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Abstract—Estimating absolute camera orientations is essential
for attitude estimation tasks. An established approach is to first
carry out visual odometry (VO) or visual SLAM (V-SLAM),
and retrieve the camera orientations (3 DOF) from the camera
poses (6 DOF) estimated by VO or V-SLAM. One drawback
of this approach, besides the redundancy in estimating full 6
DOF camera poses, is the dependency on estimating a map
(3D scene points) jointly with the 6 DOF poses due to the
basic constraint on structure-and-motion. To simplify the task
of absolute orientation estimation, we formulate the monocular
rotational odometry problem and devise a fast algorithm to
accurately estimate camera orientations with 2D-2D feature
matches alone. Underpinning our system is a new incremental
rotation averaging method for fast and constant time iterative
updating. Furthermore, our system maintains a view-graph that
1) allows solving loop closure to remove camera orientation drift,
and 2) can be used to warm start a V-SLAM system. We conduct
extensive quantitative experiments on real-world datasets to
demonstrate the accuracy of our incremental camera orientation
solver. Finally, we showcase the benefit of our algorithm to
V-SLAM: 1) solving the known rotation problem to estimate
the trajectory of the camera and the surrounding map, and 2)
enabling V-SLAM systems to track pure rotational motions.

I. INTRODUCTION

Visual odometry [1], [2], [3] (VO) and visual SLAM [4],
[5] (V-SLAM) estimate the poses of a moving camera from
the captured sequence of images, which is relevant to many
real-world technologies such as autonomous driving, UAV,
and virtual-reality applications. In particular, monocular VO/V-
SLAM is of high interest due to its low cost, low power
consumption, and its easy-to-setup nature.

Given a set of images within a captured sequence, {Ij},
monocular VO and V-SLAM systems find the pose

Tj =

[
Rj tj
0 1

]
(1)

where Rj ∈ SO(3) is the camera orientation represented by
rotation matrix, and tj ∈ R3 is its 3D position in a common
coordinate system. Apart from estimating the camera pose, V-
SLAM systems also maintains (and output) a global map with
the coordinates of the observed scene points X = {Xi | X ∈
R3} which can be used to 1) relocalise the camera when it
lost track, and 2) perform loop closure.

There exist some applications when the camera orienta-
tion is the sole interest, attitude estimation [6], [7], and the
known rotation problem [8], [9] are among the well studied
ones. Attitude estimation predicts the orientation of a moving
vehicle based on high-end IMUs. Motivated by the lower
cost aspects (in terms of both power consumption and price),
Khosravian et al. [7] introduced an algorithm to incorporate

GPU velocity readings to refine VO’s orientation estimates.
Secondly, in the V-SLAM domain, given the orientation priors,
the known rotation problem [8] can be solved in a quasi-convex
framework to obtain the camera position and the observed 3D
scene points. We argue that VO and V-SLAM are not the best
choices for these applications demanding camera orientation
computation alone. Instead, we propose a novel monocular
rotational odometry system to estimate absolute camera ori-
entations from relative camera orientations under epipolar
geometry [10] for which 2D-2D feature correspondences is
sufficient. Underpinning our system is a proposed incremental
rotation averaging method, which is fast and accurate.

Apart from the system-level advantages, such as a smaller
memory footprint, our proposed system exhibits two inherent
strengths over VO/V-SLAM systems. Firstly, our method has
no requirement in creating and maintaining a local map which
is essential for VO and V-SLAM systems. More specifically,
VO systems solve PnP [11] which takes 2D-3D feature cor-
respondences to jointly estimate the camera orientation and
translation; while V-SLAM systems perform local BA[12] to
jointly optimise the camera poses and scene points. The re-
quirement of the 3D scene points mainly stems the translation
of the camera, which is unnecessary for our objective.

Secondly, maintaining a 3D map is fundamentally un-
feasible during periods of pure rotation motion [10]. It is
geometrically impossible to triangulate the depths of 3D scene
points at the limit of cameras approaching no parallax. During
pure rotation motion, only a panoroma map (with no depth
information) can be created for the observed features [13],
[14]. However, panoramas can not be used together with the 3D
map in the joint estimation frameworks such as PnP and BA.
As a partial remedy, most VO/V-SLAM systems rely on some
form of model selection [15], [14] to invoke different routines
depending on the type of motion (standard rigid motion and
pure rotation motion). Without the need of maintaining a map,
our proposed method leverages a motion robust relative pose
estimation algorithm [16], which allows us to estimate the
relative orientation in a unified framework.

Our proposed method relates to VO systems in the absence
of global mapping. Since the incapacity of globally constrain-
ing the camera pose, most of VO systems advocate on reducing
frame-to-frame drift. For this reason, recent active research in
the field focus on improving front-end components such as
feature descriptors [17], feature correspondences selection [3],
and accurate single-view depth estimation [18]. However, all of
the mentioned algorithms involve deep networks which usually
come at the expense of processing time, computation power,
and training data. On the contrary, our proposed method uses
ORB descriptors [19] (the fastest but less robust) and focuses
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on refining the estimates of camera orientation with rotation
averaging [20], [21] formulated in an incremental fashion
(detailed in Sec. II-C).

From our empirical evidence over long sequences in the
KITTI dataset [22], incremental rotation averaging alone is
insufficient to combat drift accumulation. Hence, we integrated
a loop closure component in our system, which invokes global
rotation averaging routine to distribute the accumulated drift
to the node in the view-graph upon detecting loop-closure.
The loop-closure module is built on top of the appearance
based loop-closure method in ORB-SLAM2 [4]. Due to the
lack of global mapping, we replaced the point clouds based
geometrical verification process with a 2D-2D feature matches
based algorithm (see Sec.III-E). In the aspect of having a loop-
closure module, our system is related to V-SLAM systems.
Hence, we compare our method to the state-of-the-art monoc-
ular V-SLAM system, ORB-SLAM2[4], over two real-world
datasets and demonstrate that our proposed method achieves
competitive results.

We summarise our contributions as

1) An efficient incremental rotation averaging method1.
2) A visual rotational odometry system which is robust

against any camera motion (Sec. III-B), capable of
loop-closing (Sec. III-E), and that achieves state-of-
the-art accuracy on real-world datasets (Sec. IV-C).

II. RELATED WORKS

A. Monocular Visual Odometry and Visual SLAM systems

Our approach is closer to VO than V-SLAM as we do
not require computing and maintaining a global map. The
interested reader can find a comprehensive survey for VO
in [23]. In essence, conventional VO pipelines first identify
feature matches, obtain 2D-3D correspondences after triangu-
lating the scene map, and estimate relative motion between
consecutive frames. Finally, they estimate the absolute poses
of the camera by chaining the relative motions. An emerging
trend in VO systems is the incorporation of deep networks to
learn and predict 1) feature correspondences with an optical
flow network [3], 2) depths of the observed features with a
single image [24], and 3) camera poses [25]. Since conven-
tional VO algorithms do not maintain a global map and do
not perform loop closure, they focus on reducing the drifts
between each pose estimate with better front-end inputs (i.e.,
feature correspondences, accurate depth predictions). On the
other hand, our proposition uses the fastest but less robust
ORB-descriptors for the 2D-2D feature matching process, and
we use our proposed incremental and robust rotation averaging
algorithm to produce accurate orientation estimates.

In addition to estimating the camera pose, monocular V-
SLAM systems also estimate the observed 3D scene points
(known as mapping). In a broad sense, V-SLAM methods can
be classified into three groups: indirect-based, direct-based,
and the hybrid group. ORB-SLAM2 [4] is the state-of-the-art
system in the indirect-based category. ORB-SLAM2 operates
as follows. It first extracts ORB image features and identi-
fies feature matches to previous images. To jointly estimate

1C++ implementation will be available.

camera poses and the coordinates of scence points, ORB-
SLAM2 leverages in a combination of well-studied geometry
algorithms (including relative motion estimation and PnP)
with large scale non-linear optimisation frameworks (e.g.,
pose graph optimisation and bundle adjustment). Engel et
al. [1] propose a direct based system that utilises all the pixel
information instead of selecting feature correspondences and
minimises the photometric loss instead of the reprojection error
as in conventional indirect methods. The system, namely DSO,
was later extended with loop-closure in [26]. Our work is
closely related V-SLAM works in the loop closure aspect,
and specifically close to ORB-SLAM2 as our system extracts
and matches ORB-features, and performs loop-closure with
DBoW2 featuress [27].

B. The View-Graph

Conventional VO and V-SLAM systems maintains a so-
called view-graph G = (V, E) with edges (j, k) ∈ E connecting
images Ij , Ik for which a relative motion can be estimated.
Typically, the view-graph relates the image pairs capturing
overlapped scenes such that sufficient epipolar constraints exist
to obtain the essential matrix Ej,k. In our system, the nodes
of the view-graph relate to camera orientations, and the edges
to the relative orientation between the connected views.

C. Rotation Averaging

In the absence of noise and outliers, the absolute orientation
Rk for an image Ik can be directly estimated by chaining the
orientation Rj of another image Ij to the relative orientation
Rj,k between Ij and Ik, for which

Rk = RjRj,k (2)

holds. Thus, under those ideal conditions, we could constraint
G to be a “loop” (only connecting temporary adjacent images)
and obtain all absolute orientations (up to some arbitrary
orientations) by simply chaining them by applying Eq. (2).
However, in the VO/V-SLAM application settings where the
presence of outliers and noise is inevitable, estimating orien-
tations from G being a loop will inevitably produce inaccurate
results as this setting requires that all relative orientations are
precisely computed. Instead, rotation averaging solves for the
absolute orientations by minimising the discrepancies between
relative and absolute orientations across all edges in G

min
{Rj}

∑
(j,k)∈E

ρ(d(Rj,k,RkR
−1
j )), (3)

where ρ is a loss function (e.g. ρ(x) = x2) and d : SO(3) ×
SO(3) 7→ R+ is a distance between rotation matrices (e.g.,
the geodesic distance in SO(3)).

Rotation averaging (3) was first introduced by
Govindu [28], and has since been further explored by
numerous works [21], [20], [29]. Chatterjee et al. [20]
proposes an efficient and robust algorithm (L1-IRLS) to
solve (3). L1-IRLS is an iterative reweighted least-squares
algorithm which finds a local optimum in the Lie group SO(3)
with a robust initialisation scheme. Specifically, the initial
estimates are obtained by solving an approximated algorithm
based on an easy to solve yet robust `1-based optimisation
problem. As default, L1-IRLS takes ρ as the Huber-like



robust loss function and solve of the weights (of the relative
rotations) and the absolute rotations alternatively until
convergence. Our proposed incremental rotation averaging
method (see Sec.III-D) is an extension to L1-IRLS.

Rotation averaging is relevant in the V-SLAM field. Car-
lone et al. [30] propose to first estimate the orientation com-
ponents to initialise the subsequent pose-graph optimisation.
Parra et al. [9] propose an L-infinity V-SLAM framework that
detaches the camera orientation estimates from the translation
component and the observed scene points. Although both
of the mentioned works use rotation averaging to estimate
the absolute orientation of each camera pose, none of them
formulates and solve the problem incrementally.

D. Relative Orientation Estimation

For every incoming frame, we first identify the 2D-2D
feature matches with the previously processed frames within a
fixed window (more details in Sec. III-B), and estimate their
relative orientations. If there are sufficient feature matches, we
add a new node to the view-graph and the edges related to the
estimated relative orientations.

The five-points algorithm [31] is the “go-to” method in
estimating the relative motion between a pair of frames.
However, the method breaks down when the baseline between
the input frames vanishes, resulting in undefined essential ma-
trix [10]. One real-world scenario of the mentioned degeneracy
is the pure rotation motion (or rotation-only motion) where the
camera is rotating around a principle axis and not moving in
the 3D euclidean space. Hence, VO/V-SLAM systems usually
incorporate model selection techniques (stemming from [15],
[14]) to select either essential matrix or homography matrix
(which is defined in pure rotation motion) is appropriate to
model the current motion. Instead of relying on model selec-
tion, we adopted the relative orientation estimation algorithm
in [16] which is robust against any motion. Underpinning
Kneip et al.’s method is the normal epipolar constraint (first
introduced in [32]), a novel epipolar geometry constraint ca-
pable of decoupling the relative orientation and the translation
direction between a pair of frames. As such, the constraint
is well defined under both standard motion and rotation-only
motion.

III. METHODS

Alg. 1 describes our system which advocates to keep
updated a view-graph as the camera captures new frames. Con-
trasted to V-SLAM, our view-graph relates absolute (nodes)
and relative (edges) orientations alone (i.e., without the trans-
lation components as in V-SLAM systems). Fig. 1 depicts the
final view-graph for the Carpark dataset (see Sec. IV-A) where
each node is drawn with their 3D position we obtained from
the ground-truths.

The core optimisation component in our method is the
incremental rotation averaging routine (Alg.1, Line 13) which
solves a new rotation averaging formulation (Sec. III-D) to
anchor the solution within a window of orientations Rwindow
to the previously estimated orientations out of the window.

Fig. 1: View-graph of our system for the Carpark dataset.
Nodes (in red) are at the camera locations. Edges represent
covisibility. Loop-closure edges are highlighted in green.

Algorithm 1 Visual Rotational Odometry
1: global variables: View-graph G = (V, E).
2: for each new frame k = 1, 2, . . . do
3: f ← k − |Fwindow|.
4: Yk ← feature extraction(Ik).
5: for j = f,. . . ,k-1 do
6: Cj,k ← feature matching(Yj ,Yk).
7: (Rj,k, C′j,k)← relative rotation(Cj,k).
8: if |C ′j,k| > θmatches then
9: G ← upgrade view-graph(Rj,k).

10: end if
11: end for
12: Obtain G′ = (V ′, E ′) for Rwindow.
13: {Rj}j∈E′ ← inc rotation averaging(G′).
14: if loop closure detected then
15: {Rj}j∈E ← glob rotation averaging(G).
16: end if
17: end for

A. Feature Extraction and Matching

We use ORB descriptors [19] as image features due to its
superior speed performance. We adopted identical extraction
technique as ORB-SLAM2 [4]. Upon extracting a set of ORB
features Yk in the current frame Ik (Alg. 1, Line 4), our
system performs a local search (Alg. 1, Line 6) to find matches
Cj,k = {(xi,x

′
i) | xi ∈ Ij and x′i ∈ Ik} in the previous

frames {Ij}k−1j=f , where index f is the first frame within a
fixed window Fwindow. The local search algorithm assumes a
high frame rate2. Hence, the detected features remain close
(in pixel coordinates) to their corresponding features in the
neighbouring frames.

B. Motion Robust Relative Orientation Estimation

The conventional estimation of the relative orientation,
Rj,k, (assuming known camera calibration) from decomposing
the essential matrix

Ej,k = [tj,k]×Rj,k, (4)

(where [tj,k]× is the skew-symmetric matrix representation
of the cross product operator) is undefined for pure rotation
motion (tj,k = 0). Instead, we incorporate in our system
(Alg. 1, Line 7) the Kneip’s method [16] which estimates
the relative orientation independently of the translation. Thus,
Kneip’s method can correctly estimate Rj,k even if tj,k = 0.

2which is a standard-setting in video sequences.



Fig. 2: The local view-graph G′. The nodes out of the Rwindow
remain constant within our rotation averaging formulation.

For an image point x, we define its bearing vector

f :=
x̂

‖ x̂ ‖
, (5)

where x̂ is x in normalised homogeneous coordinates (assum-
ing known camera intrinsics).

Kneip’s method solves an iterative eigenvalue rank min-
imisation problem over a set of normal vectors

ni := f ′i ×Rj,kfi (6)

of the epipolar plane, where (fi, f
′
i) are corresponding bearing

vectors such that (xi,x
′
i) ∈ Cj,k. The essential geometry

constraint (which is independent of the motion) is that all
normal vectors must lie on the same plane.

The eigenvalue rank minimisation problem finds the rela-
tive orientation that minimises the smallest eigenvalue λM,min

min
Rj,k

λM,min (7)

of M = NNT , the covariance matrix of the normal vectors
N = [n1, . . . ,nn],

To solve (7), we initialise Rj,k as Rj−1,k−1 assuming the
rotation motion between neighbouring pair of frames should
be close to each other3.

Since M is a real symmetric and positive definite matrix
with rank at most 2 (based on the coplanarity constraint on
the normal vectors), it is, therefore, equivalent to an iterative
rank minimisation. The optimisation framework is solved in
a Levenberg-Marquardt scheme as detailed in [16]. Similar to
the five-point method [31], Kneip’s method is embedded in a
RANSAC framework to remove outlying feature correspon-
dences (C′j,k ⊆ Cj,k are the correspondences after RANSAC
in Alg. 1, Line 7).

We add a new connection (j, k) to the view-graph if there
are sufficient matches θmatches (= 100 in our implementation)
after RANSAC (Alg. 1, Line 9).

C. Local View-Graph

We estimate absolute camera orientations over a local
sub-graph G′ = (V ′, E ′) of the view-graph G = (V, E) to
incrementally solve for their camera orientations at each frame
step (Alg. 1, Line 12).

V ′ contains the neighbouring nodes (with orientations in
Rwindow) to the current frame Ik and the adjacent vertices in

3Similar to ORB-SLAM’s constant velocity assumption which initialises
the latest frame’s camera pose with previously optimised poses

V to them (i.e., nodes in V connected to the neighbouring
nodes by an edge in E). Fig. 2 depicts G′.

D. Incremental Rotation Averaging

Incrementally updating camera orientations in G by solving
“conventional” rotation averaging (3) over a sub-graph of G
(“local” to the current view) will inevitably produce imprecise
results even after correcting drift. This is because the solution
in the sub-graph will be anchored to the full graph at a single
node (the first node in the sub-graph) with has an equivalent
effect in accuracy to chaining orientations as discussed in
Sec. II-C. In other words, the accuracy of the estimations
in the local graph will be strongly dependant of the previous
estimate of the first orientation in the sub-graph. To mitigate
this chaining effect on accuracy, we propose an alternative
formulation which anchors the solution in the sub-graph not
to one but many nodes in the view-graph. To this end, for a
window Rwindow of the most recent absolute orientation in G,
we build its local view-graph G′ = (V ′, E ′) as described in
Sec. III-C. Thus, we anchor the solution of

min
Rwindow

∑
(j,k)∈E′

ρ(d(Rj,k,RkR
T
j )), (8)

to all previously computed absolute orientations adjacent to
the orientations in the window, i.e., the rotation matrices in

Rc = V ′ \ Rwindow. (9)

To solve (8), we present an extension of L1-IRLS [20].
L1-IRLS optimises over the SO(3) Lie group by iteratively
solving a weighted least-squares problem at the tangent Eu-
clidean space which minimises(√

ΦA∆ΩV +
√

Φ∆ΩE

)2
, (10)

where Φ is a matrix collecting the weights for the edges in
E , A is a matrix encoding G, ∆ΩV is the vector variable
associated to the absolute orientations, and ∆ΩE the vector
associated to the relative orientations (refer to [33] for details).
Instead, we minimises(√

Φ′A′∆Ωwindow +
√

Φ′∆ΩE′
)2
, (11)

where now the vector variable ∆Ωwindow comprises only the
absolute orientations in Rwindow and ∆ΩE′ only relative orien-
tations in E ′. Φ′ and A′ are the versions for Φ and A without
the unrelated columns to ∆Ωwindow.

E. Loop-Closure

Loop-closure is an integral component in modern V-SLAM
system. Our system detects (Alg. 1, Line 14) and solves
(Alg. 1, Line 15) loop-closure when the camera captures
images of a pre-visited scene.

Our loop-closure routine consists of two sub-routines: 1)
loop candidates detection, and 2) loop candidates validation.
We adopted ORB-SLAM2’s loop candidates detection routine
due to its superior runtime and robustness. In essence, our
system maintains a database that stores the DBoW2 features of
every processed frame. For every incoming frame, the database



is being queried with the latest frame to identify matching
candidates.

For the second part of the loop-closure, we invoke our
feature extraction to relative orientation computation routines
(Alg.1, Line 4 to Line 7) and validate the legitimacy of the
candidates based on the number of inlier feature matches |C′j,k|.
This process is similar than in ORB-SLAM2, but instead of
computing the similarity Sim(3) transform with two sets of
3D point clouds (seen in the loop-closing pair of frames),
we compute the relative orientations, given 2D-2D feature
correspondences in the loop closing pair of frames. Upon
adding the loop-closure edges, we solve a system-wide rotation
averaging problem (Alg. 1, Line 15).

IV. EXPERIMENTS

We first provide empirical results to demonstrate the quality
of our orientation estimates. Then, we showcase two potential
SLAM applications for our proposed method: the known rota-
tion problem (Sec. IV-D), and pure rotation motion (Sec. IV-E).
Our system requires of only three hyperparameters: the size
of Fwindow, the size of Rwindow, and θmatches. We set them to
|Fwindow| = 4 , |Rwindow| = 10, and θmatches = 100 for all the
experiments.

We implemented our proposed method in C++ and MAT-
LAB R2019b. All the experiments were conducted on a
standard PC with six Intel i5-8400 CPU @ 2.80 GHz cores.
The relative orientation estimation module (Sec. III-B) was
adopted from the OpenGV [34] library.

A. Datasets and Evaluation Metrics

KITTI odometry benchmarking [22] is one of the most
popular datasets in the VO/V-SLAM community. We use the
11 sequences (00-10) with provided camera pose ground truths.
Besides, we also perform experiments on our own dataset - the
Carpark dataset. This sequence was collected with a camera
and an IMU sensor attached on a driving vehicle in an open
car park. The sequence has 1600 images which involves four
strong rotations chunks (lead by turning motion) which is
challenging for monocular VO and V-SLAM systems.

We benchmark with standard evaluation metrics. The first
metric is the average rotation error (as proposed in [22])

rerr :=
1

|F|
∑

(i,j)∈F

∠((R̂T
i R̂j)

T (RT
i Rj)), (12)

where F is a set of pair of frame indices {(i, j)}, where
the distance between frames in each pair varies from 100m
to 800m4, R̂ and R are the ground-truth and the estimated
orientations, and ∠(·) returns the angle of the rotation matrix.

Our second metric is the rotation component of the Relative
Pose Error (RPE) [35] for which we used two variants over n
camera poses. For a pre-defined “time-step” ∆, the first variant
is the RMSE over the m := n−∆ angular residuals

Ei := ∠((R̂T
i R̂i+4)T (RT

i Ri+4)). (13)

4See the official site http://www.cvlibs.net/datasets/kitti/eval odometry.php
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Fig. 3: Runtime comparison for rot. averaging in an incremen-
tal and global fashion on the KITTI 03 seq. Our incremental
strategy exhibits constant runtime per frame (avg. 0.45ms).

TABLE I: Ablation comparison for the incremental rotation
averaging strategy. The significant RPE1 error gap (lower
the better) demonstrates the effectiveness of our incremental
solution. Best results are in bold.

Baseline Ours w/o loop closure

Dataset Sequence RPE1 RPEn RPE1 RPEn

[deg] [deg] [deg] [deg]

KITTI 00 0.36 8.67 0.13 3.03
01 0.27 10.34 0.25 4.77
02 0.29 16.03 0.080 3.92
03 0.28 5.47 0.053 0.65
04 0.04 1.08 0.034 0.50
05 0.25 11.36 0.053 2.27
06 0.18 4.72 0.049 1.41
07 0.28 7.49 0.065 1.04
08 0.27 9.21 0.055 3.18
09 0.28 9.85 0.051 1.37
10 0.38 13.25 0.061 2.30

Carpark 0.95 3.48 0.14 1.05

More explicitly,

RMSE(E1:n,4) :=

(
1

m

m∑
i=1

E2
i

)1/2

. (14)

As recommended by [35], 4 should be set to 1 for VO
systems that consider only frame-to-frame accuracy. As such
the error reflects the rotation drift between consecutive pair of
frames. Meanwhile, for V-SLAM system that emphasis on the
overall drifting as well, we use the second RPE variant. The
second RPE variant iterates 4 over a set of numbers ranging
the first frame to the last frame n, and

RMSE(E1:n) :=
1

n

n∑
4=1

RMSE(E1:n,4) (15)

averages the root-mean-square-error over n.

Henceforth we refer Eq. (14) as RPE1 and Eq. (15) as
RPEn. Note that RPEn is the toughest metric since it involves
the furthest pair of frames among the three metrics.

http://www.cvlibs.net/datasets/kitti/eval_odometry.php


TABLE II: Comparison of our proposed method against state-
of-the-art monocular VO and V-SLAM system. The best results
are in bold; second best results are underlined.

DF-VO[3] ORB-SLAM2[4] Ours

Datasets Seq. rerr RPE1 RPEn rerr RPE1 RPEn rerr RPE1 RPEn

[deg/100m] [deg] [deg] [deg/100m] [deg] [deg] [deg/100m] [deg] [deg]

KITTI 00 0.58 0.12 4.06 0.33 0.38 2.27 0.41 0.13 1.88
01 17.04 9.95 124.33 0.42 0.70 6.10 0.86 0.26 5.53
02 0.52 0.072 4.37 0.30 0.17 2.47 0.40 0.081 3.06

03 0.39 0.049 0.95 0.21 0.062 0.35 0.30 0.052 0.66

04 0.25 0.036 0.45 0.31 0.063 0.33 0.33 0.035 0.54

05 0.30 0.048 1.62 0.26 0.14 1.16 0.34 0.055 1.27

06 0.30 0.037 0.89 0.24 0.11 1.07 0.27 0.053 0.94

07 0.27 0.037 0.78 0.49 0.081 1.12 0.41 0.075 0.99

08 0.32 0.050 2.24 0.32 0.090 1.83 0.39 0.055 3.38

09 0.29 0.045 1.70 0.31 0.11 1.47 0.31 0.050 1.08
10 0.37 0.053 1.36 0.38 0.13 2.75 0.49 0.062 2.57

Carpark - - - 0.32 0.14 0.41 0.27 0.14 0.48

B. Ablation study of the incremental rotation averaging

We first evaluate the effectiveness of our incremental
rotation averaging component by comparing against a baseline
without this component. Instead, the baseline estimates the
absolute orientations by chaining relative orientations (Eq. (2)).
We deactivate the the loop-closure component (Lines 14-16 in
Alg. 1) in both our method and the baseline.

As explained earlier, RPE1 is the relevant comparing metric
for this experiment since our method can be regarded as a pure
VO system when loop-closure is deactivated. The results in
Tab. I show that the incremental rotation averaging strategy has
a substantial impact on our system, significantly outperforming
the baseline on every sequence. On average, we outperformed
RPE1 in 0.181 degrees over the KITTI dataset, and in 0.81
degrees on the Carpark dataset. We also reported RPEn values
to compare against the results with loop-closure reported in
Tab. II. Note that the performance of our method with the
loop-closure module activated improves significantly on all the
sequence with loops (e.g., KITTI sequences 00, 02, 05, 06, 07,
09, and in the Carpark dataset).

A major advantage of our incremental rotation strategy is
scalability. By fixing the absolute orientations to estimate to a
constant |Rwindow| at every frame step, solving our proposed
formulations (Eq. (8)) takes constant runtime. To demonstrate
the speed gain, we compare against solving “conventional”
rotation averaging (3) over the entire view-graph at every frame
step. Fig. 3 plots the runtimes for the comparison. The runtime
for solving rotation averaging over the entire view-graph grows
as the number of frame processed increases. Meanwhile, our
incremental strategy maintains a constantly low processing
time (0.45ms on average) at every frame step.

C. Accuracy of Camera Orientation

We compare against the state-of-the-art VO and V-SLAM
systems, namely DF-VO [3] and ORB-SLAM2[4], and re-
ported results in Tab. II. As for the results of the DF-VO
method, we downloaded DF-VO’s estimates (KITTI) from
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Fig. 4: The yaw, pitch, roll comparisons between ground-truth
(black solid line) and our proposed method (green dash line)
on the Carpark dataset. The dataset has four strong rotation
chuncks (see “pitch” plot) caused by vehicle in turning motion.
Our method manage to produce high accuracy orientation
estimates from 2D-2D feature correspondences alone.
their official github repo5. As of ORB-SLAM2, we ran it on
all tested sequences five times and report the median results.
Similarly, we report the median of five different runs of our
proposed method.

Our system achieves competitive performance to the state-
of-the-art on both the KITTI and the Carpark datasets over all
metrics. The RPE1 evaluation shows that DF-VO’s frame-to-
frame drift is the best among the three methods. ORB-SLAM2
tends to have a higher frame-to-frame error due to its frame
management scheme that skips consecutive frames with similar
appearances. In terms of RPEn, our method outperforms ORB-
SLAM2 in 5 KITTI sequences (00, 01, 06, 07, and 09). As
mentioned earlier, comparing RPEn with DF-VO is unfair due
to the lack of loop-closing ability.

To provide a better insight of our orientation estimates, we
convert the rotation matrix into the Euler angles (yaw, pitch,
and roll) and plot it against the ground-truth of the Carpark
dataset in Fig. 4. We observe that the orientation variation
throughout the sequence is significant and our estimates closely
align with the ground-truths.

D. Application A - The Known Rotation Problem

An application of our system is to provide the camera
orientations {Rj} to then estimate the camera positions {tj}
and the scene coordinates {Xi} by solving the known rotation
problem [36]

min
{tj},{Xi}

max
i,j
‖xi,j − f(Xi|Rj , tj)‖

s.t. R
(3)
j Xi + t

(3)
j > 0 ∀(i, j) ∈ E ,

(16)

where f(·) projects scene points into the image plane.

The objective of the known rotation problem is quasi-
convex allowing global optimisation. We used the fast Res-Int
solver [37] to solve (16). Finally we refine all the variables
({Rj}, {tj}, {Xi}) with BA. Fig. 5 displays the results.

5https://github.com/Huangying-Zhan/DF-VO



(a) KITTI seq. 07 (b) Carpark dataset

Fig. 5: The SLAM outputs of Application A (Sec. IV-D) for (a) the the KITTI dataset seq. 07, and (b) the Carpark dataset.

E. Application B - Pure Rotation Motion

Modern monocular visual SLAM systems (e.g., ORB-
SLAM2, OpenVSLAM [38]) utilise BA as the core engine
to jointly estimate the camera poses and scene points. One
drawback of such approach is that BA cannot handle rotation-
only motion as the 3D scene points can not be triangulated6.
We captured three sequences where our mobile phone is
attached to a gimbal and rotate around a principal axis to
simulate such a motion. Fig. 6 depicts the resulting poses of
ORB-SLAM2, OpenVSLAM (latest implementation of ORB-
SLAM2-like monocular SLAM pipeline), and our method on
these sequences. Note that the commercial based mobile phone
camera is not precisely calibrated7 which causes the drift in
the estimated trajectory.

Most of the examples in Fig. 6 (except (seq1, ORB-
SLAM2) and (seq3, OpenVSLAM)) show that the tracking of
the camera pose stopped during long pure rotation motion part
of the sequence. Note that both methods employ a scene point
selection heuristic (based on reprojection error) to decide if the
newly triangulated point should be added to the existing local
map. During pure rotation motion, most of the triangulated
points were successfully trimmed away by the heuristic and
eventually went into “relocalisation mode” when their local
map run out of 3D points. However, in some cases where
the heuristic fails to reject these points and continue to track
the camera poses, the scale of the camera trajectory after the
pure rotation motion became inaccurate as for (seq3, ORB-
SLAM2), and (seq1, OpenVSLAM).

Since our method detaches the orientation component of
the camera poses from the joint estimation framework, the
estimation of the camera orientation remains unaffected during
pure rotation motion. We skip the known rotation problem and
the BA routines (as explained in Sec. IV-D) in the rotation-only
frames and update the camera orientations with the outputs of
our proposed method. Meanwhile, we fix the camera positions
during those motions.

6We are referring to the scenarios where the pure rotation motion is long
enough where the camera is turned to a new scene and observed a new scene
where none of the features were triangulated previously.

7We calibrated with a checkerboard.

V. CONCLUSION

We presented a novel monocular rotational odometry sys-
tem that is capable of producing accurate camera orientation
estimates. The key aspects of proposed method are 1) its
motion robustness, 2) a new constant time incremental rotation
averaging solver, and 3) the ability to perform loop closure.
Our proposed method achieve state-of-the-art accuracy on real-
world datasets. Lastly, two potential applications of our method
were demonstrated.
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