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Abstract—To obtain 3D annotations, we are restricted to
controlled environments or synthetic datasets, leading us to 3D
datasets with less generalizability to real-world scenarios. To
tackle this issue in the context of semi-supervised 3D hand shape
and pose estimation, we propose the Pose Alignment network
to propagate 3D annotations from labelled frames to nearby
unlabelled frames in sparsely annotated videos. We show that
incorporating the alignment supervision on pairs of labelled-
unlabelled frames allows us to improve the pose estimation
accuracy. Besides, we show that the proposed Pose Alignment
network can effectively propagate annotations on unseen sparsely
labelled videos without fine-tuning.

I. INTRODUCTION

Estimating the 3D shape and pose of hands is an important
problem in Computer Vision due to its fundamental role
in various applications such as motion control [1], human-
computer interaction [2], and virtual/augmented reality [3].

The performance of deep learning methods for 3D hand
pose estimation remarkably depends on the quality of train-
ing data. Despite significant efforts in producing datasets
with 3D ground-truth annotations, these datasets have limited
generalizability to real-world scenarios. The 3D ground-truth
annotations are usually obtained in controlled environments
using magnetic markers [4], multi-view settings [5]–[7], or
synthetic datasets [8]. Marker-based annotation approaches
introduce biases in the trained models due to the visibility
of the markers in the input images [9]. Synthetic datasets, on
the other hand, suffer from the domain gap between natural
and synthetic data.

Towards solving these challenges, in this paper, we address
the problem of estimating the 3D hand pose and shape in
a video dataset given only sparsely annotated frames. Mo-
tivated by the work of Bertasius et al., [10] for learning
temporal human pose estimation in 2D, we propose the 3D
Pose Alignment network where we propagate the annotation,
consisting of hand root joint 3D location, MANO pose and
shape parameters, from a labelled frame to a nearby unlabelled
frame by learning the displacement of the two frames in
parameter space. Our model consists of two components:

1) A Single-frame Hand Predictor that predicts 3D hand
shape and pose from the input frames. It also provides
hand feature descriptors from the input frames. Similar
to recent monocular RGB based hand predictors [8], [9],
a MANO layer [11] is employed in our model to output
the 3D hand joints and the corresponding mesh given the
predicted hand shape and pose parameters.

2) A Pose Alignment module that takes (i) the feature
vectors of an unlabelled and a nearby labelled frames,
and (ii) the ground-truth annotations of the labelled frame
as input and estimates the annotations of the unlabelled
frame.

In this work, our goal is both to improve the Single-frame
Hand Predictor using the information from frames without
annotation and at the same time to learn the Pose Alignment
network that can propagate annotations from a labelled frame
to its nearby unlabelled frame.

We introduce a three-stage training scheme to train our
model. (i) We first pre-train the Single-frame Hand Predictor
and (ii) then Pose Alignment module on the labelled frames
to provide a good initialization and informative hand features
from the input frames. (iii) In the last step of training, we
perform training by passing pairs of frames consisting of
an unlabelled frame Iu and its nearby labelled frame Is
from the same video to our model. We first compute the
feature vectors zs = ψ(Is) and zu = ψ(Iu) corresponding
to labelled and unlabelled frames respectively and predict the
annotations of the unlabelled frame, which we represent by γ̃u.
Then, the feature vector difference between the labelled and
unlabelled frames along with the predicted annotations γ̃u for
the unlabelled frame are input to the Pose Alignment module
to compute a displacement required to add to the unlabelled
frame’s predicted annotations γ̃u to provide an estimate for
the labelled frame’s annotations γ̃s = φ(γ̃u, zs − zu) + γ̃u.

We define the loss on the output of the Pose Alignment
module along with the output of the Hand Predictor on the
labelled frames. Our loss is defined by the difference between
the estimated joints and the ground-truth 3D joints annotation
of the labelled frame.

We evaluate our method under two different scenarios:

1) In the first scenario, we evaluate our Hand Predictor
which is updated with the help of the Pose Alignment
module on unlabelled frames to predict the 3D hand joints
and the corresponding mesh given a single frame as input.

2) In the second scenario, we evaluate our Pose Alignment
module to propagate ground-truth annotations γ?s from a
labelled frame Is to its nearby unlabelled frame Iu within
the same video, i.e., γ̃u = φ(γ?s , zu− zs)+ γ?s . We show
that our Pose Alignment module can provide high quality
annotations for the unlabelled frames in an unseen video
without any fine-tuning.
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Fig. 1. Overview of our framework for semi-supervised 3D hand pose and shape prediction. (Left) During training, we are given a labelled frame Is at time
t and an unlabelled frame Iu at time t + δt from the same video. Both frames are passed through a shared encoder to obtain the corresponding features
zs and zu for labelled and unlabelled frames, respectively. A regressor is employed to predict the 3D hand shape and pose parameters γ̃reg

s and γ̃reg
u . The

predicted hand parameters γ̃reg
u of the unlabelled frame, along with the feature vectors zs, and zu are input to the Pose Alignment module to align the

unlabelled frame hand parameters to the labelled frame hand parameters γ̃align
s . Our loss functions Lreg and Lalign are defined on the outputs of both the

regressor and the Pose Alignment module. (Right) We have two scenarios as our inference. In the first scenario (middle column), we use the output of the
regressor that is updated using the information from the unlabelled frames. In the second scenario (rightmost column), we use the Pose Alignment module to
propagate annotations from the ground-truth parameters γ?s of a labelled frame to predict the hand parameters γ̃align

s of a nearby unlabelled frame.

The evaluations are performed on both unlabelled frames
used during training and unlabelled frames of unseen test
videos with sparse annotations. Fig. 1 illustrates our approach
during training and inference.

II. METHOD

In this section, we first introduce our notation for 3D hand
shape and pose estimation from monocular videos in the semi-
supervised setting. Next, we describe each component of our
model in detail. Finally, we explain the training, loss functions,
and inference of our method.

A. Notation
Let V = {V i}Ni=1 denote a set of N video sequences, where

each video sequence is an ordered set of frames denoted by
V i = (Ii1, . . . , I

i
T i). Here, T i is the length of the video V i,

Iit ∈ I represents the t-th frame of video sequence V i and
I is the input image space. To simplify the notation, we may
omit the i superscript in the following sections and by It we
mean t-th frame of a random video sequence V of length
T . We assume that the index set {1, . . . , T} for a video V
is decomposed into two disjoints sets, supervised (labelled)
frame indices SV and unsupervised (unlabelled) frame indices
UV . Without loss of generality, we assume that the supervised
frames are indexed by every K frames in the video including
the first and last frames, i.e., SV = {1,K, 2K, . . . , T}.

In the semi-supervised setting, we have access to a set of
annotations {γs | s ∈ SV } for supervised frames of a video
V . In this problem, we use “?” in superscript for ground-
truth annotations. A ground-truth annotation γ?s = (r?s,θ

?
s ,β

?
s)

consists of r? ∈ R3 denoting the hand 3D root location
in camera space, θ?s ∈ R16×3 denoting the axis-angle rep-
resentation of joints rotation angles (except fingertips), and
β?s ∈ R10 denoting the shape representation in the MANO
model parametrization for the hand present in a frame Is. The
hand parameters θ?s and β?s are fed to the MANO hand model
M(θ?s ,β

?
s) to generate a triangulated 3D mesh M?

s ∈ R778×3

and its underlying 3D skeleton J?s ∈ R21×3.

Given a video dataset V with sparse annotations, our goal
is to predict the hand 3D mesh and skeleton in the set of
unsupervised frames U =

⋃
V ∈V{Iu | u ∈ UV }. We denote

our predictions using the “˜” notation. As an example, 3D joint
predictions for unsupervised frames are represented by J̃u.
We assume we have access to the corresponding ground-truth
joint coordinates J?u of unsupervised frames for the evaluation
purposes only.

B. Components of the Model

a) Single-frame Hand Predictor: In the Single-frame
Hand Predictor module, the goal is to predict 3D mesh and
skeleton of the hand present in an input frame I . As shown
in Fig. 2, it consists of an encoder, and a regressor.

The encoder is represented by a function ψ : I → R2×d,
where the output feature vector z = [zr; zθ] = ψ(I) is
composed of the concatenation of a low-level feature vector
zr ∈ Rd and a high-level feature vector zθ ∈ Rd. The reason
we use separate feature vectors in our model is that the low-
level feature zr is better suited for representing the hand 3D
root location r ∈ R3, while the high-level feature vector zθ is
more meaningful for predicting the MANO parameters [9].

The regressor takes the representation z of a frame and
predicts the MANO pose and shape parameters, and the hand
3D root location in camera space γ̃reg = (θ̃reg, β̃reg, r̃reg). We
use the superscript “reg” to emphasize that these are outputs of
the regressor. These predictions are computed by two separate
branches πr : Rd → R3 and πθ : Rd → R|θ|+|β|; one
computing r̃reg using zr, and the other computing θ̃reg, and
β̃reg using zθ. Formally, we have

r̃reg = πr(zr) ,

[θ̃reg; β̃reg] = πθ(zθ) . (1)

b) Pose Alignment: This module receives feature vectors
za and zb from frames Ia and Ib, and hand parameters γb
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Fig. 2. Hand Predictor. This module consists of an encoder and a regressor.
The encoder receives an RGB image as input and extracts a low-level feature
vector zr and a high-level feature vector zθ . The regressor takes the feature
vectors zr, zθ and camera intrinsic parameters K as input and makes
prediction for the MANO shape β̃reg, pose θ̃reg, and the hand 3D root
location r̃reg in camera space. The estimated parameters of d̃f and (t̃u, t̃v)
are the focal-normalized depth offset and the 2D translation vector in pixels
with respect to the image center, respectively. Here, f is the camera focal
length and doff is empirically set for each dataset to obtain d̃z as the depth
distance between the hand root location and the camera center along the
z-axis [9].
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Fig. 3. Pose Alignment. This module takes the feature vectors za and zb
extracted from the frames Ia and Ib and the hand parameters (rb, or θb )
corresponding to the hand present in frame Ib as input and predicts the hand
parameters (ra, or θa) for the hand present in frame Ia.

corresponding to the hand present in frame Ib as input1, and
predicts hand parameters γ̃aligna corresponding to the hand
present in frame Ia. Since the hands present in images Ia and
Ib are assumed to be the same (i.e., pairs of frames are sampled
from the same monocular single-hand video), the value of
the MANO shape parameter in frame Ib is assigned to the
predicted MANO shape parameter in frame Ia, that is,

β̃align
a = βb. (2)

To predict the hand root location in frame Ia, we have

r̃aligna = rb + φr(rb, z
r
a − zrb) , (3)

where φr : R3 × Rd → R3 is a function that computes a
displacement required to add to rb given the difference of
feature vectors, i.e., zra − zrb , to reach the location r̃aligna .
This function is implemented by a network composed of fully
connected layers with residual connections as shown in Fig. 3.

For alignment in rotation space, we work with the axis-
angle representation of joint rotations. To predict the hand
joints rotations in frame Ia, we have

θ̃align
a = θb + φθ(θb, z

θ
a − zθb) , (4)

1Note that the input hand parameters can be the output of the Hand Predictor
γ̃reg
b or the ground-truth values γ̃?b .

where φθ : R|θ| × Rd → R|θ| is a function (see Fig. 3) that
computes an offset required to add to θb given the difference
of feature vectors, i.e., zθa − zθb , to reach θ̃align

a .

C. Training

During training, our goal is to align the output of the
Hand Predictor from an unsupervised frame Iu to its nearest
supervised frame Is with s = N (u) = argmins′∈SV

|s′ − u|.
To this end, we define the following loss functions Lpred and
Lalign.

1) Single-frame Hand Predictor Loss: The loss Lpred de-
fines supervision on the output of the Hand Predictor given the
supervised frames. Similar to [9], it is defined as summation
of LJ, Lθ and Lβ . The loss LJ is defined on hand joints
positions as squared `2 distance. Both Lβ and Lθ act as
regularizations preventing unrealistic shape deformations. The
losses are defined as

LJ(J
?
s, J̃

reg
s ) = ‖J?s − J̃reg

s ‖22 ,
Lθ(θ̃reg

s ) = ‖θ̃reg
s ‖22 ,

Lβ(β̃reg
s ) = ‖β̃reg

s ‖22 . (5)

The Hand Predictor loss Lpred is defined as the total sum of
these individual losses

Lpred = λJLJ + λθLθ + λβLβ , (6)

where λJ , λθ, λβ are scalar values.
2) Pose Alignment Loss: The loss Lalign is defined on the

output of the Pose Alignment module as

Lalign
u→s (J

?
s, J̃

align
s ) = ‖J?s − J̃align

s ‖22 ,
Lalign
u←s (J̃

reg
u , J̃align

u ) = ‖J̃reg
u − J̃align

u ‖22 ,
Lθ(θ̃align

s ) = ‖θ̃align
s ‖22 + ‖θ̃align

u ‖22 , (7)

where Lalign
u→s is the forward alignment loss defined on the

ground-truth annotation of the supervised frame Is, and the
forward alignment from frame Iu to Is. The loss Lalign

u←s is the
backward alignment loss defined on the output of the Hand
Predictor on the unsupervised frame Iu, and the backward
alignment from frame Is to Iu using the Pose Alignment
module and Lθ is the regularization loss. The backward
alignment loss Lalign

u←s acts as a regularization enforcing the
output of the Hand Predictor for unsupervised frames to have
similar values to the output obtained by the Pose Alignment
module. The total alignment loss is defined as

Lalign = λJ(Lalign
u→s + Lalign

u←s ) + λθLθ , (8)

with λJ , λθ being scalar weights.

The total loss for a sampled frame Iu and its nearest
supervised frame Is is defined by

Ltotal(Iu, Is) = Lpred + λalignLalign , (9)

with λalign being a scalar value determining the importance
of the Pose Alignment loss. Denoting all the parameters in



networks ψ, πr, πθ, φr, φθ as Θ, our overall training objective
is to minimize the following function

argmin
Θ

E
V∼V

E
u∼UV

s=N (u)

Ltotal(Iu, Is) . (10)

We remark that our goal is to not only train the Pose Alignment
module, but also update the Hand Predictor with the help of
the Pose Alignment module. These two modules cooperatively
help each other to use the information from the unsupervised
frames during training.

D. Inference

During inference, we predict 3D hand shape and pose in
an unsupervised frame Iu by propagating the annotations
from its nearby supervised frame Is (second scenario.) To do
so, we compute (r̃alignu , θ̃align

u , β̃align
u ) using the formulas in

Eqs. 2,3,4. Since we update the Hand Predictor during training,
we also compute its predictions (r̃regu , θ̃reg

u , β̃reg
u ) using Eq. 1

(first scenario.)

III. RELATED WORK

A. 3D hand shape and pose from monocular RGB image

There has been a surge of different deep learning approaches
to predict hand shape and pose from monocular RGB images
in recent years. These methods are broadly classified into
model-based or model-free approaches.

Model-free approaches learn a mapping from image feature
space to hand configuration space to predict only 3D hand
skeletons without any reasoning about hand shape and sur-
face [12]–[17]. For example, Zimmermann et al., [12] propose
a pipeline with three sequential stages of hand segmentation,
2D keypoints detection, and lifting the detected keypoints
from 2D to 3D. However, 3D keypoints predictions are only
based on 2D keypoints predictions, and some image cues
(e.g., appearance, shading), which are helpful to reason depth,
have been ignored. In several other works, e.g., [15], [16],
[18], multimodal variational autoencoders (VAE) are employed
to predict a target modality given some other associated
modalities (e.g., RGB, 3D, and 2D hand skeletons). Spurr et
al., [15] suggest learning a shared latent space between dif-
ferent modalities via a cross-modal training scheme. They
embed each input modality to the shared latent space and
make predictions either in the same or different modalities.
Yang et al., [16] introduce a disentangled cross-modal VAE to
learn disentangled latent space of hand poses and hand images.
This approach allows better explicit controlling on the factors
of variations (e.g., pose, viewpoint, image background) for the
hand image synthesis task. In another work, Yang et al., [18]
learn different latent spaces from different modalities jointly
where the associated latent spaces are aligned via minimizing
a KL-divergence term.

Model-based approaches take advantage of an explicit de-
formable hand template that provides a strong inductive bias in
learning the space of possible hand shapes and configurations.
These approaches can predict 3D hand skeletons and their
associated 3D surfaces by employing the hand templates in

their predictions. Panteleris et al., [19] predict 3D hand shape
as a post-processing step via fitting a 3D hand template
to the detected 2D keypoints predicted by the opensource
software OpenPose [5]. Some recent works [8], [9], [20]–
[24] employ a differentiable hand deformation model known
as MANO [11] in their framework to estimate 3D hand
shape and pose jointly. These methods usually are trained to
predict MANO parameters (i.e., pose and shape vectors) and
a camera projection (i.e., view parameters), given monocular
RGB images. The estimated MANO parameters are fed into
the MANO model to generate corresponding 3D hand meshes.
Different from these methods, some other works [25]–[27]
predict hand meshes directly from image features. These
approaches try to predict hand meshes with either more
resolution (i.e., more mesh vertices) or better local details.
Ge et al., [25] take the perspective that hand meshes are
naturally graph-structured and propose a graph convolutional
neural network to generate them. Kulon et al., [26] train a
graph convolutional autoencoder on a set of hand meshes. The
decoder operates as a non-linear statistical morphable hand
model taking the image latent code representation as input,
generates the corresponding hand mesh.

B. Limited data and supervision on 3D hand shape and pose
from monocular RGB image

Some prior works [9], [14], [17], [20], [23]–[25], [27]
address the issue of acquiring 3D annotations for in-the-
wild datasets. This challenging problem requires multi-camera
or motion capture studios. For instance, [5]–[7] are datasets
captured in a calibrated multi-view setups and [4] is a motion
capture dataset in which magnetic sensors on hands are
visible in images. While 3D annotation acquisition is complex,
obtaining depth images from low-cost RGB-D cameras or 2D
annotations, which can be detected or manually annotated
on RGB images, is much easier. Thus, to have a better
generalization on in-the-wild images, the community consid-
ered weakly supervised, semi-supervised, and self-supervised
learning methods to efficiently take advantage of unlabelled
data.

Both Cai et al., [14] and Ge et al., [25] train their networks
on fully-annotated synthetic datasets combined with real-world
datasets without 3D annotations by incorporating depth as a
weak supervision signal. Boukhayma et al., [20] notice that
training with in-the-wild 2D annotations as weak supervision
and full supervision on limited available datasets lead to more
accurate results on in-the-wild images. Spurr et al., [17] incor-
porate a set of biomechanical constraints as objective functions
in training to penalize the anatomically invalid 3D predictions
in a weakly-supervised scenario for a dataset with only 2D
annotations. Kolun et al., [27] generate 3D annotations (i.e.,
3D hand mesh and 3D keypoints) for unlabelled in-the-wild
images from YouTube videos through fitting the MANO hand
model to 2D keypoints detections provided by OpenPose. They
filter a subset of annotated samples based on the confidence
scores obtained by OpenPose. Liu et al., [23] suggest a
learning approach for annotating a large-scale unlabelled video



dataset for hand-object pose estimation with the help of a
fully annotated training dataset. They train their model on the
fully annotated dataset and generate pseudo-annotations for
the large-scale unlabelled dataset. Then, they perform self-
training on the subset of pseudo-annotations that are selected
based on temporal consistency constraints. Chen et al., [24]
utilize 2D keypoint detection as a weak form of supervi-
sory signal in their framework to estimate textured 3D hand
shape and pose from input images. They leverage geometric,
photometric, and 2D-3D consistency as training objectives
in their work. Hasson et al., [9] extend the work in [8] to
learn from sparsely-annotated videos. Their intuition is that
corresponding vertices in meshes from nearby frames should
have the same color and propose exploiting this photometric
consistency across adjacent frames as a supplementary cross-
frame supervision. Given a ground-truth mesh for a reference
frame, an estimated mesh for a nearby frame, and camera
intrinsic parameters, a 3D displacement (i.e., flow) between
the meshes is computed. The nearby frame is warped into the
reference frame using differentially rendered flow on the image
plane. Finally, photometric consistency between the warped
and reference frames can be penalized as supervision.

Our work has a similar annotation setting to [9]. Despite
that, our focus is to learn an effective pairwise alignment
model (i.e., motion model) to align hand pose annotations
from a labelled frame to an unlabelled frame based on visual
reasoning between them, under a semi-supervised regime.
Instead of warping the frames in pixel space, our method
employs a conditional displacement estimation between two
meshes in the parameter space. The conditioning is defined
based on the difference between the deep features extracted
from the two images. Unlike [8], [9], we consider only hand
shape and pose estimation task and do not use any annotation
about objects.

IV. IMPLEMENTATION

The Single-frame Hand Predictor, referred to as baseline,
is implemented similar to the hand-only branch of the single-
frame hand-object network in [9] adopting the same hyperpa-
rameters and objective functions for training, unless otherwise
noted. It uses ResNet-18 [28] as the backbone, where the
extracted feature vectors from an RGB frame are zr ∈ R512

and zθ ∈ R512. Given the extracted feature vector z = [zr; zθ]
and the camera intrinsic parameters, the regressor outputs
γ̃reg = (r̃reg ∈ R3, β̃reg ∈ R10, θ̃reg ∈ R18), where
θ̃reg ∈ R3+15 represents the hand root rotation in the axis-
angle representation and the 15 PCA coefficients of the joints
rotations.

The Pose Alignment module is implemented as shown
in Fig. 3. We use fully connected layers with 128 hidden
units followed by ReLU activation in the root aligner φr :
R3×R512 → R3. A similar architecture with 512 hidden units
and Tanh as the last activation is employed for the rotation
aligner φθ : R|θ|×R512 → R|θ|. Note that the rotation aligner
works on the full 45-dimensional joints rotations. Therefore,
we utilize the orthogonal basis matrix provided by the MANO

layer to transform from the 15-dimensional PCA space of the
Hand Predictor into the full 45-dimensional joints rotations
in axis-angle representation. These 45-dimensional rotations
together with the 3-dimensional root joint rotation specify the
|θ| = 48-dimensional rotations vector.

We train the model using the Adam optimizer [29] with a
batch size of 64 and a learning rate of 5 · 10−5. We assume
that annotations for every K = 128 frames, including the first
and the last frames, are available in each video, i.e., about
0.78125% of frames are labelled. We train our network in
a three-stage procedure. First, we pre-train the Single-frame
Hand Predictor module on labelled frames with the loss Lpred.
In the second stage, we only update the weights of the Pose
Alignment module with the loss Lalign on the samples from
the labelled frame pairs. In the last step, we train the whole
network with the losses Lalign and Lpred on pairs of frames
selected as follows. We first randomly sample a labelled frame
Is. Then, the nearby frame Iu is sampled from either labelled
or unlabelled frames. When Iu is sampled as an unlabelled
frame, it is randomly selected from the frames with a gap less
than 64 time difference from Is. When Iu is sampled as a
labelled frame, it is sampled from the top 3 nearest labelled
frames to Is including itself. We set λJ = 0.5, λβ = 5 · 10−7,
λθ = 5 · 10−6, and λalign = 0.1.

V. EXPERIMENTS

A. Datasets

We require long and diverse sequences to evaluate our
method. Thus, we consider two recently released datasets:

HO-3D [30]: It is a 3D interacting hand-object pose dataset
captured in a multi-RGB-D camera setup. It consists of third-
person view sequences with a right hand manipulating an
object from the YCB dataset [31]. In this work, we work on
a subset of HO-3D, referred to as Mini-HO-3D containing
47k train, 4k val, and 14k test images. Our specified subset
is explained in more detail in the supplementary material.
InterHand2.6M [7]: It is a 3D interacting hand-hand pose
dataset captured in a multi-view studio. It includes sequences
of a single hand or interacting hands with numerous poses,
interactions, and camera views annotated semi-automatically.
We run experiments on a subset of the dataset, referred to as
Mini-InterHand, containing 319k train, 48k val, and 144k test
images.

B. Evaluation Metrics

To evaluate 3D hand shape and pose methods, we measure
the mean joints error, mean mesh error, and F-score metrics.
The evaluation metrics are described as follows:

Mean 3D error [12]: The mean 3D error (reported in
mm) is defined as the average Euclidean distance between
the corresponding predicted and ground-truth keypoints. We
denote mean 3D joints error as MPJPE (Mean Per Joint
Position Error) and mean 3D mesh error as MPVPE (Mean Per
Vertex Position Error). Furthermore, as this task is an inher-
ently ill-posed problem, previous works, e.g., [6], [30], suggest
reporting the translation (T) aligned, and the Procrustes (P)
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TABLE I
Hand pose estimation performance on the unlabelled frames of the Mini-HO-3D and Mini-InterHand train and test sets using different
evaluation metrics (in mm). Every K = 128 frames in each video are annotated. The checkmark denotes the evaluation scenario. Our

annotation propagation is denoted by Propagation and is shown in blue. Our updated Hand Predictor with the help of unlabelled data is
denoted by Baseline+Align.

Split Scenario Model F@5 ↑ F@15 ↑ MPVPE ↓ MPVPE (P) ↓ MPJPE ↓ MPJPE (T) ↓ MPJPE (SD) ↓ MPJPE (P) ↓1st 2nd

Mini-HO-3D

Test
X Baseline 0.483 0.944 64.813 10.688 65.507 39.424 46.351 10.892
X Baseline + Align. 0.459 0.940 62.337 11.105 63.013 40.169 45.275 11.272

X Propagation 0.677 0.977 43.083 7.825 44.014 39.723 38.426 7.681

Train
X Baseline 0.666 0.980 25.577 7.508 25.610 21.173 20.011 7.523
X Baseline + Align. 0.662 0.979 25.891 7.587 25.957 22.544 20.487 7.565

X Propagation 0.666 0.978 27.169 7.820 27.232 23.785 21.766 7.613

Mini-InterHand

Test
X Baseline 0.457 0.935 40.349 10.490 41.282 26.291 21.555 11.914
X Baseline + Align. 0.465 0.937 39.257 10.353 40.242 23.270 20.300 11.821

X propagation 0.573 0.938 20.480 9.646 22.153 19.981 18.288 11.837

Train
X Baseline 0.573 0.958 14.060 8.382 15.116 13.981 12.006 9.887
X Baseline + Align. 0.584 0.958 13.812 8.325 14.943 13.689 11.765 9.908

X propagation 0.666 0.960 13.552 7.688 15.393 13.823 12.383 10.278

aligned mean 3D errors to evaluate the articulation error.
The translation (T) aligned error is obtained after aligning
the position of the predicted root keypoint with the ground-
truth. The Procrustes (P) aligned mean 3D error is obtained
after Procrustes alignment (i.e., overall scale, rotation, and
mean position) of the predicted keypoints with ground-truth.
In contrast to the previously proposed alignment methods, we
believe that single image 3D hand pose estimation is ill-posed
due to ambiguity in the depth and scale estimation (i.e., not the
translation in x-y coordinates or the 3D rotation). Therefore,
we propose the scaled-depth (SD) aligned mean 3D error,
where the (SD) aligned error is obtained after aligning the
overall scale and the mean depth of the predicted keypoints
with the ground-truth.

F-score [32]: It is a metric to measure how closely two
point sets, with an unequal number of points, align to each
other. Given a distance threshold, F-score is defined as the
harmonic mean of recall and precision between two sets of
points (i.e., the predicted and the ground-truth points.) We use
two distance thresholds as F@5mm and F@15mm to evaluate
at fine and coarse scales following [6]. We report the F-score
values after Procrustes alignment of the points.

C. Semi-supervised Evaluation

We evaluate our method on the Mini-HO-3D and Mini-
InterHand datasets. We illustrate the effectiveness of our
approach on two different inference scenarios: (i) improved
pose estimation via incorporating alignment supervision, and
(ii) annotation propagation.

Improved Pose Estimation via Incorporating Alignment
Supervision: In the first scenario, we assess our method to
examine how well the proposed alignment supervision leads
us to take advantage of unlabelled frames during training.
We compare the performance of the baseline and the base-
line + alignment supervision. The baseline is the Single-
frame Hand Predictor trained with the loss Lpred on labelled
frames of sparsely annotated train-set videos with similar

hyperparameters as [9]. The baseline + alignment supervision
has the same architecture as the baseline. The difference is
that its weights are updated with cooperation of the Pose
Alignment module via the losses Lpred and Lalign through
training scheme mentioned in Sec. IV.

Table I presents the results on unlabelled frames of the
train and test sets for the Mini-HO-3D and Mini-InterHand
datasets. The baseline + alignment supervision on the Mini-
HO-3D achieves an improvement of about 2.5mm and 1.1mm
on unlabelled frames of the test-set for the MPJPE and MPJPE
(SD) metrics, respectively. The baseline + alignment supervi-
sion on the Mini-InterHand dataset yields improvement over
most of the metrics for unlabelled frames of the train and test
sets. For example, it achieves an improvement of about 1mm
and 1.2mm on unlabelled frames of the test-set for the MPJPE
and MPJPE (SD) metrics, respectively.

Annotation Propagation: In the second scenario, we want
to verify if the Pose Alignment module learns to propa-
gate information γ?s from manually annotated frames Is to
adjacent unlabelled frames Iu within the same video, i.e.,
γ̃u = φ(γ?s , zu − zs). Table I also presents the accuracy of
annotation propagation from a few manually labelled frames
to unlabelled frames in the train and test sets of the Mini-HO-
3D and Mini-InterHand datasets.

The annotation propagation performance is in par with the
baseline and baseline + alignment supervision for unlabelled
frames in the train set of both the Mini-HO-3D and Mini-
InterHand datasets. The results obtained using our annotation
propagation on unseen vidoes (test set) show the superiority
of our method against the baseline and baseline + alignment
without any fine-tuning.

Fig. 4 visualizes the qualitative results on the Mini-HO-3D
and Mini-InterHand datasets comparing the baseline, baseline
+ alignment supervision and annotation propagation outputs
on unlabelled samples from train and test splits.



VI. CONCLUSION

We introduce the Pose Alignment module to improve hand
pose estimation via incorporating unlabeled data and defining
the alignment objective functions. Our experimental results
demonstrate that our method improves hand pose estimation,
and the proposed Pose Alignment module can effectively
propagate annotations on unseen sparsely annotated videos
without any fine-tuning. In future works, we will consider
resources of unlabelled in-the-wild video datasets in training
and exploring different alignment objectives, which can help
us better generalize on real-world scenarios.
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APPENDIX A
DATASETS SUBSET

HO-3D Subset: To form the Mini-HO-3D dataset, out of
train sequences, we selected sequences with names of ABF11,
BB12, GPMF13, GSF14 as val split and with names of ABF10,
MC1, MDF14, BB11, GPMF12, GSF13, SB14, ShSu10, SM3, SMu1,
SiBF11, SS2 as test split and the rest sequences as train split.

InterHand Subset: To form the Mini-InterHand dataset, we
need long sequences with only the right hand. The InterHand
train set sequences with only the right hand have a maximum
length of 97 frames. Thus, We filtered out sequences with the
right hand and a minimum length of 1000 frame from the val
and test sets. Out of the filtered val split, we selected the last
25 videos as our val-set and the rest of that as our train-set.
Out of the filtered test split, we randomly selected 100 videos
as our test-set.

APPENDIX B
MORE SAMPLES FROM OUR EXPERIMENTS

Fig. 5, 6, 7, 8 show qualitative results of our annotation
propagation and baseline + alignment supervision, compared
to the baseline method on pairs of labelled Is and unlabelled
Iu frames sampled from val splits of the Mini-InterHand
and Mini-HO-3D datasets. Every K = 128 frames in each
video are annotated. The baseline and baseline + alignment
supervision methods are evaluated following the first scenario
and the annotation propagation method is evaluated following
the second scenario.

APPENDIX C
COMPARISONS WITH STATE-OF-THE-ARTS

We compare our method with the state-of-the-art
method [9], retrained on the Mini-HO-3D dataset. We
use their provided source code and follow their instruction
for training the model. Following the training procedure and
hyperparameters in [9], we first pretrain the single-frame
hand-object network on fractions of the data (i.e., every
K = 128 frames) without the consistency loss for 53k
iterations with the batch size of 8. Then, we fine-tune
the network with the consistency loss for additional 53k
iterations. Table II summarizes the results for the hand-object
network and hand-object network + consistency supervision
on all frames of the test set. For the translation (T) aligned
error, the root joint is the wrist joint.

Our baseline is the hand branch of the hand-object network
in [9]. Despite the training scheme in [9], we train our baseline
longer for 40k iterations with batch size 64; we also augment

the images with a random rotation in [−π/8, π/8]. We hy-
pothesize that our longer training and rotation augmentation
improved the baseline method compared to [9].

TABLE II
Hand pose estimation performance compared with state-of-the-art method on all frames of test split of Mini-HO-3D dataset. The

checkmarks show that the methods include 6D object pose estimation.

Model F@5 ↑ F@15 ↑ MPVPE ↓ MPVPE (P) ↓ MPJPE ↓ MPJPE (T) ↓ MPJPE (SD) ↓ MPJPE (P) ↓ Object Estimation

Baseline 0.483 0.944 64.818 10.690 65.513 39.418 46.351 10.893
Baseline + Align. 0.458 0.940 62.341 11.107 63.018 40.158 45.273 11.274

Hasson et al., [9] Hand-Object Net 0.336 0.915 73.448 16.144 73.517 48.449 54.550 17.844 X
Hasson et al., [9] Hand-Object Net + Consist. 0.330 0.850 80.739 15.108 80.001 60.517 53.581 15.951 X
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Fig. 5. Qualitative results on pair labelled Is and unlabelled Iu frames in val split of the Mini-InterHand.
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Fig. 6. Qualitative results on pair labelled Is and unlabelled Iu frames in val split of the Mini-InterHand.
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Fig. 7. Qualitative results on pair labelled Is and unlabelled Iu frames in val split of the Mini-HO-3D.



Baseline + 

 Align.
Input Is

Propagation Input Iu

Baseline 

Baseline + 

 Align.
Input Iu

Input Iu

Baseline + 

 Align.
Input Is

Propagation Input Iu

Baseline 

Baseline + 

 Align.
Input Iu

Input Iu

0 1003D Mesh Error  (mm)

Fig. 8. Qualitative results on pair labelled Is and unlabelled Iu frames in val split of the Mini-HO-3D.
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