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Abstract—This research uses deep learning to estimate the
topology of manifolds represented by sparse, unordered point
cloud scenes in 3D. A new labelled dataset was synthesised to
train neural networks and evaluate their ability to estimate the
genus of these manifolds. This data used random homeomorphic
deformations to provoke the learning of visual topological fea-
tures. We demonstrate that deep learning models could extract
these features and discuss some advantages over existing topo-
logical data analysis tools that are based on persistent homology.
Semantic segmentation was used to provide additional geometric
information in conjunction with topological labels. Common
point cloud multi-layer perceptron and transformer networks
were both used to compare the viability of these methods. The
experimental results of this pilot study support the hypothesis
that, with the aid of sophisticated synthetic data generation,
neural networks can perform segmentation-based topological
data analysis. While our study focused on simulated data, the
accuracy achieved suggests a potential for future applications
using real data.

Index Terms—persistent homology, deep learning, 3D pattern
analysis, topological data analysis, semantic segmentation, syn-
thetic data generation.

I. INTRODUCTION

Topology is the mathematical field that studies topological
shape which is invariant to scale and homeomorphic defor-
mations [17]. In its applied form Topological Data Analysis
(TDA) can offer insight into topological features of data such
as the amount of voids or n-dimensional holes [9], [24]. Recent
theoretical and computational advancements have allowed a
rapid uptake in real-world use. It has been successfully used
in Chemical Engineering [31], EEG Processing [36], Medical
Diagnosis [30], [37], Aviation [20], Nuclear Physics [15],
Heart Rate Variability Analysis [7] and Network Analysis [5].
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Persistent homology is a powerful tool for TDA that can be
used to produce persistence intervals of topological features
across different dimensional scales [4], [24]. These intervals
can be expressed in forms such as persistence diagrams,
persistence images and persistence barcodes [1]. Analysis of
these intervals can offer insight into the topological features of
data, this data may be expressed in n-dimensional volumetric,
mesh or point cloud structures.

We propose that neural networks can be used as an alternate
strategy to some of the topological aspects of persistent
homology where it may offer advantages that have yet to be
leveraged in research spaces.

One limitation when extracting topological signatures such
as Betti numbers via interval analysis, as in persistent homol-
ogy, is that the conversion of raw data into intervals may be a
lossy process [9], [17], [24]. An extraction of n-dimensional
holes and voids from intervals can induce some ambiguity in
the original configuration.

Fig. 1. Left and right are two scenes demonstrating potential ambiguities
when assessing the global topology of a scene using persistent homology.
Both scenes have the Betti numbers β0 = 2, β1 = 6, and β2 = 2. The genus
and Betti numbers for these objects can be seen in Table II.
The meshes of the four displayed surfaces are examples of genus {0, 1, 2, 3}
manifolds that were used as seeds in the data generation process, see
Section III-A. The visualisations were performed in Blender [3].

For example, a scene may comprise 2 objects and 3 holes
however it is ambiguous whether the scene contained a 0-hole
object and a 3-hole object or a 1-hole object and a 2-hole
object, see Fig 1. Our approach is based on per-point labelling
segmentation which addresses such ambiguities by attempting
to isolate these objects into classes.

There are other potential advantages that neural networks
could provide to researchers. Persistent homology can have
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large memory and CPU requirements and a time complex-
ity that scales with point cloud sample counts [21]. These
computational constraints may prevent utilization in certain
applications where the resources or time are not available.
Details regarding some key concepts and algorithms for the
computation of persistent homology are surveyed in [24]
which compares time, CPU, and memory benchmarks across
these methods. Neural networks may also offer an intelligent
interpretation of noise, density, and connectivity. Persistent
homology can be robust to noise that has known characteristics
however may incur problems when evaluating data with varied
noise, relative object scale, and sample density [24], [33].
Neural networks may use the local and global contexts of
points and surfaces to intelligently extract topological features
based on ‘human-like’ intuition.

In this paper we analyse closed compact orientable 2-
dimensional manifolds to estimate the topological ‘genus’.
Each of these manifolds is homeomorphic to a sphere with
a number of handles attached, where the genus g is the
number of these handles [11]. The genus is related to the Euler
characteristic χ and the first Betti number β1 by the formula:
g = 1

2β1 = 3
2χ [9]. Table II lists some example surfaces

including their genus, Betti numbers, and Euler characteristic.
We propose employing semantic segmentation neural net-

works to directly extract genus information from raw data,
providing a novel tool for TDA. To our knowledge, no research
exists to evaluate neural networks’ ability to extract Betti
numbers and/or genus from raw 3D point cloud data, nor
to apply segmentation labelling for topological signatures.
Networks aimed at topological data analysis with different
inputs, outputs, and objectives are discussed in Section I-A.

An investigation into existing datasets and related literature
found no suitable labeled sets for our application of topological
machine learning, some of these datasets are discussed in
Section I-A. Our dataset required Betti number or genus
labels, scenes that included multiple objects and genus groups,
and variability between these objects appearance. Real-world
data is valuable for certain applications however we aimed to
isolate the ‘human-like’ element of visual topological analysis.
For this, varied homeomorphic deformation for objects with
the same topological signatures was deemed necessary to
incentivise the learning of target features.

To fulfill our criteria we created a new dataset using a
combination of the Repulsive Surfaces algorithm [38] and the
Wave Function Collapse algorithm [12] to produce 3D meshes
of known properties. We refer to this dataset as the ‘Repulse’
dataset. An example of an element in the dataset is shown
in Fig 2 which demonstrates how visually challenging it may
be for humans to topologically analyze data that poses little
correlation to our existing experiences.

The key contributions of this research are:
1) Generation of a novel labeled dataset with scenes of

varying object count and genus that could be used for
topological machine learning training and evaluation.
This dataset can be used in its original mesh form or
sampled in point clouds of various point counts.

(a) (b)
Fig. 2. Sample comprising of 3 close proximity objects of known genus.
Image (a) consists of a generated dataset mesh. Image (b) has been coloured
strictly for demonstrative purposes; genus 0 (blue), genus 2 (green) and genus
3 (red). Visualisation of data was performed in Blender 3.0.1. [3]

2) Training multiple neural network models to analyze
3D point cloud data and assign each point a genus
corresponding to its estimated object grouping.

3) Discuss the viability of novel topological data semantic
segmentation and compare network performance with
respect to architectural design.

The dataset generation process is described in Section III-A
and a brief visual summary can be seen in Fig 3.

A. Related Works

Recent studies [16], [25] have shown success in Betti num-
ber estimation of 2D, 3D, and 4D volumetric data. They used
synthetic data comprising a range of fundamental topological
shapes without deformation in pixel, voxel, and toxel form and
conducted TDA with basic convolutional neural networks.

In contrast, the present project focuses on increasing the
complexity of data in 3D significantly by generating sophis-
ticated datasets with diverse organic structures. By switching
from a classification to a segmentation paradigm and using
more advanced deep learning models we can demonstrate that
more information can be drawn from the resulting network
output. The long-term vision of this project is to achieve
better manageable computational performance and real-world
applicability of this approach.

Two networks have emerged to produce estimated per-
sistence images of various input data formats: Pi-Net, and
TopologyNet. Persistence images are a representation of per-
sistent diagrams (see Section II-B) in Rn space. Further
mathematical and computational detail on the creation of
persistence images can be seen in [1].

Pi-Net [32] introduced two convolutional neural networks
to produce estimated persistence images of multivariate and
multichannel input data. Signal PI-Net can process time series
signals and Image PI-Net can process 2D image data. An
output format of persistence images still requires further
subjective interpretation for the extraction of additional topo-
logical features. In this form, however, raw data information
that may be useful in determining these features is lost. A one-
hit network for outputting a variety of dimensional features
could provide additional information. For these 2D image data



Fig. 3. Sample showing the growth of 2 interlinked objects of genus 1 (blue) and genus 3 (brown). Visualisation of data was performed in Blender 3.0.1. [3]

experiments the datasets CIFAR10 [19], CIFAR100 [19] and
SVHN [23] were used. These datasets use a combination of
common objects and street-view house numbers. As these
datasets were not exposed to homeomorphic deformation
there may exist a correlation between the geometric shape
classification and topological labels.

A TopologyNet model was used to fit 3D point cloud
data directly to persistence images [40]. The training of
this network used ModelNet40 dataset [35] comprising 40
categories for classification such as a chair or table. These
classes may have spurious correlations between object type
and topological labels making them undesirable for evaluating
topological models.

RipsNet [8] model, like TopologyNet, also successfully used
3D point cloud data however outputs the persistence diagram
instead of a persistence image. The creation of persistence
diagrams was identified as the most computationally expensive
process in the extraction of features and thus estimating
this with neural networks can greatly reduce computational
requirements. Ripsnet training used ModelNet10 dataset [35]
comprising 10 object categories. This shares the topological
limitations identified for ModelNet40.

Further testing on the topological space evaluation abilities
of neural networks is performed in [22]. This paper emphasizes
the benefit of directly outputting topological features rather
than persistence diagrams in certain applications to bypass
additional computational processing. This work was successful
in estimating binary features and “tropical coordinates” from
2D images. In many applications, the persistence diagram
is nothing more than a necessary intermediary step in the
calculation of topological features such as Betti numbers.

Our research also attempts to bypass persistence diagram
creation and instead directly outputs topological features as
labels for each point in the cloud. This allows for object
extraction filtered by genus or Betti numbers to produce
shortlisted key data subsets.

The topological property on which we segment the network
is genus (or, equivalently, Betti number) which we discuss in
Section II-B.

Our motivation for this research extends beyond achieving

high accuracy in topological analysis. We aim to explore
the inherent capacity of neural networks to analyse topo-
logical signatures without leveraging pre-learned assumptions
regarding object class. Pre-existing literature uses machine
learning for the interpretation of persistence intervals and the
creation of persistence diagrams/images. Much of this work
uses datasets with spurious correlations between geometric
structure and topological features. Prior knowledge regarding
certain object characteristics can make it challenging to isolate
the true ability of neural networks to interpret data from
a topological perspective. We attempt to mitigate this issue
through random homeomorphic deformations when generating
the Repulse dataset.

We mention in passing that leveraging domain-specific
correlations to enhance accuracy may be desirable in real-
world applications. However, for our study it compromises
the conceptual purity and generality of our approach.

Furthermore, there is an adjacent line of research where the
lifespan of persistence intervals can be analyzed to extract
topological signatures such as Betti numbers. This interval
analysis can be subjective and case specific as different sam-
ples and applications may have different properties and scales.
Existing research has successfully shown that neural networks
can be beneficial in interpreting persistence intervals [14],
[18], [29]. These networks utilize persistent homology as a
pre-processing stage and are subsequently still prone to the
resource, time, and ambiguity factors previously discussed.

B. Approach, Data, and Networks

With no existing research, experiments, or benchmarks for
3D topological segmentation, it was deemed premature to
introduce additional architectural changes or propose a new
network without pre-existing benchmarks. Instead, we apply a
novel approach to TDA via feature segmentation and introduce
a synthetic dataset designed to train and evaluate this approach
with selected existing networks.

The survey [13] explores the leading networks for deep
learning on 3D point cloud data.

PointNet [6] was pioneering research that introduced a
multi-layer perceptron network for 3D point cloud data clas-
sification and segmentation. PointNet performs well at ex-



tracting global features and works on each point individually
making it input permutation invariant. Due to this invariance
to point order, PointNet does not perform competitively at
extracting features at local scales.

To increase local feature extraction a hierarchical network
PointNet++ was proposed by [26]. PointNet++ expands upon
PointNet and uses a 3 abstraction layer approach to analyze
multiple feature scales.

Multiple networks have emerged to further improve the
accuracy of 3D point cloud deep learning. As there are not suf-
ficient benchmarks for topological analysis we considered top
performing and intriguing networks evaluated on the S3DIS
dataset [2]. This dataset contains large, indoor office space data
with labelling for structural elements and common furniture
and items. Comparing network accuracy on the S3DIS dataset
would not directly translate to this new topological task,
however, it gave some indication of relative performance for
3D segmentation.

The three networks chosen for our experiments were Point-
Net++, RepSurf-U [28], and Point Transformer [39].

The Umbrella RepSurf (RepSurf-U) network [28] is built
upon PointNet++ and is inspired by umbrella curvature [10]
concepts from computer graphics to form explicit local con-
nections in raw unordered point cloud data. This curvature
construction can offer surface and connectivity context to
otherwise sparse, edgeless point sets.

The Point Transformer network [39] introduces point trans-
former blocks with self-attention layers for 3D point cloud
processing. Self-attention [34] attempts to assess the contex-
tual weight of embeddings such as the significance of words
in a sentence with respect to a target word. Point Transformer
applies self-attention around centroid datapoints within point
subsets known as ‘local neighbourhoods’ which are formed
via k-nearest neighbours.

The accuracy of these networks when evaluated on S3DIS
dataset (Area-5) can be seen in Table I. These results were
obtained from the official RepSurf GitHub repository [27].

TABLE I
ACCURACY OF CHOSEN NETWORKS PERFORMED ON S3DIS (AREA-5).

Model mIoU mAcc OA

PointNet++ 64.05 71.52 87.92
RepSurf-U 68.86 76.54 90.22
Point Transformer 70.4 76.5 90.8

PointNet++ was used in our experiments as it is the
backbone and inspiration for many new architectures which
served as an accuracy baseline. While it scored lower than
RepSurf-U and Point Transformer, it was necessary to evaluate
whether the enhancements in newer networks were equally
applicable to TDA or if they were specifically optimized for
recognition segmentation tasks. RepSurf-U was chosen as it
uses PointNet++ as a backbone with specific design elements
for surface construction which seemed conceptually interesting
for manifold analysis. Point Transformer was chosen as there
is emerging research interest around transformer networks,

especially in the natural language processing field. We found
it compelling to assess how such architectures fare in TDA
tasks.

II. BACKGROUND

A. Three-Dimensional Point Cloud
Three-dimensional point cloud data comprises of points in

space with x, y, and z coordinates and may include other
channels such as red, green, and blue color (RGB). Point
clouds contain no information about connectivity between
points; only the points themselves are present.

Point cloud data is commonly used as many real-world
sensors such as depth imaging and lidar construct scans based
on distance to the surface of an object. Additionally, it is
possible to sample existing mesh or voxel data into a point
cloud with varying point counts.

We note that sometimes network training with point cloud
data will also include the normal vector to the surface of the
object approximated by the point cloud input. This information
was not utilised for experimentation on the Repulse dataset as
it offers additional boundary and surface context. For complex
scenes with unordered and close proximity points the normal
vectors may be hard to determine. Additionally, these vectors
are not used in conventional persistent homology.

B. Topology
Geometric Analysis can describe properties in Euclidean

space such as size, shape and volume. Such geometric prop-
erties change when objects are deformed within the space.
Topological Analysis, on the other hand, studies properties
that are invariant to homeomorphic deformations and instead
describes fundamental structural features such as holes and
voids. Homology is a key concept in topological analysis (see
e.g., [17]). For a manifold, X , and every dimension, n, there
exists a vector space Hn(X)—called the nth Homology group
of X—which characterizes the topological n-dimensional
components of the space X .

A related notion to the homology groups are the Betti
Numbers, βn. Formally, the nth Betti number of a topological
space, X , is the dimension of the nth homology group of X .
Informally, the nth Betti number describes the n-dimensional
“holes” within a manifold. In 3-dimensional Euclidean space
only the first three Betti numbers are relevant:

• β0 can be conceptualized as the number of disconnected
objects or blobs,

• β1 can be conceptualized as the number of 1-dimensional
holes, i.e., those bounded by S1.

• β2 can be conceptualized as the number of voids or
bubbles in 3-dimensional space.

Through this definition, a coffee mug has the same Betti
numbers as a ring, and glasses frames have the same as a
figure 8. Examples of Betti numbers for different manifolds
can be seen in Fig 1.

We mention in passing that the Euler characteristic of a
manifold is related to the Betti numbers through the equation:

χ = β0 − β1 + β2 − β3 + ...+ βn



Our topological Repulse dataset comprises of compact
orientable surfaces which consist solely of spheres, S2 and
connected sums of g tori, T 2#...#T 2, where g is the genus,
a natural number (i.e., g ∈ N) denoting the number of holes.
The Betti numbers and Euler characteristics for g ∈ {0, 1, 2, 3}
are shown in Table II

TABLE II
GENUS (g), BETTI NUMBERS (βn) AND EULER CHARACTERISTIC (χ) OF

CLOSED COMPACT ORIENTABLE SURFACES.

Surface M g β0 β1 β2 χ

Sphere S2 0 1 0 1 2
Torus T 2 1 1 2 1 0
2-holed torus T 2#T 2 2 1 4 1 -2
3-holed torus T 2#T 2#T 2 3 1 6 1 -4
g-holed torus T 2# . . .#T 2 g 1 2g 1 2-2g

The dataset is (as previously stated) restricted to compact
orientable surfaces in 3 dimensions. This eliminates non-
orientable surfaces such as Möbius strips and Klein bottles
which have holes but no internal closed volumes. Under these
restrictions, the Betti numbers can be calculated from the
collective genus values of objects in the scene. This relation-
ship is not bijective and subsequently the inverse can not be
calculated as different permutations of objects can produce
the same Betti numbers. The example scene mentioned in
the introduction comprises a torus and a 2-holed torus and
consequently has β0 = 2, β1 = 6 and β2 = 2 as does
a scene with a sphere and a 3-holed torus. This made per-
object genus labeling for the Repulse dataset a more favourable
descriptor. It should be noted that the ability to deal with this
ambiguity associated with the Betti numbers is an advantage of
our proposed approach using neural networks over traditional
persistent homology methods.

For more detailed information on the algebraic topology and
statistical concepts of persistent homology, see [4]. A survey
and evaluation of common methods for the computation of
persistent homology can be found in [24].

III. METHOD

A. Dataset

As previously stated, our dataset was created using a combi-
nation of the Repulsive Surfaces algorithm [38] and the Wave
Function Collapse algorithm [12].

The Repulsive Surfaces algorithm uses repulsive tangent
point energies of mesh data to perform collision avoiding
optimizations on 3D objects. This optimization attempts to
simplify homeomorphic deformations to represent the object in
a topologically equivalent form. The strength of this algorithm
for our application in topological data generation is that it
provides a barrier to intersections, which prevents the genus
from changing throughout the surface deformation.

Instead of the typical use in reducing homeomorphic de-
formation we used the algorithm to induce deformation by

increasing the objects’ surface area within random environ-
mental constraints. Some basic seed objects for g = 0, 1, 2, 3
are displayed in Fig 1.

The wave function collapse algorithm allows for random
arrangement of rule-based tiles. This was used to create 3D
environments with random shape for the objects to grow in.

Fig. 4. An environment generated using the wave function collapse algorithm.

Each 3D tile comprised of 3x3 cells with a boolean value
indicating cell presence. The 3x3 cells could form a variety of
shapes such as straight lines, 90 degree turns, and intersections
that when assembled produced a 3D maze-like structure that
acted as a restrictive barrier. An example randomly generated
environment is shown in Fig 4.

Using this method the seed objects could be randomly
grown through a series of algorithmic iterations providing
unique deformations. See Fig 3 for an example of dataset
growth. This iterative growth process allowed sampling at
various stages to produce a dataset with varied complexity.
Growing of seed objects within a confined space is conceptu-
ally similar to vines or plants growing around a wooden lattice
where weaving and wrapping creates unique shapes.

Certain seed objects started linked which was preserved
throughout the growth process (see Fig 5). This was an
important dataset feature to add complexity as the labeling
of objects should remain unaffected by these links.

(a) (b) (c)
Fig. 5. An example of a synthetic repulsive data sample comprising of 3
separate objects. Image (a) shows the generated output mesh. Image (b) shows
the mesh coloured with genus 0 (green), genus 2 (red) and genus 3 (blue).
Image (c) is a closeup of (b) to assist with link identification. Visualisation
of data was performed in Blender 3.0.1. [3]

The dataset consists of 5725 training samples, 1610 valida-
tion samples and 965 test samples. Each sample could contain
1-3 unique objects with each object having a genus of 0-3. To



reduce training bias there is equal class representation for the
amount of objects in the scene and equal quantities of each
genus object.

(a) (b)
Fig. 6. An example of a synthetic repulsive data sample comprising of 3
separate objects sampled at 4096 point count. Image (a) shows the point
cloud input information and Image (b) visualises the target genus annotations
via colour with genus 0 (red), genus 1 (green) and genus 2 (blue).

While the dataset was generated as a mesh, this was less
common for real-world application data and offered additional
normal and boundary information that could provide an un-
desirable advantage. To counter this the training, validation
and evaluation was performed on a point cloud variant. The
generated meshes were sampled uniformly with a point count
of 4096. Each point was labeled with the parent object genus
for segmentation. An example sampled at 4096 with labels
can be seen in Fig 6.

B. Training

Each network was trained on the complete training dataset
for 100 epochs. The validation dataset was evaluated at the
end of each epoch for best model checkpointing. The test set
was used for unbiased evaluation on the best validation model
after training had finished. The initial learning rate was 0.001
which was reduced by a factor of 10 every 25 epochs with a
batch size of 64.

In order to enhance the size of the dataset and mitigate
overfitting, various data augmentation techniques were applied
to the training set. These techniques include:

• 50% chance to mirror each of the 3 axis.
• Full 2π rotation around each axis.
• Anisotropic scale deformation of each axis in the range

{0.5, 1.5}, uniformly distributed.
• Shift of ±25 in each axis independently, uniformly dis-

tributed.
• Gaussian noise jitter applied to each points position with

a standard deviation of 0.025.
These augmentations were applied globally to all of the

points within a given scene to prevent class-altering deforma-
tions.

IV. RESULTS AND DISCUSSION

A common problem in machine learning is knowing
whether networks are actually learning to extract desired
features from a dataset or are instead learning to estimate

the output based on other contextual clues or artifacts. With
this in mind, it was important to create a dataset where
unique, random homeomorphic deformations could occur to
attempt to mitigate these artificial features. This could aid in
evaluating neural networks’ true ability to assess topology;
particularly addressing the question of whether the labels were
extrapolated via artifacts from a succession of similar objects
existing in both the train and test sets.

Genus segmentation also poses some unique challenges in
that objects with the same topological features can take infinite
forms in Euclidean space. This prevents the network from
learning global shape alone and requires a deep understanding
of the relationship between points.

A. Experiments

Training and evaluation on the ‘Repulse’ dataset was con-
ducted with 4096 points per scene. Three networks for seman-
tic segmentation were used: PointNet++, Point Transformer
and RepSurf-U.

TABLE III
SUMMARY METRICS OF NEURAL NETWORK MODELS

Model mIoU mAcc OA

Point Transformer 68.80 81.18 80.99
RepSurf-U 64.35 77.77 78.03
PointNet++ 57.67 72.88 72.61

TABLE IV
CLASS ACCURACY EVALUATED ON REPULSE DATASET

Model Genus IoU Acc

Point Transformer

0 78.80 87.89
1 70.12 81.82
2 56.25 72.87
3 70.03 82.13

RepSurf-U

0 75.54 83.88
1 58.85 72.89
2 53.97 73.51
3 69.84 80.80

PointNet++

0 67.52 77.73
1 57.07 76.33
2 45.00 63.51
3 61.11 73.94

B. Discussion

The obtained results demonstrated mean IoU and mean
accuracy comparable to those achieved on datasets such as
S3DIS (see Tables I and III) which is designed for object seg-
mentation in building interior spaces. Interestingly, the overall
accuracy metric on S3DIS was higher than on the Repulse set.
It is speculated that the complexity of the dataset and unique
challenges posed by the nature of the features may contribute
to this difference. A tighter grouping between mIoU, mAcc,
and OA which was seen in the Repulse experiments can also
indicate a closer accuracy grouping between classes.



An observation that the accuracies vastly exceeded random
distribution when applied to data with homeomorphic defor-
mation is supportive for neural network TDA. This suggests
that these networks are capable of assessing the connectivity
and structure of the samples rather than purely assessing the
local/global geometric features like the surface shape of known
object classes.

Such concepts are challenging to evaluate from existing
studies as there were often correlations between object classi-
fication and topological features, see Section I-A. For example
samples of varying coffee cups appearing in both training
and evaluation datasets. This can make it unclear whether
the networks encode topological labels into different object
classifications, adjust learned persistence diagrams or images
in response to changes in object shape, or perform a desirable
topological analysis.

Of the three networks trained Point Transformer achieved
the highest accuracy which showed that transformer architec-
tures with self-attention may be suitable for this topological
segmentation task. Self-attention adjusts point significance
with respect to a centroid point belonging to a local neighbour
group. This may prioritise certain manifold properties such as
curvature and connectivity, aiding in the topological analysis
and increasing accuracy. Segmented output examples from this
network are provided in Fig 7. It is notable that the output in
row 3 demonstrated a ‘clean’ miss-classification in which the
objects were successfully distinguished despite an incorrect
hole count for the genus 2 object. A class IoU is determined
by both the amount of points correctly labelled and the amount
incorrectly labelled; IoU(A,B) = |A∩B|

|A∪B| , where A and B in
this context represent correct and total classification sets. For
this specific example, the lack of ‘bleeding’ between close
proximity objects offers an IoU of 100% for genus 1, and 0%
for genus 2 resulting in a theoretical mIoU of 50%.

RepSurf-U achieved similar accuracy however comprised
of significantly less parameters than the Point Transformer
network (0.976M vs 7.767M) which may be desirable for
certain applications and hardware.

The discrepancy in accuracy between PointNet++ and
RepSurf-U seems to indicate that utilizing the umbrella cur-
vature offered an advantage in topological data analysis as
RepSurf-U utilizes PointNet++ as a backbone.

No explicit conclusion can be drawn from these preliminary
experiments with respect to optimal architecture as there are
many variants of MLPs and transformers as well as different
training methods. Additionally, further adjustments to the
hyper-parameters may show improvement to tune to this new
topological task. It does however offer some insight into the
construction of future TDA networks.

V. CONCLUSION

Overall the pilot results of this study demonstrate that
the concept of semantic segmentation for topological data
analysis appears feasible. Further studies can be conducted
into optimizing network architectures and data generation
approaches to increase accuracy and applicability.

Fig. 7. Semantic segmentation output annotations for 4096 Repulse dataset.
The left column shows the target annotations and the right column visualises
the Point Transformer network output. Classes are coloured with genus 0
(red), genus 1 (green), genus 2 (blue) and genus 3 (yellow).

The proposed approach is computationally efficient once
the neural networks are trained and offers an advantage over
persistent homology because it estimates the genus of each
individual object in a scene and hence resolves ambiguities
that are inherent to the Betti number evaluations of persistent
homology as was pointed out in Section II-B.

The new topological 3D image dataset was a crucial com-
ponent of model training. It had a mix of genus and objects
with unique shape and curvature which is a higher level of
complexity and closer representation of real-world data than
in previous studies.



Limitations of this study include a finite object and genus
count. The ‘Repulse’ dataset had 1-3 objects with a genus of
0-3. In future studies this dataset could be greatly expanded
to have larger signature variety. Additionally, this data could
be further enhanced with additional visual variety by differ-
ent environmental generation techniques and realistic post-
processing that preserves the underlying structures.

Limitations also include a finite quantity of networks tested.
Training more networks with greater variance in augmentation,
training scheme, point counts and noise would allow further
insight to be drawn regarding the effects of architecture and
hyper-parameters on accuracy.

Future research could also address detailed benchmarking
and comparisons of persistent homology techniques and deep
learning-based approaches on different image data and data
formats. Both approaches display a range of advantages and
disadvantages and the present study could only discuss some
aspects of this emerging field of research.
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