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Abstract—In this paper, we incorporate the Barzilai-Borwein
[2] step size into gradient descent methods used to train deep
networks. This allows us to adapt the learning rate using a two-
point approximation to the secant equation which quasi-Newton
methods are based upon. Moreover, the adaptive learning rate
method presented here is quite general in nature and can be
applied to widely used gradient descent approaches such as Ada-
grad [7] and RMSprop. We evaluate our method using standard
example network architectures on widely available datasets and
compare against alternatives elsewhere in the literature. In our
experiments, our adaptive learning rate shows a smoother and
faster convergence than that exhibited by the alternatives, with
better or comparable performance.

Index Terms—Barzilai-Borwein step size, learning rate, deep
networks, gradient descent

I. INTRODUCTION

The learning rate is a hyperparameter that, in neural network

architectures, controls the influence of the loss gradient upon

the update of the weights in the net. This is a common

approach in the update step of gradient descent methods,

where its often referred in the optimisation literature as the

“step size” [10]. Indeed, the step size has been thoroughly

studied in the optimisation community, leading to important

results such as those by Barzilai and Borwein [2] and Nesterov

[12].

In the machine learning literature, the learning rate has

attracted attention due to its relevance to the training of neural

networks. Along these lines, Senior et al. [15] have studied

the learning rate and its effect in speech recognition. In [15],

empirical evidence is provided so as to sustain the notion that a

careful choice of learning rate does improve the training results

and convergence. This is not surprising, however, since this is

also well known in the optimisation community regarding the

step size of gradient descent methods.

Indeed, the learning rate is known to dramatically affect

the model obtained after training [8]. Unfortunately, there is

no analytic means to set the learning rate. Moreover, since

the learning rate becomes subsumed in the chain rule on the

update process for each layer of the network as the back

propagation scheme advances, it is known to be highly non-

linear in behaviour.

As a result, there are an ample set of schemes and tech-

niques to adjust the training rate for deep neural networks.

Maybe the most commonly used one is the use of a “schedule”

so as to adjust the learning rate on a per-epoch scheme, i.e.

over time. This approach includes constant, running average

and search-then-converge schemes [5]. Despite effective, these

schemes are often based on a careful set of the decay param-

eters and greatly depend upon the number of epochs, size of

the training dataset and depth of the network. These also often

apply the learning rate per-epoch, i.e. over time, for all layers

in the network, regardless of their position or value of the loss

gradient.

Further, adaptive learning rate schemes have been explored

since early on in the neural networks literature. For instance,

in [9], Jacobs investigates the use of an adaptive learning rate

for improving rates of convergence in steepest descent back

propagation, where he asserts that the learning rate should

be allowed to vary over time and per-weight in the network.

Adagrad [7], for instance, employs a learning rate given by the

square root of sum of squares of the gradient for past epochs.

Due to its simplicity, Adagrad also has the advantage of having

a low computational burden and being easy to implement.

Despite these advantages, Adagrad has the drawback of

tending to yield diminishing updates as it progresses. This

is due to the sum of squares of the gradients involved in

its computation, which may derive in situations where the

training does not fully converge. As a result, Root Mean

Square propagation (RMSprop) 1 and Adadelta [17] restrict the

number of past gradients used for the computation of the sum

of squares either by using a scheme akin to momentum [13]

or by applying an exponentially decaying average. Adaptive

moment estimation (Adam) [11], in the other hand, employs

the mean and variance of past gradients so as to derive an

update rule similar to that of Adadelta and RMSprop.

Similarly, Nesterov-accelerated adaptive moment estimation

(Nadam) [6], modifies the update of the methods above to

compute the gradient after the momentum-based step has been

added, not before. AMSGrad [14] tackles the problem of an

increasing step-size sometimes exhibited by Adam making use

of the maximum for the past squared gradients over the update

schedule.

In this paper, we explore the inclusion of the Barzilai-

Borwein [2] adaptive step size into the gradient descent

1RMSprop, to our knowledge is unpublished. Nonetheless, its widely
used in the machine learning community.Its description can be found at
http://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture slides lec6.pdf

http://arxiv.org/abs/2205.13711v1
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


optimisation used in the training of deep networks. To this end,

we depart from the relationship between gradient descent and

the learning rate so as to incorportate the Barzilai-Borwein [2]

step size formulation in subgradient methods. We show how

this learning rate can be used, in a straightforward manner,

in conjuction with methods such as Adagrad [7] and RM-

SProp to train a deep network. We perform experiments using

standard example network architectures using MatConvNet [1]

on CIFAR10, Imagenet and MNIST. In our experiments, our

adaptive step size shows a smoother and faster convergence

than that exhibited by Adam [6] and Adadelta [17].

II. LEARNING RATE ADAPTATION

A. Background

As mentioned above, training of deep networks is often

effected using gradient descent. In a neural network, the aim

of computation at training is the minimisation of a loss, or

cost, function L(Θ, y′, y). That is, we aim at recovering the

parameters such that

Θ∗ = argmin
Θ

{

L(Θ, y′, y)

}

= argmin
Θ

{

L(y′, y) + λR(Θ)

}

where the objective function L(y′, y) depends on both, the

prediction y′ and the target y for each of the input instances x0

in the training set, R(Θ) is a regularisation term that depends

on the parameters Θ and λ ≥ 0 is a weight that controls the

influence of the regulariser in the minimisation above.

It is worth noting that, nonetheless in deep networks the

parameters are given by the weights in the connections. In

the equations above and throughout the paper we make no

distinction between these in fully connected and convolutional

layers. We have done this for the sake of generality since

the developments in this and the following section are quite

general in nature and apply to these indistinctively.

To obtain the gradient for the loss function, we can employ

the chain rule and write

∇θL(θ, y
′, y) = ∇y′L(y′, y)∇θy

′ (1)

Moreover, let the evaluation function at the layer indexed l

in the network with N layers be J (l)(θl, xl) with parameters

θl ∈ Θ. By taking the prediction to be the value of the

evaluation at the last, i.e. N th, layer, we can write

∇θNL(θ, y′, y) = ∇y′L(y′, y)∇θNJ (N)(θN , xN )+∇θNR(Θ)
(2)

where we have used the shorthand y′ = J (N)(θN , xN ).
This is indeed the basis of the back propagation algorithm

for training nerual networks. Note the prediction y′ can be

written as follows

y′ = J (N)(θN , xN ) ◦ J (N−1)(θN−1, xN−1) (3)

where ◦ is the composition operator.

This is important since, using the chain rule, we can now
write

∇θN−1y
′ = ∇θN J

(N)(θN , x
N)∇θN−1J

(N−1)(θN−1
, x

N−1) (4)

and, thus, for the layer indexed l in the network, we have

∇θly′ =
N−l
∏

i=0

∇θN−iJ (N−i)(θN−i, xN−i) (5)

This is the basis for the backpropagation step during the

training process in neural networks, where the gradient is

used to update the parameter set of the network layer-by-layer,

starting from the last to the first, i.e. from the output layer to

the input one.

B. Gradient Descent and Learning Rates

As mentioned above, the training of the network is often

effected making using gradient descent. This is done by

updating the parameters θl of the functions J l(θl, xl) making

use of the rule

θlk+1 = θlk − αkGk(θ
l
k) (6)

where θlk is the kth iterate of θl, Gk(θ
l
k) is one of the sub-

gradients of L(θ, y′, y) at θlk and αk is the step size, i.e.

learning rate.

Since the loss function is differentiable, we can set

Gk(θ
l
k) =

[

∇y′L(y′, y)∇θly′ +∇θlR(Θ)
]

k
(7)

where ∇θly′ is given by Equation 5 and we have written [·]k
to imply the evaluation of the gradient at the iterate k.

As mentioned previously, the learning rate αk can be set

using a number of strategies. The simplest of these is that of

using a constant, this is αk = η or a decreasing scheme such

as

αk =
b√
k

(8)

where b is a bound, real constant.

Another popular option is to use an exponential decay. In

the case of Adagrad [7], this is done per-parameter, whereby

Equation 6 takes the form

θlk+1 = θlk − ak ⊙Gk(θ
l
k) (9)

where ⊙ denotes the elementwise product and ak is a vector

whose entry indexed j is given by

aj =
b

√

Cj + ǫ
(10)

where ǫ is a small, real-valued constant that avoids division

by zero errors and Cj is the sum of squares of the subgradient

Gk(θ
l
k) for the jth parameter up to the kth iteration.

It is worth noting, that, in practice, a momentum [13] term is

added to the update so as to accelerate the convergence of the

optimisation process. The addition of momentum is effected

by using the values of the subgradient over the past iterations

of the method as an alternative to the direct application of

Gk(θ
l) in Equation 9. Thus, we employ the following update

θlk+1 = θlk − ak ⊙ Vk(θ
l
k) (11)



where

Vk(θ
l
k) = βVk−1(θ

l
k−1) + (1− β)Gk(θ

l
k) (12)

and β ∈ [0, 1]

C. Incorporating the Barzilai-Borwein Step Length

We now turn our attention to the Barzilaai-Borwein ap-

proach gradient descent method. This approach, published

in [2] is a Hessian-free optimisation method motivated by

Newton’s method [4]. The Barzilai-Borwein method employs

a particular step size which, with low extra computational

cost, often delivers a noticeable increase in performance with

respect to traditional gradient descent approaches employing

the update rule in Equation 6.

The idea underpinning the Barzilai-Borwein method stems

from the notion that Newton’s method does incorporate second

order information with the disadvantage of the need for the

computation of the Hessian. To avoid the direct computation

of the Hessian matrix, Barzilai and Borwein propose to use a

step size that approximates its inverse magnitude.

Making use of the notation in the previous section, consider,

as an alternative to that in Equation 9, the following parameter

update rule

θlk+1 = θlk − ak ⊙
[

HLl(θ, y′, y)
]

−1
Gk(θ

l
k) (13)

where HLl(θ, y′, y) denotes the Hessian of the loss function

with respect to the parameters θlk of the layer indexed l at the

corresponding iterate.

Let ∆θlk = θlk − θlk−1. The Barzilai and Borwein approach

[2] assumes the the Hessian HLl(θ, y′, y) satisfies the secant

equation, i.e.

∆θlk = ak ⊙
[

HLl(θ, y′, y)
]

−1
∆Gk(θ

l
k) (14)

where ∆Gk(θ
l
k) = Gk(θ

l
k)−Gk−1(θ

l
k−1).

Barzilai and Borwein [2] then use a least-squares solution

of Equation 14 such that the step size (learning rate) at the

layer indexed l at iteration k corresponds to the following

minimisation

γl
k = argmin

β

{

‖∆θlk − ak ⊙ βGk(θ
l
k)‖

}

(15)

By treating ∆θlk and ∆Gk(θ
l
k) as vectors, we can write the

solution as follows

γl
k =

[

∆θlk
]T

∆Gk(θ
l
k)

[

∆Gk(θlk)
]T

∆Gk(θlk)
(16)

where, as usual,
[

·
]T

denotes the transpose operation.

Making use of the approximation γl
k to the Hessian, we can

use the update

θlk+1 = θlk − γl
k

(

ak ⊙Gk(θ
l
k)
)

(17)

as an alternative to that in Equation 13.

III. IMPLEMENTATION AND RESULTS

For our implementation we use MatConvNet [1]2. The

main reasons for this choice of implementation platform are

twofold. Firtly, MatConvNet provides a means for a set of

widely available network architectures that can be trained

using stochastic gradient descent methods on standard datasets,

i.e. MNIST, CIFAR10, and ImageNet. Secondly, MatConvNet

is distributed with standard solver options for Adadelta [17],

Adagrad [7], Adam [6] and RMSProp.

In Algorithm 1 we show the pseudocode for our Barzilai-

Borwein learning rate computation. For the sake of compu-

tational ease, we have used notation akin to that used in

the equations in the previous sections. That said, there are

a few aspects to note in the algorithm. Firstly, throughout the

algorithm, we have dropped the indices for the iteration and

layer number. We have done this for the sake of clarity since

the algorithm and the corresponding variables apply per-layer

at each iterate.

Algorithm 1 requires at input the gradients Gnew and Gold

for the current and previous iterations and updates the variable

∆θ at each call, updating the parameters before returning them

in Line 5. The algorithm also requires a constant ǫ, which we

have introduced so as to avoid divisions by zero induced by the

term [Gk(θ
l
k)
]T

∆Gk(θ
l
k) in Equation 16 when its very close

to convergence. For our method, we have set ǫ = 1× 10−8.

Also, note that in Algorithm 1 we employ C to denote the

squared sum of gradients used by Adagrad [7]. This applies

equally to both, Adagrad [7] and RMSprop. To employ RM-

Sprop instead of Adagrad [7] in Algorighm 1, Line 3 should be

substituted accordingly. That said, Adagrad [7] and RMSprop

employ the same function arguments in MatConvNet, which

makes the substitution a straightforward one.

At the very first iteration of the learning process the variable

Gold in Algorithm 1 is not available. As a result, we initialise

the training calling Adam [6]. After the first iteration, we can

apply Algorithm 1 in a straightforward manner. In all our

experiments, we have used the default value of epsilon and

rho, which are ǫ = 1× 10−10 and ρ = 1 for Adagrad [7] and

ǫ = 1× 10−8 and ρ = 0.99 for RMSprop.

For our experiments, we have used the example convolu-

tional networks provided with MatConvNet v1.0-beta25 for

Imagenet, MNIST and CIFAR10. All our results were com-

puted using Matlab R2018a running on a workstation with a

Testal K40c GPU.

In Figure 1 we show the performance for the training and

testing per epoch for each of the datasets under study when

our approach, Adam [6], Adadelta [17] and a baseline is used.

In the figure, from left-to-right, we show the first (top1err)

and top-five (top5err) classification error, in decimal fractional

percentage, for the CIFAR10, Imagenet and MNIST datasets.

From top-to-bottom, the rows show the results yielded by

our method, Adam [6], Adadelta [17] and a baseline where

the learning rate is set using the formula in Equation 8. The

parameter b for the baseline has been found by cross validation

2MatConvNet is widely accessible at http://www.vlfeat.org/matconvnet/

http://www.vlfeat.org/matconvnet/


Algorithm 1 Barzilai-Borwein learning rate computation

Input: θold, ∆θ, Gold, Gnew, C, ǫ

Output: θnew, ∆θ, C

1: ∆G = Gnew −Gold

2: γ =

[

∆θ

]

T

∆G
[

∆G

]

T

∆G+ǫ

3: [θnew ,C] = Adagrad(θold,C, Gnew, γ)
4: ∆θ = θnew − θold
5: return θnew , ∆θ, C

and set to 0.02, 0.05 and 0.001 for CIFAR10, Imagenet and

MNIST, respectively.

Note that, in the plots in Figure 1 we show both, the training

and testing performance. The training performance per epoch

is denoted “train” (plotted in a solid blue line) whereas the

testing is denoted “test” (plotted in a red, solid line). This

should not be confused with the use of a validation data split,

rather this is the evaluation of the network on the testing set at

the corresponding epoch. In Table I we show the performance

results corresponding to the last epoch of the “test” plot in

percentage. The table shows the percentage classification error

rates for the three datasets and the four learning rate methods

under study, with the best performing method indicated in bold

fonts.

IV. DISCUSSION

Note that, from Figure 1, we can conclude that our method

based on the Barzilai and Borwein [2] learning rate provides

a smoother and often faster training convergence. This can be

appreciated better in the cases of the plots for CIFAR10 and

Imagenet. In terms of performance, from Table I we can see

that our method still delivers better performance in the case

of CIFAR10, being the second for Imagenet and MNIST with

a negligible loss of performance with respect to Adam [6].

Moreover, note that our method tends to over fit less. This is

particularly evident in the plots correspondign to CIFAR10,

were Adam [6] and Adadelta [17] do overfit towards the end

of the the training process.

As mentioned earlier, Algorithm 1 can employ both, Ada-

grad [7] or RMSprop in Line 3. Moreover, the initialisation

choice made here, to call Adam [6] could be equally sub-

stituted with Adadelta [17]. In our experience with the three

TABLE I
TESTING ERROR RATE FOR EACH OF THE LEARNING RATE METHODS

UNDER CONSIDERATION FOR THE CIFAR10, IMAGENET AND MNIST
DATASETS. BEST PERFORMANCE IS IN BOLD FONT.

Learning rate Dataset

method CIFAR10 Imagenet MNIST

Ours (Barzilai-Borwein) 20.83% 58.91% 0.97%

Adam [6] 21.85% 56.12% 0.93%

Adadelta [17] 21.17% 59.37% 0.98%

Baseline (see text) 24.22% 65.85% 1.58%

datasets, Adam provides a marginal initialisation improvement

over Adadelta [17]. The same can be said of Adagrad [7]

which delivers a marginal improvement on the testing results

as compared to RMSprop.

It is also worth noting that Adagrad [7] does not employ

momentum [13] for the update of the parameters. This can

be done by making use of a weighted cummulative of the

subgradients as shown in Equations 11 and 12. However, we

have opted not to do so since momentum terms introduce the

parameter β which modifies the step size. Moroever, adding

momentum may be viewed as equivalent to employing gradient

descent with a re-scaled step size [16]. However, momentum

parameters have been shown to improve results significantly

in some cases [3] and remain an attractive option which we

aim to explore further in the future.

V. CONCLUSIONS

In this paper, we have shown how the Barzilai-Borwein

[2] adaptive step size can be used for training deep neural

networks using Adagrad [7]. Departing from the relationship

between the learning rate and the backpropagation scheme

used in neural networks, we illustrate how the two-point secant

equation used in quasi-Newton optimisation methods can be

used to obtain the Barzilai-Borwein adaptive step size as

applied to deep network training. The method is quite general

in nature and can be applied to other training methods based

upon gradient descent such as RMSprop. We have shown

results using standard network architectures and datasets. We

have also compared our approach to alternatives elsewhere in

the literature. In our experiments, our method delivers better

and smoother convergence with comparable performance to

that delivered by the alternatives.
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