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Abstract—Plant phenotyping concerns the study of plant
traits resulted from their interaction with their environment.
Computer vision (CV) techniques represent promising, non-
invasive approaches for related tasks such as leaf counting,
defining leaf area, and tracking plant growth. Between potential
CV techniques, deep learning has been prevalent in the last
couple of years. Such an increase in interest happened mainly
due to the release of a data set containing rosette plants that
defined objective metrics to benchmark solutions. This paper
discusses an interesting aspect of the recent best-performing
works in this field: the fact that their main contribution comes
from novel data augmentation techniques, rather than model
improvements. Moreover, experiments are set to highlight the
significance of data augmentation practices for limited data
sets with narrow distributions. This paper intends to review
the ingenious techniques to generate synthetic data to augment
training and display evidence of their potential importance.

Index Terms—augmentation, leaf counting, leaf segmentation,
synthetic data

I. INTRODUCTION

The field of plant phenotyping studies plants characteristics
that resulted from their interaction with the environment [1].
The analysis of phenotypic traits can play a role in the
advancement of plant science and the aspects of breeding
and crop management. However, making the measurements
necessary to perform a thorough analysis of the plant traits
can be demanding and invasive. Such measurements were
traditionally manually made, which results in low throughput
and limits a comprehensive study of the plants’ character-
istics [2]. This inability is represented by term coined as
phenotyping bottleneck [3] used to translate the factors that
limit understanding and slow the field progress. Since image
acquisition has become more accessible and processing power
has experienced tremendous growth, a new bottleneck given by
the lack of algorithms to analyse all the plant data effectively
has been formed [4].

Since computer vision (CV) represents one of the most
accessible and less invasive approaches for plant phenotyping,
it has drastically increased in popularity in the field [5]. In the

past five years, in particular, the application of deep learning
in this field has become ubiquitous as in many others sub-
field of computer vision. Tasks such as disease detection
and plant-part segmentation, which was previously done by
heuristics or hand-engineered feature extraction and symbolic
machine learning, are now being mainly done in an end-to-
end fashion with deep neural nets [6]. Nevertheless, although
much of the current computer vision implementations show
impressive results, the application of deep learning for plant
phenotyping is still limited by the lack of large, public,
labelled data sets and community agreed benchmarks. Such
a scenario makes it difficult for comparing solutions from
proposing methods, either for working with different data sets
or evaluating performance with different metrics.

Mobilised by the deficiency of data and benchmarks, re-
searchers decided to organise and distribute a well-annotated
data set of Arabidopsis and tobacco plant images, due to their
prevalent use in the field [7]. When releasing the data set, the
authors not only gave the annotated segmentation masks of
the plants and individual leaves but also benchmark problems
for proposing works using their data. The set of problems
includes plant detection and localisation, plant segmentation,
leaf detection, segmentation, counting, tracking, and boundary
estimation. The authors later organised the ‘Leaf Segmentation
Challenge’ (LSC) at the Computer Vision Problems in Plant
Phenotyping (CVPPP 2014) workshop, which resulted in many
exciting solutions for the task of multi-instance segmentation
of leaves [8]. The main benchmark metrics that the authors
proposed, and now commonly used in works using such data,
is the Symmetric Best Dice (SBD) and Difference in Count
(DiC). The former is a mask-to-ground truth metric, which
shares similarities with the intersection over union metric. The
latter is an error measure in the leaf counting given by the
difference of the number of predicted and real leaf instances.
Some examples of the images of the CVPPP data set are
illustrated in Fig. 1.

With an objective benchmark and data set released, there
are growing research interest interest in the task of leaf
segmentation and counting. Some suggested novel approaches,



(a) Examples of images of the
CVPPP dataset.

(b) Examples of possible labels.

Fig. 1: Examples of plant images in the CVPPPP dataset.
Adapted from [7].

like the use of fully convolutional networks for plant seg-
mentation and recurrent networks for leaf counting [9]. More
intricate pipelines in a similar approach soon followed through
different authors [10]. Others used CNNs as features extrac-
tors while performing counting by regression in later fine-
tuned layers [11]. However, mostly all the works reporting
to recently surpass benchmarks on the LSC and LCC (leaf
counting challenge) did it through novel ways to augment
the CVPPP data. The implementation mostly comes from
generating synthetic data that can be added to training, as an
attempt to increase the model’s ability to generalise. There
are, nevertheless, many ways to generate such data, which
can significantly vary in complexity. An example of a more
straightforward approach is cutting instances of the leaves and
pasting them into similar backgrounds like the ones in the
training data [12]. More complicated methods contemplate
intricate pipelines for plant 3D modelling with the subsequent
rendering of 2D images of plants in the same view as the
training data [13]. Although higher complexity does not equate
to higher performance, the latter example [13] tops the current
leaf segmentation benchmark in the CVPPP data set regarding
works that propose a novel data augmentation as their primary
contribution.

This paper has the goal of presenting and discussing these
innovative and ingenious strategies for data augmentation
while also showing some evidence of their significance in plant
phenotyping. The methods discussed here were all presented
in the past 3-4 years. Their main merits were thoroughly
discussed in three modelling classifications: cut and paste,
graphical modelling, and generative networks. To highlight
the importance of data augmentation practices, the experiments
were set to include training and evaluating pre-trained, fine-
tuned models on specific CVPPP data set splits with different
augmentation strategies. The relative performance can be used
to discuss some data characteristics and exemplify overfitting
and the importance of regularisation when the data are limited.
Although it is certainly desirable to compare all the strategies
discussed here, very few works follow the practice of making
their data available. The one synthetic data set from previous

authors employed in the experiments is, nevertheless, a strong
candidate to translate such concepts, as it resulted in a top-
ranking performance model. Therefore, the contribution of
this paper is two-fold: to inform the reader on novel data
augmentation practices proposed in recent years and to provide
evidence of their potential importance in plant phenotyping
tasks of limited ground truth data. The authors hope that such
discussion will inform readers working on similar problems
and highlight potential gaps deserving of further research.

II. AUGMENTATION TECHNIQUES

A. Cut and paste methods

The technique presented by [14], called cut, paste and
learn, is a simple but yet effective data augmentation method.
As the name suggests, its application relies on automatically
cutting instances of objects and pasting them into random
backgrounds as a method to synthesise data. These images
are then used to augment the training data and improve
performance. The main advantage is that it is a rapid and
automatic way to generate data for the tasks of instance
detection and segmentation as the generator knows the position
and mask of the created object. The authors in [14] showed that
a model trained on a combination of real and synthetic data
from the GMU Kitchen Dataset [15] resulted in a performance
gain of approximately 3% in mAP values. Perhaps even
more impressive, the technique showed significant results in a
domain adaptation approach where the GMU Kitchen Dataset
was used for training, and the Active Vision Dataset [16] was
used for testing. By combining the synthesised dataset with
just 10% of the real data, the model performed better than
when using all the real but no synthetic data.

The idea of ‘cut and paste’ was replicated and did generalise
for leaf segmentation tasks in plant phenotyping. A recent
work [12] applied it for increasing performance on the task
of segmenting and counting rosette plants. The application of
the technique consists in the segmentation of non-occluded
leaves to create synthetic data from two different datasets: (i)
mature avocado and banana plantlets (80 images), and (ii) the
CVPPP dataset. Examples of data generated from both of these
data sets are illustrated in Fig. 2. The authors of the paper
established two main methods for generating synthetic data:
naive and structured collage. The naive approach was used in
the avocado data set, and it comprised random collages of 10
to 40 segmented leaves in backgrounds similar to their real
environment. To surpass benchmarks on the LSC, however, a
more intricate approach was needed. Such a method comprised
heuristics to mimic the leaves positions on the CVPPP data set,
which was needed due to the images’ particular characteristics:
shot from the top, similar backgrounds (plant pots), and leaves
emerging from the centre. The heuristics are composed of
parameters that generate plant images with a different number
of leaves, rotation angle, and size. The authors allegedly
surpassed the benchmark at the LSC by using a pre-trained
version of Mask RCNN [17] fine-tuned to their augmented
data set of synthetic images.



(a) Naive collage. (b) Structured collage.

Fig. 2: Examples of the images in the two data sets generated
by cut and paste methods in [12] and their respective methods.

(a) Rice. (b) Wheat. (c) Oat.

Fig. 3: Examples of the synthetic images of seeds from
different species generated by the method presented in [18].

The replication of this technique in agricultural phenotyping
has also been attested in crop seed segmentation. Presented in
[18], the cut and paste technique showed to be useful and
to generalise to many types of seeds in segmentation tasks.
The synthetic dataset was created by randomly rotating and
pasting seed instances into background extracted from the real
images. The methodology, initially set up for barley seeds, also
performed well when applied to rice, wheat, oat, and lettuce
seeds. Fig. 3 shows examples of the technique when applied
to these three different crops. Although the performance
comparison between training on real and synthetic was not
investigated, the authors showed that models trained only on
synthetic data resulted in AP50 values of 0.95 when averaged
over many data sets. The high-throughput automatic analysis
of seeds is crucial since it has been shown that their shape
and sizes are essential predictors of quality and yield of crops
[19].

B. Graphical modelling

The idea of graphically modelling plants is not recent, but
using it to augment data in computer vision tasks has been
recently explored due to the current developments in deep
learning and computing power. Original mathematical models,
known as Lindenmayer systems (L-systems), date back to the
60s [20] where the main focus was to represent plant topology.
Graphical rendering of such models came much later [21], as
well as their much recent application to augment data [22].
Arguably, one of the main advantages of such an augmentation
approach is that many different phenotypes can be modelled
and simulated. That ability could increase its potential for

(a) (b)

Fig. 4: Example of generated images by the L-systems-based
technique presented in [22].

generalising, especially if the models are able to represent the
distribution of real plants more precisely.

The authors of a recent paper [22] went as far as stating that
the real and synthetic data could be interchangeably used to
train deep learning models in the task of leaf counting. Their
method modelled rosettes of Arabidopsis using an L-systems-
based plant simulator software fitted with probabilistic curves
from different phenotypic traits. As seen in the examples
illustrated in Fig. 4, this implementation did not generate
images with a defined background. The presented evidence
of generalisation came from leveraging the fact that the data
set had two splits of Arabidopsis (CVPPP) from different
years, representing two distinct distributions. The absolute leaf
count difference when one of them is used for training, while
the other is used for testing, is reduced if the synthetic data
are considered in training. The authors also showed that a
model trained with synthetic images-only did generalise to a
reasonable level when testing on real images.

The authors in [23] also showed that the idea of graphically
modelling plants could be effective at augmenting the training
of models for the task of leaf segmentation. They allegedly
surpassed the benchmark, reaching an SBD score of 90% on
the A1 CVPPP data set. In their work, the method used to
generate plant images follows a leaf-by-leaf approach. The
modelled leaves were arranged circularly, arising from the cen-
tre of the pot, and had dimensions scaled independently along
each axis. Each leaf came from applying random deformations
and textures to an inspiration 3D leaf model. The position and
rotation parameters were sampled from a uniform distribution
for each leaf instance. The images were rendered from the
top angle, as in the CVPPP images. In achieving their best
result, 10,000 synthetic images were used to augment training,
which was performed by fine-tuning a Mask RCNN model
pre-trained on the COCO data set [24]. The authors reported
performance improvements of up to 20% in one of the dataset
splits, but there was no improvement in one of the rest five
data set splits. Such split is composed of young tobacco plants,
differing from the Arabidopsis plants that the method tried to
model.

On a more recent work [13], the same authors raised the
bar for graphical modelling with a bold aim: bridging the
species gap in plant phenotyping. As plant species greatly



(a) (b)

Fig. 5: Examples of the images generated by the pipeline for
3D leaf modelling presented in [13].

vary in phenotypic characteristics, and models from trained on
one species do not necessarily generalise for others, closing
such a gap would represent a significant contribution. By
proposing a novel and detailed plant generation pipeline,
the authors attempted to close this generalisation gap in the
task of leaf segmentation. Again on a leaf-by-leaf basis,
the pipeline involved steps of leaf and texture generation,
background processing (extracted from CVPPP images), and
overall plant assembly. One can see the result of the pipeline
implementation by the examples showed in Fig. 5. By com-
paring the results between training with synthetic and real
data, interesting improvements in performance were shown.
The authors claim to have surpassed state-of-the-art methods,
which were claimed by previously mentioned works here [12],
[23], whose also proposed novel data augmentation techniques.
The symmetric best dice improvement of 31% compared to
their previous method [23] on the A3 data set shows that
some improvements across species were indeed achieved. This
improvement is noticeable because the A3 data set is under-
represented in the CVPPP data, with just a few tens of images.
It is made of Tobacco rosettes rather than Arabidopsis, which
represent the great majority of images of the data set. For
further validation, the authors also tested their method trained
on the CVPPP on another data set. Such an external data set
is composed of capsicum and Komatsuna [25] images. The
results showed an average of 51% performance increase of
symmetric best dice when the synthetic images were used to
augment training data. It is worth mentioning that the authors
did make their synthetic data set of images public and easily
accessible; their data are used in the experiments presented in
the next section.

C. Generative networks

Another approach to generating data for augmenting train-
ing is to use Generative Adversarial Networks (GANs) to
synthesise plant images. Proposed in [26], such networks are
able to learn a latent space and use it to generate new data rep-
resentative of a given data set distribution. The framework is
composed of two models: a generator and a discriminator. The
latter is trained to distinguish real from synthetic data, while
the former to maximise the probability of the latter making a
mistake. When first proposed, the GANs framework resulted in

(a) A 6-leaf Arabidopsis. (b) A 30-leaf Arabidopsis.

Fig. 6: Examples of Arabidopsis images generated by the
ARIGAN method proposed in [28] with the correspondent
number of leaves.

realistic natural scenes and faces images, its recent variations
are still considered state of the art in image generation [27].

Adopting the popularity of the CVPPP data set, the authors
in [28] applied GANs to generate Arabidopsis images for data
augmentation. They were inspired by [29], which proposed a
method for unsupervised representation learning with GANs.
The authors coined their Arabidopsis image generation method
as ARIGAN [28]. An interesting aspect of this implemen-
tation is the use of a GAN variation called Conditional
GAN (cGAN). Differently from conventional GANs, which
generates images with a random noise seed, cGANs introduce
a conditional vector that allows for a level of control when
generating images. In the case of generating the images
of plants, the authors used such condition to stipulate its
number of leaves. Despite resulting in an alleged increase in
performance, this approach appears not to capture the high-
frequency features and texture details of the leaves in the
data set, as shown in examples in Fig. 6. The improvements
in performance were presented for the task of leaf counting,
and leaf segmentation was not assessed. The presented results
showed a decrease in absolute difference counting error of
5.4% and 14.4% reduction in mean squared error.

The authors in [30] aimed at pushing the previous generative
approach [28] further by generating more realistic plant images
with higher resolutions. The method described in the paper
also uses cGANs to control an aspect of the generative
process; in this case, leaf segmentation masks. The process of
generating the leaf segmentation masks starts with extracting
instances of mask leaves from the A4 CVPPP data set and
sorting them by size. Then, an algorithm with heuristic rules
assembles the masks to create a range of image generation
seeds. The masks instances beginnings are centred on the
image, and their size was chosen by the number of leaves
(input). Each new mask is set up with a rotation of 140-200
degrees and then fed to the generator. As compared to the
previous method, the images generated by this approach seems
more realistic with apparent greater capabilities of capturing
leaf textures, as illustrated in Fig. 7. The images were used to
augment the training of a pre-trained MaskRCNN model. The
authors reported an average leaf counting error reduction of
16.67% when augmentation was used. For the segmentation,



(a) (b)

Fig. 7: Examples of Arabidopsis images generated by the
GAN-based approach presented in [30].

however, improvements in the best dice metric did not achieve
1%.

III. EXPERIMENTS

To contribute evidence to the effectiveness of data aug-
mentation techniques, the authors would like to present some
revealing experiments made on the CVPPP data set. The goal
of such experiments is to replicate and attest the importance
of data augmentation and synthetic data in training, and their
potential to aid generalisation and regularisation. The exper-
iments were composed of training the same model on three
different scenarios: no augmentation, standard augmentation,
and augmentation with the synthetic data from [13]. Regarding
the data augmentation techniques used in the second scenario,
only two simple operations were applied: rotation and flipping.
Random rotation was applied online (while training) with a
50% chance, in a range of -45 to 45 degrees. Flipping was
also applied with a rate of 50%; no test-time augmentation
was used in evaluation.

The comparison of the three scenarios was made contrasting
the difference in leaf segmentation and counting metrics from
such models when evaluated in two data sets: the development
set (same distribution as training) and the test set (slightly
different distribution). For both scenarios, the training data
is an 80% split of the A4 data set from the CVPPP. The
development set in the first scenario is the remaining 20%
of the images in the A4 split. The choice of using the A4 as
the training and development data sets is due to the fact that it
is the split with the highest number of images (624), followed
by the A1, with 128 images. The test set is the A1 split of the
CVPPP, which has a slightly different distribution and is thus
used as a relative measure of generalisation.

It worth noting that the A1 data set is similar to the A4
in many ways: they both contemplate images of Arabidopsis
plants taken from the top view on a controlled environment.
Therefore, changes in performance from the development (A4
split) to the test set (A1), if drastic, can indicate that the
model’s ability to generalise could be severely compromised.
For the fact that they are similar in many ways, one should
expect that a model that evaluates well on the development
set (A4), would also present decent performance on the other
test set (A1).

For the model architecture, a MaskRCNN approach with a
ResNet backbone was used. The model was loaded with pre-
trained weights training on the COCO data set. The weights
were made accessible by the object detection framework by
Facebook AI Research (FAIR) group named Detectron II.
Their framework was also used to train and evaluate the
models in the scenarios considered. The models in all three
scenarios were trained for 100,000 iterations, on a learning
rate of 1e-4, and evaluated every 5,000 iterations. Only a
single image was used at each batch to avoid running out
of memory. A decision for reporting the models’ performance
with the metrics adopted by the leaf segmentation and counting
challenges (SBD and DiC) were made since they are the
benchmarks used in this field. When presenting the evaluation
results, the curves were slightly smoothed with a running
average of three samples to make the learning trend clearer.

IV. RESULTS

The SBD and leaf count metrics, resulted from training
the models on the three scenarios are illustrated in Fig. 8
and 9, respectively. In Fig. 8, it is noticeable that, for the
evaluations made on the development set (same distribution as
training), augmentations scenarios under-perform. Such results
show how augmentations have a regularising effect on models,
effectively making it harder to fit the training distribution.
Nevertheless, when the models are evaluated on the test set,
it is clear that the scenarios contemplating augmentations
perform better. Given that the test set (A1) is only slightly
different from the development set, such an effect is clear
evidence of how data augmentation can prevent overfitting.
Small changes in the test data distribution greatly affect the
ability of the method to generalise. The model that did not
have data augmentation fits the training data easily and fast,
with the first evaluation point being its maximum score. From
this point onward, its performance decreases, showing that it
is overfitting the training data while becoming worse at gen-
eralising to out-of-sample observations. The same contrasting
effect can be observed in Fig. 9, which illustrates the leaf count
evaluations; in this metric, the smallest the value the better.

For all the discussed scenarios, better results came from
the model where training was augmented with synthetic data
from the previous mention work [13]. It over-performs only
using flipping and rotation, but not by much. With a single
percentage gain in performance when compared to the scenario
with standard augmentation, the results presented here show
that these techniques are close to being interchangeable. Nev-
ertheless, it is possible that a higher difference in performance
would appear in case the models were evaluated on images
from other plant species.

Table I summarises the best results from the three sce-
narios considered regarding the metrics of leaf segmentation
and counting. It is interesting that despite the parameters or
architecture of the model, one can infer interesting insights
from the comparison of scenarios with data augmentation
present or not. The model without augmentation converges
much faster and outperforms by overfitting the A4 data set.
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(b) Development set (same distribution) evaluations.

Fig. 8: Symmetric best dice (SBD) metric from models trained
on the three scenarios with a) test set (A1) and b) A4 (20%
split).

Meanwhile, the model with augmentation is regularised and
performs drastically better on the test set, which has a slightly
different distribution. Although one cannot make qualitative
statements about the model or data augmentation practices
with such experiments, they do reflect some characteristics
of the data. The fact that the model quickly overfitted the
A4 data, despite being the largest split, shows that it has a
narrow distribution and probably should not be used to derive
statements regarding generalisation, unless proper regularisa-
tion techniques are adopted.

V. DISCUSSIONS

The methods previously reviewed here refer to a class
of data augmentation techniques called domain adaptation.
Methods under such class augment their training data with
examples that were not necessarily extracted from the same
distribution as the test set, but that resembles it somehow.
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(a) Test set evaluations.
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(b) Development set (same distribution) evaluations.

Fig. 9: Absolute difference in leaf count from models trained
on the three scenarios with a) test set (A1) and b) A4 (20%
split).

TABLE I: Performance comparison between the best-
performing models on the test set (A1) for each scenario.

SBD | DiC |

No Aug. 0.7982 1.7344
Aug. 0.8109 1.4687

Data from [13] 0.8201 1.3125

The closer the resemblance, the higher are the chances of
the method generalising to the distribution of the test set,
which is attested when evaluating the method. To that end,
it is noteworthy that even simple techniques such as cut and
paste can be effective at increasing a method’s performance.
It is arguable that these ideas for data generation are a
way of transferring human knowledge (the idea for domain



TABLE II: Performance comparison between the works that proposed novel data augmentation techniques and performed
evaluation on the CVPPP data set by any of the metrics.

SBD DiC | DiC |

Ref. Method A1 A2 A3 A4 A5

[12] CAP 0.88 0.84 0.80 0.87 0.85
[23] GM 0.87-0.9 0.71-0.81 0.59-0.51 0.73-0.88 0.70-0.82
[13] GM 0.81-0.89 0.81-0.88 0.84-0.86 0.86-0.88
[28] GN 0.15-0.19 0.94-0.89
[30] GN 0.87-0.88 (-0.22)-0.12 0.87-0.72

adaptation) to the deep learning model, reducing empirical
risk without collecting more data. Table II is an ensemble of
performance results reported by the methods discussed here
that evaluated their model on the data sets A1-A5 with the
Symmetric Best Dice (SBD) or Difference in Count (DiC)
metrics. The table is sparse due to the fact that works usually
focus on only one of either leaf segmentation or counting tasks.
For the works that focus on segmentation, not all evaluate their
methods on all the data sets splits. Where two numbers are
presented in Table II, it depicts the changes in performance
from only using real data to using synthetic and real data
combined; bold letters highlight the maximum performance in
each metric.

It is worth noting that the discussed methods are evaluated
with a testing set with a narrow distribution, which can have
significant consequences for generalisation. For the images in
the CVPPP data set, for example, they are all taken from the
top, with mostly the same plant species, having very similar
backgrounds. There is probably much to be argued about
the capability of generalisation of models using similar data,
which future works will have to address. This assertion is not
the take away from the efforts of the works cited here but to
highlight possible future paths in the field of plant phenotyp-
ing. The results of the experiments performed on the CVPPP
data set on its A1 and A4 splits is presented as evidence of
such claims. The metrics on leaf segmentation and counting
showed that it is not hard to overfit on data sets with a narrow
distribution. Such an outcome could result in potential failure
if methods that were trained without the proper regularisation
care were used for inference in out-of-sample data. The results
highlight the value of data augmentation in tasks of plant
phenotyping, which often suffer from limited data sets with
a narrow distribution.

With the number of works evaluating their method on
the CVPPP data set in the past 3-4 years, it is arguable
that it has become a standard for the tasks of multi-instance
segmentation and counting of leaves. While using it, methods
can objectively compare their performance on these tasks
with has agreed upon metrics in a fixed domain. The leaf
segmentation challenge (LSC) can now be found in CodaLab
[31] where anyone can evaluate their performance against
other benchmarks. Nevertheless, it should be reiterated that
only two of the works presented here made their data available

and public [13], [28], which is detrimental to the progress
of the field. It is arguable that, for works having novel data
augmentation techniques as their primary contribution, making
the resulting data available it is as important for the field as
having established benchmarks data sets and metrics that make
methods comparison possible.

VI. CONCLUSIONS

Novel data augmentation strategies proposed in recent years
for the use of deep learning algorithms in plant phenotyping
have been reviewed. The methods were divided into three
classes: cut and paste methods, graphical modelling, and
generative methods. A cut-and-paste approach is the simplest
and comprises the extraction of instances of objects in the
training data, followed by their ensemble in canvas with
a similar background. Graphical modelling is probably the
most complex, requiring intricate pipelines with possibly many
rules, but it appears to result in the best performances in leaf
segmentation. Methods based on generative networks leverage
the intrinsic optimisation given by the training process of
adversarial models to generate synthetic data, showing rele-
vant improvements in the task of leaf counting. The many
papers discussed represent pilling evidence that such ideas
for data augmentation are effective to improve the models’
performance in the test set. Nevertheless, more than increasing
performance, experiments showed that data augmentation is
significant to regularise the models trained on limited data
sets. The methodology of the experiments, with development
and test sets, showed that it is easy to overfit on plant image
data sets with a narrow distribution, and that augmentation
techniques are likely to help to generalise to out-of-sample
images. Differently from traditional augmentation techniques,
the works reviewed here are not basic copies of the training
images with spatial or colour transformations applied, they
are rather the result of the application of domain adaption by
generating synthetic data. The increase in performance shows
that these methods are a specialised way of circumventing
limited amounts of training data present in problems of plant
phenotyping. Such ideas could translate to other domains
that suffer from the same problem and help increase the
generalisation of future models.
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