Dataset. Due to the lack
of finely annotated data for semantic segmentation models,
several works [33], [34] found that object-level and image-
level labels can improve the result of semantic segmentation
models. LiteSeg is trained on the coarse data for 20 epochs
and then the trained model is used for training the fine data.
The third row of Table I shows that using a trained network
on coarsely annotated data improves the accuracy of the
network by 0.7%, 1.6%, and 1.3% when using Darknet19,
MobileNetV2, and ShuffleNet, respectively.

Multi-Scale Input. Learning network with multi-scale im-
ages forces the network to well predict across multiple sizes
of input images [8]. Following this strategy, we augmented
the dataset with multi-scale input images as our network is a
fully convolutional network which makes it accept different
dimensions of images. This makes the proposed models effi-
cient for predicting various sizes of input images, as stated in
the fourth row of Table I.

Employing Depthwise Separable Convolution. Not only
does the use of depthwise separable convolution instead of
using standard convolution in our network reduce the FLOPS
as stated in Table II, but it also improves the accuracy of the
network by 0.5%, 0.7%, and 0.7% when using Darknet19,
MobileNetV2, and ShuffleNet, respectively when evaluating
images of size 1024 x 2048, as stated in the fifth rows of
Table I.

D. Computational Performance Evaluation

The computational efficiency of the proposed models is
assessed here. Both the inference time, which reflects the real-
time performance, and number of parameters, which reflects



TABLE I
EVALUATION RESULTS IN MIOU ON THE CITYSCAPES VALIDATION SET USING LiteSeg WITH AN INPUT IMAGE SIZE 512 X 1024 USING DIFFERENT
BACKBONE NETWORKS. BASELINE NETWORK IS MINIMAL VERSION OF DEEPLABV3+. FT: USING COARSE DATASET. MS: MULTI-SCALE TRAINING
STRATEGY. DW: EMPLOYING DEPTHWISE SEPARABLE CONVOLUTION. RESULTS WITH **’ WERE EVALUATED ON IMAGES WITH SIZES 512 X 1024 AND
1024 x 2048 AND LISTED AS 512 x 1024 ACCURACY/1024x2048 ACCURACY.

Baseline DASPP FI' MS DW  LiteSeg-Darknet  LiteSeg-MobileNet  LiteSeg-ShuffleNet
v 65.84% 64.70% 60.41%
v 68.21% 64.80% 61.3%
v v 68.94%/71.5%*  66.4%/67.8%* 62.65%/62.2%*
v v v 69.14%/72.3%*  66.49%/69.3%* 63.2%/65.4%*
v v v v 69.43%/72.8%*  66.48%/70.0%* 62.45%/66.1%*
TABLE II the accuracy of ERFNet and DSNet by 2.75% and 1.45%,

EFFECT OF EMPLOYING DEPTHWISE SEPARABLE CONVOLUTION TO
REDUCE THE NUMBER OF FLOATING POINT OPERATIONS, INSTEAD OF
STANDARD CONVOLUTION. THE UNIT OF ALL LISTED NUMBER IS GIGA
FLOATING POINT OPERATIONS (GFLOPS). THEY ARE MEASURED ON
IMAGE SIZE 1024 x 512.

LiteSeg-Darknet  LiteSeg-MobileNet  LiteSeg-ShuffleNet

123.26 18.86 9.36
103.09 4.9 2.75

Convolution type

Standard Convolution
Depthwise Separable convolution

the memory footprint, are measured. A set 200 images for
the burn-in process and 200 images for evaluation are used
in the process. Table III compares the proposed models to
current state-of-the-art real-time segmentation networks using
the same computing environment.

TABLE III
INFERENCE TIME ANALYSIS ON IMAGES WITH RESOLUTION 360X640 AND
FULL RESOLUTION 1024x2048 USING OUR MACHINE. DSNET RESULT
WAS TAKEN FROM THEIR PAPER, THEY USED NVIDIA GTX 1080TI oN
THEIR EXPERIMENTS.

Network FPS (360x640)  FPS (1024x2048)  Params(in millions)
ErfNet [12] 105 15 2.07

DSNet [16] 100.5 - 0.91
LiteSeg-Darknet (ours) 98 15 20.55

ESPNET [13] 144 25 0.364
LiteSeg-MobileNet (ours) 161 22 4.38
LiteSeg-ShuffleNet (ours) 133 31 3.51

These results clearly show the ability of LiteSeg to generate
different lightweight models to manipulate the accuracy and
computational efficiency by using different backbone network.
For example, using 640 x 360 input resolution, LiteSeg with
MobileNetV2 [23] as a backbone network achieved a speed of
161 FPS which exceeds the speed of ESPNet [13] by 17 FPS
on the same machine, while providing an improved accuracy
by 7.51%.

E. Cityscapes Benchmark Results

The models with the best result on the validation set
are selected and compared with the results of the proposed
model when experimented in the test set. The results are
then uploaded to the official benchmark of Cityscapes dataset.
As shown in Table IV, we compare our result on the test
set with other state-of-the-art real-time models for semantic
image segmentation. Although the LiteSeg-DarkNetl9 has
a high GFLOPS compared with ERFNet, it has improved

respectively, just with a sacrifice of 7 FPS for ERFNet and

2.5 FPS for DSNet (Table III).

TABLE IV
PERFORMANCE OF OUR PROPOSE LITESEG AND SIMILAR
ARCHITECTURES ON CITYSCAPES TEST SET. FOR RESULTS WITH **’,
GFLOPS 1S COMPUTED ON IMAGE RESOLUTION 640X360.

Model GFLOPS  Class mIOU  Category mIOU
SegNet* [35] 286.03 56.1% 79.1%
ESPNet [13] 9.67 60.3% 82.2%
ENet [14] 8.52 58.3% 80.4%
ERFNet [12] 53.48 68.0% 86.5%
SkipNet-ShuffleNet [17] 4.63 58.3% 80.2%
SkipNet-MobilenetNet [17]  13.8 61.5% 82.0%
CCC2 [15] 6.29 61.96% nan
DSNet [16] nan 69.3% 86.0%
LightSeg-MobileNet (ours) 4.9 67.81% 86.79%
LightSeg-ShuffleNet (ours) — 2.75 65.17% 85.39%
LightSeg-DarkNet19 (ours)  103.09 70.75% 88.29%
TABLE V

CATEGORY RESULTS OF OUR LITESEG MODELS ON CITYSCAPES TEST
SET. ALL NUMBER REPRESENT THE MIOU.

Model Flat Nature Object Sky Construction  Human  Vehicle
LightSeg-MobileNet ~ 97.90%  91.70%  62.75%  94.62%  90.44% 79.26%  90.88%
LightSeg-ShuffleNet ~ 97.88%  91.22% 57.43% 93.99%  89.69% 77.27%  90.28%
LightSeg-DarkNet19  98.44%  98.44%  6594% 9499%  91.67% 81.73%  92.95%

In Table V, the mIOU of the main categories of Cityscapes
test set are listed and one can easily observe that the most
common categories in the dataset have the highest mIOU
score. The results of LiteSeg are displayed in Figure 3 for
qualitative analysis against ESPNet [13] and ERFNet [12].

IV. CONCLUSION

In this paper, we proposed LiteSeg, a novel lightweight
architecture for semantic image segmentation. The ability
of LiteSeg to adapt multiple backbone networks allows for
providing multiple trade-offs to fit embedded devices and deep
learning workstations. We introduced a new module named
DASPP to improve semantic boundaries of captured features
from backbone network. The proposed network, LiteSeg, was
evaluated with ShuffleNet as a backbone network on the
Cityscapes test dataset showing that it is able to achieve
65.17% mloU at 31 FPS for full image resolution 1024x2048
on a single Nvidia GTX 1080TI GPU.
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Fig. 3. Visualization results of multiple models on Cityscapes validation set [30]. From top to down 1-Input RGB images; 2-Ground truths; 3-LiteSeg-Darknet
predictions; 4-LiteSeg-MobileNet predictions; 5-LiteSeg-ShuffleNet predictions; 6-ERFNet predictions; 7-ESPNet predictions; 8- Color map for Cityscapes
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