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Abstract—Moving Object Detection (MOD) is still an active
area of research due to the amount of scenarios it can tackle
and the different characteristics that may appear in them.
Therefore, getting a unique method that performs well in all
the situations becomes a challenging task. In this paper we
address the MOD problem from a physical point of view: given
the optical flow between two images, we propose to find its
motion-boundaries by means of the optical strain, which gives
information about the deformation of any vector field. As optical
strain detects all the motions from a sequence, we propose to
work on temporal windows and apply thresholding on them in
order to separate noise from real motion. The proposed approach
shows competitive results when compared to other methods on
known datasets.

Index Terms—Moving Object Contour Detection, Optical
Strain, Optical Flow, Temporal Windows, Adaptive Threshold.

I. INTRODUCTION

Moving Object Detection (MOD) aims at recognising the
physical movement of the objects in a video scene. It remains
an open problem due to the wide range of real scenarios where
it can be used, such as video surveillance, trajectory similarity
search, traffic monitoring, or tracking, among others [1]–[3].
Moreover, each of these scenarios may present different chal-
lenging situations such as illumination variation, occlusions,
complex background or object dimension variation.

Moving Object Detection algorithms can be classified into
the following approaches: temporal differences, background-
foreground subtraction or optical flow methods. Temporal dif-
ference models apply pixel-wise difference among consecutive
frames [4]–[6]. However these methods fail in the cases of
slow motion or similar texture between foreground and back-
ground. On the other hand, background-foreground subtraction
methods aim at constructing a robust background model that
will be subtracted from all frames to get the foreground [7]–
[11]. However, they are computationally expensive and require
a big amount of frames in order to model the background.
Moreover, they fail in the cases of camera instability. In
order to overcome these difficulties, optical flow methods use
the internal motion information between consecutive frames,
which is given by the Optical Flow (OF) [12]–[16]. These
methods got recently an upraise thanks to the improvement of
the optical flow models [17]–[19].
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(a) Input (b) Groundtruth (c) TV-L1 OF [19]

(d) Ours.
P = 0.82, R = 0.58,
F1 = 0.68

(e) Result from [14].
P = 0.78, R = 0.07,
F1 = 0.14

(f) Result from [13].
P = 0.17, R = 0.59,
F1 = 0.26

Fig. 1: Frame 23 from paragliding sequence from [22].

In their turn, OF models can be distinguished between
region-based techniques, which aim at determining the shape
of the moving objects, and contour-based algorithms, which
detect their boundary [20], [21]. Let us note that, under the
assumption that the boundaries are well detected and complete,
both methods are complementary as it is straightforward to
obtain the object shape from it boundaries and vice-versa. The
main drawback of these methods is their sensibility to noise,
which is dissipated when the models are contour-based [14].

We propose in this article a contour-based optical flow
model for Moving Object Detection. Contours are computed
by means of the Optical Strain (OS), which corresponds to
the deformation of the Optical Flow and is able to detect
all the motions in a video. In order to distinguish among
real motion and noise (such as the movement of tree leaves
or water) we propose to work on temporal windows. Each
of these windows is considered as the minimum instance of
our model, therefore we compute a unique optical flow (by
means of Vector Addition, detailed in Eq. (5)) which is able
to capture long-distance variations, from the first to the last
frame of each window. The underlying goal behind this idea
is that the object’s motion will have a steady behaviour along
the window, while the noise will be erratic. Therefore, the
real motion gets accumulated, while the noise is dissipated,
allowing a thresholding step to successfully suppress it.

The main contributions presented in this paper are the
following:
• Detection of the boundaries of the moving objects by

means of the optical strain.



• Inclusion of temporal information by means of overlap-
ping temporal windows.

• Usage of Vector Addition (Eq. (5)) in order to get a
unique optical flow through each window.

• Adaptive threshold to each window.
The remainder of this paper is organised as follows: in

Section II the concept of optical strain is presented, in
Section III we detail our model and emphasize the usage
of temporal windows. Section IV is devoted to present the
experimental results. Finally, we summarise the paper and
present future work in Section V.

Fig. 2: Behaviour of the optical strain (second column) over
the optical flow groundtruth (first row) or the TV-L1 optical
flow [19], [23] (second row). We can see that using the OF
groundtruth produces sharper results as it is better defined. We
can also observe that the values of the optical strain are bigger
in the areas where the optical flow has a higher magnitude. The
image corresponds to the frame 12 of the sequence bandage
2 from SINTEL dataset [24].

II. PRELIMINARIES: OPTICAL STRAIN

It is well-known that a fluid u can be decomposed, in a
small neighborhood of each point, into the sum of a (rigid)
translation, a deformation and a (rigid) rotation vector [25].
For instance, given a point x ∈ Rn, and a nearby point y =
x + h, with y ∈ Rn and h ∈ Rn, we can linearize it using
Taylor’s expansion:

u(y) = u(x) + Jxu(x)h + o(|h|), h→ 0, (1)

where Jx denotes the Jacobian matrix at point x. The first
term represents the translation, while the second term contains
information about the deformation (scaling and shearing)
and rotation of the fluid. As any matrix, Jxu(x) can be
decomposed into the sum of a symmetric matrix and an anti-
symmetric matrix, therefore the Jacobian can be split up into:

Jxu(x) =
1

2

(
Jxu(x) + (Jxu(x))T

)
︸ ︷︷ ︸

ε

+

1

2

(
Jxu(x)− (Jxu(x))T

)
︸ ︷︷ ︸

η

,
(2)

where ε is the symmetric part and η the anti-symmetric one.
As proven in [25], the symmetric part contains information

Fig. 3: Example showing the effect of computing the optical
strain over a blurred optical flow, obtained using a Gaussian
filter of standard deviation σg . In the first row we present the
optical flow, while the second row is the corresponding optical
strain. In the first column we show the results obtained with
the original optical flow, while the second and third columns
correspond to a blur of σg = 0.8 and σg = 1.8, respectively.
We can observe that blurring more the optical flow results in
more highlighted boundaries.

about the deformation while the anti-symmetric part describes
the rotational movement of the fluid.

As we are interested in the deformation of the motion, we
only focus on the symmetric part of the matrix, which is
denoted as strain tensor, or optical strain in the Computer
Vision community.

A. Optical Strain Magnitude

Given a fluid u : Ω ⊂ R2 → R2 defined as u(x, y) =
(u1(x, y), u2(x, y)), its expanded optical tensor is given by

ε =

 εxx = ∂u1

∂x εxy = 1
2

(
∂u1

∂y + ∂u2

∂x

)
εxy = 1

2

(
∂u1

∂y + ∂u2

∂x

)
εyy = ∂u2

∂y

 .

(3)
Then, as shown in [26], the optical strain magnitude for each
pixel can be computed as:

s =
√
ε2
xx + 2ε2

xy + ε2
yy. (4)

Fig. 2 presents two examples of optical strain magnitude: the
areas with a higher magnitude for the optical flow produce a
stronger value also for the optical strain.

III. THE MODEL

Let us consider a video sequence I(x, t) : Ω×{1, . . . , T} →
R{1,3}, where Ω ⊂ R2 is the frame domain and {1, . . . , T}
denotes the set of discrete times. Let ut(x) : Ω → R2 be
the optical flow between the frames I(x, t) and I(x, t + 1),
i. e. the apparent motion between a pixel x ∈ Ω at time t and
the corresponding one at time t+1. To facilitate the detection
of the boundaries of the moving objects we propose to filter the
optical flow. As it can be seen in Fig. 2 the optical strain may
detect disjoint boundaries. These boundaries can be widened
and joined by applying a Gaussian filter, with σg = 1.8, to
each channel of the optical flow. Moreover, this process helps
to reduce small noise motion produced by the optical flow. An
example showing the effect of the Gaussian filter is presented



in Fig. 3, where it is explicit that the boundaries obtained with
σg = 1.8 are highlighted.

Then, to distinguish objects from noise, we propose to
work on the temporal level by means of frame windows (or
subsequences) Wi with i ∈ N+, as illustrated in Fig. 4. Each
window Wi is made up of consecutive optical flows and is
determined by two parameters: the number of frames n in
the window and the shift σ (σ < n), which is the step-
size between consecutive windows. Therefore, each window
Wi contains the following n consecutive optical flow frames:
{u(i−1)σ+1(x), . . . ,u(i−1)σ+n(x)}.

Fig. 4: Scheme showing the temporal overlapping windows
of Optical Flow used to compute the Optical Strain. In this
example we use n = 5 and σ = 2.

The temporal window organization allows us to work on
small sequences, where the real motion is accumulated, pro-
ducing high values for the optical strain, contrary to the noise,
for which the optical strain will have low values. In this way,
as it can be seen in Fig. 7, we can separate real motion from
noise with a two step threshold over the image: in the first
step we compute the thresholds taking into account all the
movement in each specific window Wi, while the second step
is devoted to the threshold application to the individual frames.
Finally, we apply mathematical morphology in order to join
thin boundaries which might have been too much narrowed in
the thresholding process. In the following of this section we
give deeper insights to each of these steps.

1) Threshold computation: In the situation of this paper,
the optical flow between two consecutive frames is irrelevant,
as some values can be caused by noise, from the scene or
from the algorithm itself. Actually, obtaining the optical flow
from the first to each of the other images of the window is
more interesting because an object with a regular movement
has greater values, while objects with irregular movement
(considered as noise) get lower values. Unfortunately, the
optical flow [27], [28], as illustrated in Fig. 6b, fails in large
distances. In order to overcome this fact and compute motion
vectors between non-consecutive frames, we propose to follow
the idea from [29] and compute a unique optical flow, which
goes from the first frame of the window until the last one, by
means of Vector Addition (VA), as represented in Fig. 5. For
each frame, VA can be computed with the following recursive
equation:

v1(x) = u1(x)

vk(x) = vk−1(x) + uk (x + vk−1(x)) k ≥ 2,
(5)

Fig. 5: Scheme showing the computation of the Vector Addi-
tion. It is obtained by following the flow through the desired
frames.

(a) OF groundtruth
(frame 8).

(b) OF from frame 1
to 8 [19].

(c) VA from frame 1
to 8 (Eq. (5)).

Fig. 6: Comparison between vector addition and optical flow
in long distances. This example shows that vector addition
gives a better approximation of the groundtruth.

where v is the vector addition and k corresponds to the frame
index.

As it can be observed in Fig. 6c, vector addition shows
better performance than the optical flow between two non-
consecutive images. Then, the optical strain magnitude is
computed over each VA of the window using Eq. (3), i. e. we
obtain a succession of optical strain magnitudes for each
window Wi : {s(i−1)σ+1(x), . . . , s(i−1)σ+n(x)}. Once the
optical strain magnitudes for the whole window are computed,
we need to determine the threshold τi for each windowWi that
allows to remove small noise magnitudes and thus to keep only
relevant information about the boundaries. Following [30], we
propose the next window-adaptive threshold:

τi = min
j

min
x∈Ω

sj(x)

+ ρ

(
max
j

max
x∈Ω

sj(x)−min
j

min
x∈Ω

sj(x)

)
,

(6)

with ρ ∈ (0, 1). This parameter is a percentile within the
range of optical strain magnitudes. For example, applying this
threshold with ρ = 0.05 means removing 5% of the lowest
values, which corresponds to noisy motion. The full algorithm
for threshold computation is summarized in Algorithm 1.

Data: Video I
Result: Threshold τi for each window Wi

for Wi ∈ I do
for Fj ∈ Wi do

Compute VA from F1 to Fj B Eq. (5)
Compute OS sj B Eq. (6)

end
Compute threshold τi B Eq. (7)

end
Algorithm 1: Threshold computation.



(a) Input (b) Optical Flow

(c) Optical Strain (d) Thresholded OS

Fig. 7: Example showing the importance of applying the
thresholding step. In this case, it is observable that the Optical
Strain result (image 7c) catches also the moving background
and the waves. In contrast, after thresholding (τ = 0.25), only
the boat is left. Frame 22 from boat sequence from [22].

2) Threshold application: In this step we apply the thresh-
old values obtained for each window to each frame. As σ < n,
each optical strain frame has several associated thresholds, in
particular it has as many thresholds as windows it belongs to.
We propose to get a unique threshold for each optical strain
frame of the video by using the Weighted Moving Average
(WMA). For each frame, the weight given to each threshold
depends on the degree of belonging of this frame to each of
the windows it belongs to. This information is provided by the
position of the frame according to the end of each window it
belongs to. Thus, more weight is given to the first frames of
the window, less to the last ones and the weight evolution
in between is linear. This decision comes from the fact that
the first frames of each window suffer less deformation of the
vector addition thanks to their proximity to the first frame of
the window. In particular, for each frame t of the video, we
get a unique threshold as follows:

τ̃t =

∑b
i=a(1 + (i− 1)σ + n− t)τi∑b
i=a(1 + (i− 1)σ + n− t)

, (7)

where n is the number of frames on each window, σ is
the shift between consecutive windows, τi is the threshold
that corresponds to the window i, a is the index of the first
window frame t belongs to, and b is the index of the last one.
Specifically, these two indexes are computed as:

a = max

(⌈
t− n
σ

⌉
, 0

)
+ 1, (8)

b =

⌊
min(t, T )− 1

σ

⌋
+ 1. (9)

For instance, let us consider the window scheme in Fig. 4
where n = 5 and σ = 2 and in particular, in the optical flow
frame u5. In this case a = 1 and b = 3. Indeed, the frame u5

(a) σ = 1 and n = 1. (b) σ = 5 and n = 10.

Fig. 8: Comparison of the performance of the proposed method
in two different situations. We can observe as in the limit case
with σ = n = 1 the model is not able to remove the noise as
well as when we use bigger values. Both results are computed
over the same frame of the sequence blackswan from DAVIS
dataset [22].

belongs to windowsW1,W2 andW3. Then, the expression of
the filtered threshold is given by:

τ̃5 =
1× τ1 + 3× τ2 + 5× τ3

9
, (10)

which gives more weight to the frame of the third window, as
frame 5 is the first frame of this window.

3) Mathematical morphology: The thresholded image
may contain disconnected boundaries. In order to close them,
we propose to apply a mathematical morphology operator,
namely a closing, which consists in a dilation followed by
an erosion. The structural element is chosen to be a disk with
radius 3 pixels.

A. Limit case: σ = 1 and n = 1

In order to highlight the importance of the temporal win-
dows, we show with one example how the model behaves
when we use σ = 1 and n = 1, i. e. when we compute
the optical strain and its threshold frame by frame. In Fig. 8,
we can see as the noise remains (especially the wavelets
on the water) when the temporal information is not used.
As previously explained, without the temporal notion, all the
motions have the same importance, keeping the noise.

IV. EXPERIMENTAL RESULTS

This section provides the results of our method and the
comparison against two other models for Moving Object
Detection that use the Optical Flow.

A. Datasets

We evaluate our model on three datasets that contain real
data: the public datasets DAVIS [22] and SBI 2015 [31], and
a private dataset built to ensure the security on the skilifts in
the ski resorts, therefore it contains videos of skilifts tracks.

1) DAVIS [22]: This dataset includes 90 sequences, which
contain from 25 to 104 images (its median is 71), acquired
with a non-static camera, with one to four relevant objects.
The main challenges of this dataset are object deformation,
i. e. the objects are non-rigid; fuzzy boundaries produced by
fast motion; occlusions, i. e. the objects may be partially or
totally occluded; out-of view, i. e. the objects may be clipped
by the boundaries of the image; camera vibration; hetereoge-
neous objects, i. e. the same object may have different colors;



interacting objects, i. e. there are multiple objects on the scene;
or, dynamic background.

2) SBI 2015 [31]: It consists in 13 sequences with 90 to
740 frames (its median is 350). The main challenge of this
dataset is the low resolution of the images and the presence of
big moving objects which occupy most of the spatial domain.

3) Skilifts: The dataset presents 76 sequences of 40 frames
each for several skilifts from different ski resorts. The se-
quences are recorded in both, summer and winter, so that
the background is not always homogenous, as the images
may have white-snowy background or green. The dataset also
contains different environmental conditions, from sunny days
to blizzard. The main challenges of this dataset are object-
occlusions; out-of-view; high scale-variation, i. e. the area
of bounding box enclosing the objects have big variations;
shape complexity, i. e. the objects have complex boundaries
containing thin parts and holes; appearance change, mainly
due to the different illumination along the day; or, camera
vibrations. Moreover, the associated groundtruth (see Fig. 11b
for instance) was determined manually through pixel by pixel
annotation.

B. Models Compared

We compare our model with the methods proposed by Patel
and Parmar [13] and Tang et al. [14], which also use the optical
flow as input to obtain the moving objects of the scene. Both
methods work on the spatial domain, taking into account only
one frame each time.

1) Patel and Parmar [13]: This method proposes to com-
pute the edges directly over the optical flow. In particular,
they propose an optical flow thresholding method based on
the mean and the standard deviation of each channel of the
optical flow. Then, morphological operations are applied.

2) Tang et al [14]: A model that works with both, the
image and the optical flow magnitude, is presented. It is
proposed to compute the edges over the images using an
edge detector method. Then, they apply the Otsu threshold
method [32] over the optical flow magnitude and the Minimi-
mum Error Threshold [33] for the image containing the edges
in order to highlight the main edges. Subsequently, only the
edges appearing in both, the image and the optical flow, are
considered. Finally, a dilation is applied.

C. Comparison Methodology

As stated in Section III, our method computes the bound-
aries of the moving objects of the scene. In contrast, all the
aforementioned datasets provide the complete shape (pixel by
pixel) of the objects as groundtruth. In order to give a fair
comparison, we propose to compute the Bounding Box (BB)
of the different outputs, as well as for the objects of the
groundtruth. The BB is computed as follows. Let us suppose
the output image only has one connected component, i. e. only
one object, which contains ñ pixels. Then this connected
component can be defined as O = {(x1, y1), . . . , (xñ, yñ)}.

Fig. 9: Examples showing the bounding box (in purple) around
the objects (in white). The first column shows groundtruth
examples, while the second column shows our results. Finally,
the first row provides an example with one object, while in
the second row there are several objects. Images from [22].

Consequently, the BB can be retrieved as the rectangle whose
corners are:

xmin = min
i
xi, xmax = max

i
xi, (11)

ymin = min
i
yi, ymax = max

i
yi. (12)

In contrast, if the image have more than one connected
component, the same process is applied to each one of the
connected components of the scene, i. e. we compute the BB
for each connected component. In particular, for all the models
the number of objects is given as input, and we assume that
the image contains the same number of connected components
than objects. Two examples are shown in Fig. 9.

We compare these bounding boxes with the groundtruth BB
using the F1-score and the Jaccard (J) index (also known as
Intersection over Union (IOU)). The F1-score is the harmonic
mean of the precision (P) and recall (R):

F1 = 2
P ·R
P +R

. (13)

Precision is the proportion of correctly positive labeled pixels,
while recall is the fraction of pixels correctly labeled, with
respect to the groundtruth. They are computed as:

P =
TP

TP + FP
(14)

R =
TP

TP + FN
(15)

where TP denotes the true positives (pixels that are denoted as
foreground in both the groundtruth and the predicted results),
FP are the false positives (pixels that are labelled as foreground
but are actually part of the background) and FN are the false
negatives (pixels labelled as background when they really
are foreground). The Jaccard index represents how well the
predicted foreground aligns to the groundtruth. It is defined
as:

J =
TP

TP + FN + FP
. (16)



(a) Input (b) Groundtruth (c) TV-L1 OF [19]

(d) Ours.
P = 0.88, R = 1,
F1 = 0.93

(e) Result from [14].
P = 0.88, R = 1,
F1 = 0.93

(f) Result from [13].
P = 0.22, R = 1,
F1 = 0.36

Fig. 10: First frame from the bear sequence from [22].

D. Analysis of the Results

In order to compare the three methods, we used as input
the same optical flow. In particular, we use the TV-L1 optical
flow model provided in [19] because of its fast computation
and good performance. For Patel and Parmar [13] and Tang
et al. [14] we use the parameter values proposed in the
corresponding paper. For our method, we tried several values
for the window size, from n = 2 to n = 20, and kept the
one yielding to the best f1-score. The shift is fixed to half the
window size: σ = bn/2c.

Tables I, II and III give an excerpt of the results (Precision,
Recall, F1-score and Jaccard index) obtained by our method
as well as the two other algorithms on 14 sequences of the
DAVIS dataset [22], 10 sequences from out dataset and the
13 sequences of the SBI 2015 dataset [31]. The last row, of
all tables, shows the averaged metrics over all the sequences
of the dataset. The best values for each dataset and for each
metric are depicted in bold.

We can see as in all datasets our method outperforms in
terms of F-measure and Jaccard index and shows comptetitive
results in terms of Precision (we obtained the best average
results in the DAVIS dataset and ours, and a competitive one
in the SBI dataset). This is related to the fact that our model
focuses on noise removal and due to the threshold in some
situations, which removes parts of the object. Nevertheless, we
obtain good results in terms of precision as our model is able
to detect correctly the boundaries of the objects. Regarding to
the recall, it represents the true positive rate, in other words
it measures how good a method is able to detect foreground
pixels. One can easily reach a 100% recall value by setting all
pixels to foreground, no matter the problem: of course, this
solution is to be proscribed as it is not representative of the
scene. This phenomenon happens with algorithm [13]: one can
see from Fig. 1e that the method considers most of the pixels
in the image as foreground, leading to a high Recall value (a
perfect one in fact due to the BB computation).

In terms of the number of frames of each window, we can
observe as the values remain very similar in our dataset and
SBI 2015, but they vary much more on DAVIS dataset. This is
due to the fact that the first two contain scenes which move to a
similar speed, while DAVIS sequences have a higher variability

(a) Input (b) Groundtruth (c) TV-L1 OF [19]

(d) Ours.
P = 0.83, R = 0.94,
F1 = 0.88

(e) Result from [14].
P = 0.96, R = 0.63,
F1 = 0.76

(f) Result from [13].
P = 0.50, R = 0.96,
F1 = 0.0.66

Fig. 11: Frame from a sequence of our dataset.

on this aspect. Moreover, we are also able to observe that high
values of n comes with scenes with a higher relative speed.

We present four visual examples in Figures 1, 10, 11, and
12. In the first case (Fig. 1), our method is able to capture
only the moving object and completely remove noise, unlike
other algorithms. Noise removal is also visible in Figure ??
and 11. One can observe a similar behaviour in Figure 10: the
proposed technique performs well compared to the others in
the cases of camera motion or motion produced by background
objects. Finally, Figure 12 shows how the first step of the
method is important. Actually, obtaining a satisfying optical
flow is a clue element: the boundaries are not recovered
properly when the optical flow does not clearly distinguish
among the objects and background.

V. CONCLUSIONS

In this paper we proposed a model to detect the con-
tours of moving objects in unconstrained scenes. It works
by computing the optical strain, which corresponds to the
deformation of the optical flow. The motion boundaries are
subsequently extracted from the information brought by the
optical strain. Moreover, we proposed to take the temporal
evolution of the boundaries into account by adding sliding
windows, thus allowing a temporally local thresholding. Our
method is compared to two other models and, as it is shown
in Section IV, promising results are obtained. As a matter of
fact, the proposed approach outperforms in terms of precision
and F-score.

Nonetheless, there are still some improvements to be con-
sidered. A first step is to extend the model by using spatial
information as well. For instance, a possibility is to use some
statistics to be able to decide an adaptive threshold for each
area of the image. Another possible improvement is to modify
the two parameters of the model, namely the shift between
two sliding windows and the number of frames per window,
and make them dependent on the values of the optical flow.
In fact, we have observed that these parameters depend on
the speed of the objects. On the other hand, as it can be



Sequence Ours [14] [13]

P R F J P R F J P R F J

bear (n=5) 0.801 0.96 0.868 0.776 0.563 0.993 0.667 0.558 0.232 1.0 0.364 0.232
blackswan (n=20) 0.477 0.968 0.633 0.468 0.45 1.0 0.614 0.45 0.305 1.0 0.467 0.305
bmx-bumps (n=18) 0.32 0.78 0.397 0.297 0.277 0.732 0.335 0.252 0.209 0.838 0.294 0.208
breakdance (n=20) 0.403 0.995 0.563 0.402 0.229 1.0 0.369 0.229 0.345 0.998 0.503 0.344
bus (n=20) 0.876 0.972 0.914 0.848 0.81 0.992 0.883 0.805 0.371 1.0 0.537 0.371
camel (n=2) 0.935 0.951 0.938 0.89 0.746 0.971 0.779 0.719 0.307 0.999 0.454 0.307
disc-jockey (n=2) 0.886 0.44 0.539 0.419 0.788 0.278 0.402 0.261 0.855 0.716 0.751 0.615
drift-chicane (n=20) 0.135 0.967 0.218 0.134 0.025 1.0 0.048 0.025 0.028 1.0 0.053 0.028
boat (n=15) 0.594 0.743 0.654 0.489 0.345 0.966 0.505 0.34 0.195 1 0.326 0.195
drift-turn (n=19) 0.392 0.976 0.511 0.377 0.458 0.932 0.57 0.426 0.259 0.998 0.357 0.258
elephant (n=15) 0.942 0.957 0.948 0.902 0.596 0.987 0.682 0.585 0.234 0.998 0.372 0.234
koala (n=4) 0.826 0.892 0.83 0.748 0.646 0.933 0.723 0.582 0.722 0.967 0.799 0.693
lab-coat (n=2) 0.557 0.662 0.557 0.413 0.419 0.738 0.443 0.297 0.448 0.954 0.552 0.444
lucia (n=8) 0.824 0.917 0.857 0.757 0.799 0.826 0.751 0.645 0.498 0.966 0.624 0.483

Average 0.638 0.804 0.645 0.521 0.443 0.828 0.48 0.36 0.401 0.9 0.477 0.355

TABLE I: Precision, Recall, F1-score and Jaccard index of the results from sequences of DAVIS dataset [22]. Our model is
compared with the ones proposed in [13] and [14]. The last row shows the average over all the 90 sequences from the dataset.

Sequence Ours [14] [13]

P R F J P R F J P R F J

Sequence 1 (n=2) 0.932 0.744 0.819 0.703 0.987 0.584 0.719 0.579 0.911 0.743 0.803 0.685
Sequence 2 (n=2) 0.849 0.724 0.78 0.641 0.941 0.396 0.556 0.386 0.723 0.812 0.762 0.62
Sequence 3 (n=2) 0.912 0.555 0.688 0.526 0.965 0.387 0.55 0.381 0.62 0.81 0.695 0.534
Sequence 4 (n=3) 0.742 0.593 0.649 0.484 0.78 0.508 0.594 0.426 0.576 0.689 0.614 0.446
Sequence 5 (n=4) 0.584 0.566 0.562 0.396 0.809 0.569 0.61 0.456 0.079 0.962 0.145 0.079
Sequence 6 (n=2) 0.678 0.799 0.729 0.577 0.204 0.983 0.333 0.203 0.153 0.932 0.26 0.151
Sequence 7 (n=3) 0.846 0.951 0.883 0.805 0.961 0.884 0.916 0.85 0.509 0.96 0.619 0.493
Sequence 8 (n=2) 0.698 0.536 0.603 0.437 0.705 0.516 0.589 0.425 0.365 0.745 0.457 0.306
Sequence 9 (n=2) 0.731 0.461 0.521 0.396 0.623 0.495 0.465 0.351 0.455 0.775 0.502 0.378
Sequence 10 (n=2) 0.869 0.303 0.445 0.289 0.925 0.149 0.247 0.147 0.567 0.801 0.637 0.474

Average 0.675 0.578 0.586 0.448 0.669 0.62 0.538 0.413 0.408 0.851 0.47 0.348

TABLE II: Precision, Recall, F1-score and Jaccard index of the obtained results from some sequences our dataset. We compare
our model with the ones proposed in [13] and [14]. The last row shows the average over all the 76 sequences from the dataset.

Sequence Ours [14] [13]

P R F J P R F J P R F J

Board (n=2) 0.869 0.859 0.839 0.743 0.915 0.648 0.721 0.607 0.9 0.775 0.814 0.706
CAVIAR 1 (n=2) 0.748 0.259 0.352 0.23 0.742 0.246 0.326 0.205 0.535 0.587 0.49 0.344
CAVIAR 2 (n=3) 0.61 0.479 0.425 0.308 0.64 0.464 0.406 0.297 0.091 0.698 0.141 0.079
Ca Vignal (n=2) 0.431 0.707 0.492 0.378 0.53 0.822 0.582 0.483 0.255 0.925 0.38 0.249
Candela m1.10 (n=2) 0.52 0.355 0.356 0.276 0.638 0.445 0.447 0.33 0.442 0.754 0.457 0.334
Foliage (n=2) 0.956 0.975 0.958 0.933 0.967 0.838 0.873 0.812 0.96 0.966 0.955 0.929
Hall & Monitor (n=2) 0.806 0.562 0.605 0.455 0.817 0.536 0.562 0.428 0.259 0.849 0.367 0.233
Highway I (n=2) 0.811 0.794 0.773 0.653 0.82 0.579 0.636 0.492 0.799 0.773 0.744 0.624
Highway II (n=2) 0.877 0.316 0.429 0.292 0.904 0.236 0.323 0.213 0.821 0.435 0.478 0.337
Human Body 2 (n=2) 0.895 0.636 0.708 0.584 0.944 0.525 0.636 0.504 0.773 0.662 0.668 0.536
IBM test 2 (n=6) 0.845 0.714 0.721 0.6 0.9 0.664 0.706 0.595 0.735 0.733 0.651 0.514
People & Foliage (n=2) 0.987 0.767 0.841 0.756 0.992 0.527 0.647 0.523 0.99 0.712 0.807 0.705
Snellen (n=2) 0.94 0.945 0.933 0.889 0.983 0.61 0.723 0.6 0.95 0.801 0.855 0.762
Average 0.792 0.644 0.649 0.546 0.830 0.549 0.584 0.468 0.654 0.744 0.601 0.489

TABLE III: Precision, Recall, F1-score and Jaccard index of the obtained results on SBI 2015 dataset [31]. We compare our
model with the ones proposed in [13] and [14]. The last row shows the average over all the 13 sequences from the dataset.



seen in the results, the model is threshold-dependent: it is
then possible to study other threshold combinations. Finally,
this model can integrate a contour-tracking model in order
to establish a correspondence for the contours on different
frames.

(a) Input (b) Groundtruth (c) TV-L1 OF [19]

(d) Ours.
P = 0.1, R = 0.65,
F1 = 0.79

(e) Result from [14].
P = 0.99, R = 0.43,
F1 = 0.60

(f) Result from [13].
P = 0.99, R = 0.53,
F1 = 0.69

Fig. 12: Frame 40 from People And Foliage sequence of SBI
2015 dataset [31].
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