
An Event-Synchronization Protocol for Parallel Simulation of Large-Scale
Wireless Networks

Clinton Kelly, IV; Rajit Manohar
Computer Systems Laboratory

Cornell University
Ithaca NY 14853, U.S.A.

Abstract

We present a new conservative event-synchronization
protocol, time-based synchronization, for parallel discrete-
event simulation of mobile ad hoc wireless networks. Simu-
lators that use our protocol proceed at a scaled version of
real time and send messages that correspond only to trans-
missions in the simulated network. We show that such sim-
ulators can maintain a constant execution time even as the
sizes of the networks that they simulate grow. Moreover, we
show that these simulators, when executed on a custom par-
allel architecture, are capable of simulating many networks
faster than real time.

1. Introduction

A mobile ad hoc wireless network (MANET) is a col-
lection of mobile wireless nodes that form a temporary net-
work without any infrastructure or centralized control. Re-
searchers typically cite three uses for MANETs: emergency
situations, military operations, and sensor networks [12, 17,
19, 20, 27]. MANETs used in such situations could con-
ceivably contain several thousand nodes. Simulators that
evaluate MANETs must therefore be capable of simulating
large-scale networks. Researchers wishing to quickly simu-
late such networks typically use parallel discrete-event sim-
ulators (PDES) such as the Global Mobile Information Sys-
tem Simulator (Glomosim) [31], the Simulator for Wireless
Ad Hoc Networks (SWAN) [19, 20], or QualNet [26]. These
simulators all use conservative event-synchronization pro-
tocols to ensure that they produce the same results as a se-
quential simulator would.

In this paper, we present a new conservative event-
synchronization protocol called time-based synchronization
(TBS). We have designed this protocol such that a TBS-
based simulator running on a custom, fine-grained message-
passing multiprocessor called the Network on a Chip (NoC)
can simulate extremely large MANETs faster than real time.

The rest of this paper is organized as follows. We be-
gin by describing time-based synchronization (Section 2).
We then describe how a typical discrete-event simulator
models the behavior of a MANET with events and discuss
how to change such a simulator to take full advantage of
the benefits offered by TBS (Section 3). Next we describe
the NoC and discuss why our simulator requires such spe-
cialized hardware (Section 4), and we show simulation re-
sults that demonstrate the improvement in simulation per-
formance that a TBS-based simulator running on the NoC
offers (Section 5). Finally, we discuss related work (Sec-
tion 6) and summarize our research and our future plans
(Section 7).

For the rest of this paper, we will consider a paral-
lel discrete-event simulator to be composed of N logical
processes, LP0, . . . , LPN−1, which communicate by send-
ing messages containing time-stamped events. Each logical
process has the following components: (1) the state vari-
ables that correspond to the part of the simulated physi-
cal system that the LP represents, (2) a time-ordered event
queue, and (3) a local clock whose value equals the times-
tamp of the LP’s most-recently-executed event.

2. Time-Based Synchronization

An LP in a simulation using a conservative event-
synchronization protocol must obey the local causality
constraint [9]. If such an LP has an event with times-
tamp T at the head of its event queue, it cannot execute
this event until it is sure that it will not later receive a mes-
sage with a timestamp earlier than T.

In a simulation using the null-message protocol [3, 4],
an LP receives messages via incoming-message queues (one
for each LP that can send messages to the LP in question).
Each such queue has a “clock,” which equals the timestamp
of the last message that the destination LP removed from the
queue. Because the messages sent on each queue are guar-
anteed to have non-decreasing timestamps, an LP will be-
come “sure” that it can execute the event at the head of its



event queue when the clocks of all of its incoming-message
queues are later than or equal to T. To ensure progress,
LPs send timestamped null messages, which do not con-
tain actual events, but instead contain an implicit promises
that the senders will not send to the receivers any messages
with timestamps earlier than the timestamps of the null mes-
sages.

An LP in a simulation using TBS becomes sure that it
can execute the event at the head of its event queue when
the timestamp of the event is less than the the scaled ver-
sion of the elapsed real time since the simulation began. If
the simulation has been executing for time t, then an LP can
execute the event at the head of its event queue when

T < s × t, (1)

where s is the “time scale” of the simulation (for the rest of
this paper, we will use t to represent the elapsed real time
since a simulation began, and s to represent the time scale).
When this inequality is true, we say that the event in ques-
tion is executable. It is easy to see that a PDES using TBS
will execute correctly as long as every event arrives at its
destination LP before it is executable (see [14] for a proof).
That is, an incoming message with timestamp T arriving at
time t must satisfy

T ≥ s × t. (2)

Note that, unlike an LP in a simulation using the null-
message protocol, an LP in a TBS-based simulation does
not need to know which other LPs can send it mes-
sages. Moreover, an LP in a TBS-based simulation can
determine whether an event is executable without wait-
ing for information from other LPs. The ability of an
LP to make this determination on its own is what al-
lows TBS-based simulations to scale well.

Example. Say that a logical process has the events
E10, E12, E20, and E22 in its event queue, where the sub-
scripts indicate the events’ timestamps, in simulated µs. We
assume our logical process requires 4µs of real time to ex-
ecute any event (this time corresponds to the time needed
by whatever hardware is running the simulator). The log-
ical process’s clock, Clock, starts at zero. For simplicity,
we assume that s = 1.

The event E10 becomes executable when 10µs < s × t.
Because s = 1, the LP will execute this event after 10µs
of real time have elapsed. Doing so takes 4µs, after which,
Clock = 10µs and t = 14µs. The LP can then imme-
diately execute E12, since it can be sure that no messages
with timestamps less than 14µs will arrive in the future. Af-
ter executing this event, Clock = 12µs and t = 18µs.

Now imagine that a message containing an event E21

arrives while the LP is executing E12. The LP will place

E21 into its event queue after it executes E12, wait until
t = 20µs, and then execute E20, E21, and E22.

Consider what happens if executing E22 results in the
transmission of an outgoing message, M, with timestamp
Tmsg. When the LP begins executing E22, t = 20µs + 2 ×
4µs = 28µs (since the LP must execute E20 and E21 be-
fore executing E22). Therefore, M will arrive at its destina-
tion “on-time” (i.e., before it is executable) only if

Tmsg ≥ 28µs + tcomp + tlatency, (3)

where tcomp is the time spent on computation before the LP
can send M (this computation is a fraction of the total com-
putation involved in executing E22), and tlatency is the la-
tency to send M to the destination LP. For a general time
scale, this equation becomes

Tmsg ≥ s × (28µs + tcomp + tlatency). (4)

A simulation designer can ensure that this inequality is true
by decreasing the time scale.

From this example we can see two factors that can dra-
matically affect the performance of a TBS-based simulator.
The first is the value of tlatency . Decreasing the latency to
send a message between LPs enables a TBS-based simula-
tor to use a higher time scale. The second factor is the abil-
ity of the LP to send its messages as early as possible. If,
in our example, a programmer rewrote the simulator such
that M was produced during the execution of E21 instead
of E22, the 28µs in Equation 4 would change to 24µs, al-
lowing us to increase our time scale.1 Another point to note
is that an LP does not have to execute an event as soon as the
event becomes executable. For instance, in our example the
LP executes E22 when the elapsed time is 28µs, or 6µs af-
ter E22 becomes executable. Moreover, we should note the
difference between the simulation time, or Clock, of a par-
ticular LP, and the elapsed real time for the entire simu-
lation. Remember that, for a logical process LPi, Clocki

is equal to the timestamp of LPi’s most-recently-executed
event. At any given real time, all of the LPs in a simulation
can have different Clocks. On the other hand, the elapsed
real time is a property of the entire simulation and is al-
ways equal for every LP. (It should be obvious that there
will never exist a Clock that is greater than s × t.)

3. Building a TBS-based Simulator

In this section we describe how a typical PDES mod-
els a MANET with events, and we show how to modify

1 The ability to send messages early is similar to lookahead [9] in PDES.



such a typical simulator to take advantage of the proper-
ties of TBS and the NoC. Finally, we discuss how to es-
timate an upper bound on the time scale for a TBS-based
simulation of a MANET, based on the characteris-
tics of the simulated network and the NoC.

Modeling MANETs. Before describing our simulator, we
give an overview of the way in which designers of discrete-
event simulators use events to model wireless networks.
We will also discuss the amount of simulated time between
events. Given the real-time constraint of Equation 2, under-
standing how events are distributed throughout a simulated
time line is important for someone designing a TBS-based
simulator.

A MANET simulator typically uses two events per node
to model a wireless transmission: The first represents the
beginning of the transmission, and the second represents
the end of the transmission. Consider an example with three
nodes, node A, node B, and node C, which are simulated by
LPA, LPB, and LPC . Say that node A transmits a packet
at simulated time 5µs. The packet will reach nodes B and
C only after some time, called the propagation delay, has
elapsed. Assume that the propagation delay from node A to
node B is 2µs, and from node A to node C is 3µs. The sim-
ulator will use three events to simulate the beginning of the
transmission of the packet: one for node A with timestamp
5µs, one for node B with timestamp 5 + 2 = 7µs, and one
for node C timestamp 5 + 3 = 8µs. In a parallel simula-
tor, LPA will send the events for nodes B and C to LPB

and LPC , respectively.
The second event at each node represents the end of

the transmission. Say that the transmission of the packet
lasts for 100µs; LPA, LPB, and LPC will schedule
transmission-ending events with timestamps 105µs, 107µs,
and 108µs, respectively. Each logical process sched-
ules its transmission-ending event itself: Neither LPB nor
LPC would receive a message from LPA telling it to sim-
ulate the end of the transmission. Instead, the initial
messages contain fields indicating the duration of the simu-
lated transmission.

In most MANET simulators, an LP performs the ra-
dio calculations for a given transmission, such as deter-
mining path loss and fading, when it executes the event
representing the beginning of a transmission. If an LP ex-
ecutes an event representing the beginning of another
transmission before simulating the end of the first trans-
mission, then it must decide whether it should simulate
a collision. This decision usually depends on the sig-
nal strengths of the two transmissions and some character-
istics of the simulated receiver’s radio.

Example. Suppose a node in our simulated MANET re-
ceives a data packet that contains some routing protocol

information that it must use to update a table. Now sup-
pose that the medium access control (MAC) protocol that
the node is using dictates that the node must examine the
data packet, wait for a 10µs, and transmit an acknowl-
edgment packet (ACK). Table 1 shows such a sequence of
events taken from an actual MANET simulation. (Such se-
quences of events occurred frequently in the simulations de-
scribed in Section 5.) When the LP executes SendAck it
sends messages to the other LPs that simulate nodes receiv-
ing the ACK. (SendAck is analogous to E22 in the exam-
ple in Section 2, since the execution of each event leads to
its LP sending messages.)

Event Time Since
Previous Event

RadioBeginRx n/a
RadioEndRxNoErrors 496.0
ExaminePacket 0
UpdateRoutingTables 0
CreateAck 0
SendAck 0
TransmitAckBegin 10.0
TransmitAckEnd 248.0

Table 1. The amount of simulated time between events in a

simulation of a MANET. Times are in simulated µs.

The important point to note from this table is that the
events are not distributed evenly. Most of the computation
(other than radio calculations) in MANET simulations oc-
curs between events that correspond to the end of transmis-
sions and the events that correspond to the beginning of
new transmissions. However, the simulated time between
two such events is much shorter than the simulated time be-
tween the beginning and end of a transmission. In Table 1,
for example, the transmission of the incoming data packet
and outgoing ACK take 496 and 248 simulated µs, respec-
tively, but there are only 10 simulated µs during which most
of the computation occurs.

This distribution of events may at first make TBS seem
like a poor event-synchronization protocol to use for sim-
ulating MANETs: If we slow down (decrease) the time
scale such that 10 simulated µs scales to enough real
time to do all of the necessary computation, then the pe-
riods of 496 and 248 simulated µs during which our
LP is doing little computation will also scale, result-
ing in very long idle periods. Fortunately, by making
a series of simple changes to the way in which a typi-
cal simulator executes events, we can create a relatively ef-
ficient TBS-based simulator. We will now discuss the



process by which we arrived at this more-efficient simula-
tor.

Initial Implementation of our Simulator. We began the
development of our simulator by taking the code for a stan-
dard MANET simulator and simulating how well it would
perform on the NoC using TBS (see Section 5 for a de-
scription of our simulation strategy). We shall describe the
NoC hardware in Section 4; for now, it is sufficient to know
that the NoC is a machine with enough processors such that
we can have a one-to-one mapping between LPs and pro-
cessors, and that these processors communicate by passing
messages through a high-speed interconnect.

After performing our initial simulations, we quickly no-
ticed that several critical paths limited the simulations’ time
scales. As we stated earlier, our simulator will execute cor-
rectly if every message arrives at its destination before its
enclosed event is executable. The critical paths are nat-
urally then the times between executing events that lead
to one or more messages being sent, and latest time by
which these messages can arrive at their destination pro-
cessors without violating Equation 2. We shall now show
how we were able to move computation off of these paths
by changing the order in which our simulator would ex-
ecute the events in Table 1. For the sequence of events
listed in Table 1, the critical path is the time between ex-
ecuting RadioEndRxNoErrors and the arrival at their
destination LPs of of the messages sent during the exe-
cution of SendAck. The left half of Figure 1 shows the
unoptimized time line for executing this sequence of events.

UpdateRoutingTables

RadioEndRxNoErrors

SendAck

TransmitAckBegin

TransmitAckEnd

RadioBeginRx

RadioEndRxNoErrors
ExaminePacket
UpdateRoutingTables
CreateAck
SendAck

TransmitAckBegin

TransmitAckEnd

RadioBeginRx

SpeculativelyCreateAck
SpeculativelyExaminePacket

Figure 1. Moving computation off of our simulator’s critical

path.

Speculative Execution. Our first step in optimizing the way
in which the simulator executes this sequence of events is
to have the execution of ExaminePacket and CreateAck

occur speculatively, after the execution of RadioBeginRx
but before that of RadioEndRxNoErrors. The conven-
tional simulator executes these events after RadioEndRx-
NoErrors to make sure that it will not receive any mes-
sages containing events corresponding to packets colliding
with the original data packet. If such a simulated collision
occurred, then the simulated data packet would have er-
rors, the LP would execute RadioEndRxWithErrors, and
it would merely simulate the receiving node dropping the
packet. There would therefore be no ACK to simulate.

In our simulator, however, the processor will be idle
for a long period of time between executing RadioBe-
ginRx and RadioEndRxNoErrors. Therefore, if we spec-
ulatively execute ExaminePacket and CreateAck during
this idle time and the LP eventually simulates a colli-
sion and the dropping of the packet, this speculative execu-
tion will not have cost us any time (it will have cost some
energy, however). On the other hand, if the LP does not sim-
ulate a collision, then the processor will have less events
to execute before SendAck than it would have had be-
fore our optimization. This makes our critical path shorter.

Postponed Execution. Likewise, the processor will be idle
for a fairly long time after executing TransmitAckBegin.
This period corresponds to the time spent simulating the
transmission of the ACK. We can easily postpone the ex-
ecution of UpdateRoutingTables to the time after Trans-
mitAckBegin, since the content of the ACK does not de-
pend on the updates to these tables.

After our optimizations, our final sequence of events
looks like the following: RadioBeginRx, Speculative-
lyExaminePacket, SpeculativelyCreateAck, RadioEn-
dRxNoErrors, SendAck, TransmitAckBegin, UpdateR-
outingTables, TransmitAckEnd (Figure 1). The path is
now at the point where the processor will be able to send
the messages corresponding to the transmission of the ACK
almost immediately after RadioEndRxNoErrors becomes
executable.

This example demonstrates the two guidelines we fol-
lowed to optimize all paths like those in Table 1:

1. Perform speculatively whatever computation may in-
fluence the next outgoing message.

2. Postpone whatever computation is not necessary to
form a given message to the time after sending the
message, when the LP will be simulating the transmis-
sion of the packet that the message represents.

Determining the Time Scale. To choose a value for s, we
rewrite Equation 2. If we assume that the event leading to
the sending of messages (in our example, RadioEndRx-



NoErrors) is able to be executed as soon as it becomes ex-
ecutable,2 our constraint for correctness becomes:

ΔT ≥ s × Δt, (5)

where ΔT is the difference between the timestamp of the
current event and the timestamp of the final message sent as
a result of executing this event, and Δt is the real time be-
tween the event in question becoming executable and the
first word of the last message reaching its destination. ΔT
depends only upon the simulated MANET: It is the sum of
the time, called the transmitter-turn-on time (TTOT), for
a node’s radio to change from sensing mode to transmitting
mode, and the worst-case (longest) propagation delay be-
tween the sending node and one of the receiving nodes. We
will call these two times Tttot and Tprop.

Δt depends on two factors: the time the NoC proces-
sor needs to execute the instructions that will send all of the
messages into the interconnect, and the worst-case latency
for the last message sent into the interconnect to reach its
destination processor. The latter is a function of the NoC it-
self; we will refer to it as tlat. The former is essentially the
product of the number of messages to be sent, the number
of bytes per message, and the time required by the proces-
sor to send one byte into the interconnect.

We can perform one final optimization that eliminates
the dependence of Δt upon the length of messages. For
each message a NoC processor would normally send, we in-
troduce an additional reservation message, which contains
only the timestamp of the original message (we will now
refer to the original message as the full message). When
a NoC processor simulates the transmission of a packet, it
first sends reservation messages to all of the receiving pro-
cessors, and then sends the full messages.

When an LP receives a reservation message, it knows
that it will soon receive a full message, and so it does not
execute any events with timestamps later than the reserva-
tion message’s timestamp. This scheme ensures that all LPs
will still execute events in order, while sending only reserva-
tion messages, which have minimal length, during the criti-
cal path.

We say that Δt is equal to tlat + tsend × n, where tsend

is the time for the processor to send one reservation mes-
sage into the interconnect and n is the number of messages
per simulated transmission. Using this expression, plus our
equation for ΔT, Equation 5 becomes

Tttot + Tprop ≥ s × (tlat + tsend × n), (6)

which we can rewrite:

s ≤ Tttot + Tprop

tlat + tsend × n
. (7)

2 Simulations have shown that this assumption is almost always true.

The IEEE 802.11 MAC protocol [10] specifies Tttot as 5µs.
If we take a worst-case value for Tprop of zero (since mo-
bile nodes may be very close to one another) and for n of
32, and we let tsend be 8 ns and tlat be 100 ns [14] (we ex-
pect actual values from the NoC to be similar to these), then
the right-hand side of Equation 7 becomes approximately
14.0, meaning that our simulator should be able to simu-
late MANETs with these parameters fourteen times faster
than real time. Moreover, the execution time is independent
of the size of the simulated MANET, as long as n remains
constant.

4. The Network on a Chip

In this section we describe how we have designed the
NoC to efficiently execute a TBS-based MANET simula-
tor. The presence of the NoC is critical to the performance
of our simulator; other parallel computing platforms would
not be able to execute our simulator at a reasonable time
scale [14].

In our simulator, there is a one-to-one mapping between
simulated network nodes and LPs, and a one-to-one map-
ping between LPs and processors in the hardware execut-
ing the simulator. Therefore, a machine executing our sim-
ulator must have thousands of processors. Moreover, be-
cause the performance of our simulator depends heavily
on the latency to pass messages between LPs, we need a
machine that allows processors to communicate efficiently.
Currently-existing parallel platforms that a person would
consider for running a TBS-based MANET simulator there-
fore include distributed shared-memory (DSM) machine
and networks of workstations (NoWs). Unfortunately, the
largest DSM machines contain only 1024 processors [16],
making them incapable of running TBS-based simulations
of MANETs containing greater than 1024 nodes. NoWs are
more promising: NoWs containing more than 1024 nodes
certainly exist [8], and the message-passing latency in a
NoW can be as low as 6.3µs [23]. Unfortunately, however, a
NoW is still a bad fit. TBS-based simulation of MANETs is
an application with a large ratio of latency-critical commu-
nication to computation. Running such an application on a
NoW containing thousands of very-powerful computers is
a poor use of resources: The simulation’s time scale, and
therefore the performance of the simulator, will be limited
by the latency to pass messages between workstations. (If
we perform the same calculation as we did at the end of Sec-
tion 3, but with tlat equal to 6.3µs, we get an upper bound
of 0.76 on s.) We would prefer instead a platform with less-
powerful computers but a lower message-passing latency.

In addition to having thousands of moderately-powered
processors that can communicate quickly, a machine that
executes our simulator should have processors that can ef-
ficiently manage event queues. To do this, the processors



Interconnect

Processor

Single NoC

Multiple NoCs Host

NoC

Figure 2. A multi-chip NoC simulator and host.

need a low-overhead mechanism for determining when an
event has become executable: They must be able to quickly
compare the timestamps of scheduled events with the scaled
version of elapsed time.

With these requirements in mind, we created the
NoC [14, 15], a chip multiprocessor. We estimate each chip
will contain approximately 100 processors. To enable sim-
ulations of MANETs containing thousands of nodes, we
have designed the NoC such that we can gluelessly com-
bine multiple chips to create a massively-parallel ma-
chine. The NoC processors are designed specifically to
execute LPs in our simulator, thus they lack virtual mem-
ory or any other hardware operating-system support. Each
processor has its own private 8KB memory, and communi-
cates with the other processors only by passing messages
via a highly-pipelined interconnect.

A simulation run on the NoC is managed by on an off-
chip workstation called the host. The host can send and re-
ceive messages to and from the NoC processors; it sends
the processors the code they will execute during a simula-
tion and it collects statistics when a simulation is complete.
Figure 2 shows a multi-chip NoC simulation connected to a
host.

The NoC processors lack multiply / divide and floating
point units, meaning that they would require a great deal
of time to perform complicated radio calculations. There-
fore, instead of the NoC processors performing radio cal-
culations during a simulation, the host performs the calcu-
lations before the simulation begins; it can do so for any
simulation in which the movement patterns of the nodes are
known before the simulation begins (for example, static net-
works, or networks using the random-way point [12] mo-
bility model). The host incorporates these calculations into
the code that it sends to the processors (the code for the ra-
dio layers has a section that is different for each processor;
it tells a given processor how to simulate incoming trans-
missions based on the sources of the transmissions and the
times at which they occur).

Because the processors execute LPs, which in turn sim-
ulate network nodes, a processor that simulates a given net-
work node will need to exchange messages only with pro-
cessors simulating network nodes within its node’s trans-
mission range. Therefore, if the simulation user maps LPs

to processors in an intelligent way (i.e. processors that are
close together on a chip simulate nodes that are close to-
gether in the simulated terrain), no messages should travel
more than a few hops through the interconnect. In simu-
lations of networks with highly-mobile nodes, a mapping
that is efficient at the beginning of a simulation may be-
come quite inefficient later. Such simulations can be paused,
re-mapped, and started again by the host. In simulations in
which the mobility patterns of the nodes are known before
the simulation begins, the host can precompute the remap-
pings. A researcher using the NoC to simulate a network
with high node mobility may wish to make remapping eas-
ier by using only a fraction of the NoC processors on each
chip.

Every processor has a timer coprocessor, which it uses to
schedule new events, and which alerts it when a previously-
scheduled event becomes executable [15]. To determine
when an event is executable, the timer coprocessors need to
keep track of the current elapsed time; for this purpose, they
each contain an incrementer. All incrementers start from
zero on reset and change their values at the same rate. Thus,
every processor has the same notion of the current elapsed
time.3

Because all of the incrementers advance independently
(though at the same rate), there is no centralized control
governing all of the processors in the NoC. Hence, adding
more nodes to our simulated MANET, and therefore more
processors to our simulator, does not add any extra hard-
ware synchronization costs. This ability of the hardware to
scale well makes possible the fast simulation of large-scale
MANETs.

5. Evaluation

In Section 3 we showed that the performance of a TBS-
based simulator running on the NoC is independent of the
size of the simulated MANET, as long as parameters such
as the propagation delay and the density of the network
do not vary with the number of nodes. We have therefore
taken a problem—simulating a given class of MANETs—
and found a solution with O(1) running time. 4 (By “class
of MANETs” we mean a collection of MANETs of differ-
ent sizes but with common values for many other character-
istics such as TTOT, density, MAC and routing layer proto-
col, and propagation delay. In other words, we expect that,
for a given class of MANETs, the average amount of com-
putation to simulate a node remains constant as N changes.)

3 If all of the incrementers do not have precisely the same value, the sim-
ulator can still execute correctly [14]. In this case, we consider the t
from Equation 2 to be the receiving processor’s notion of the current
elapsed time. Hence, we can compensate for the difference between
incrementers by decreasing the time scale by an appropriate amount.

4 Our solution does use O(N) processors, however.



A sequential simulator is a solution with, at best, O(N) run-
ning time, where N is the number of nodes in the simulated
network.

An O(1) solution to a problem will naturally outper-
form an O(N) solution once N becomes large enough.
We need to determine, however, what value of N is “large
enough” for simulating various classes of MANETs. If, for
example, our O(1) solution has such a large constant fac-
tor attached to its run time that it outperforms a sequen-
tial simulator only when N is on the order of ten million,
then it will be far less useful than if it surpasses the se-
quential simulator when N is a hundred or a thousand.
In this section we will show that our TBS-based simula-
tor is faster than a sequential simulator for MANETs con-
taining a hundred nodes. We will also discuss how some
characteristics of the simulated MANETs affect the magni-
tude of the TBS-based simulator’s speed advantage.

Simulating Our Simulator. To determine the time needed
for a TBS-based simulation running on the NoC, we need
to know only the time scale of the simulation. For the re-
sults in this section, we used Equation 7 to estimate the time
scale for a given simulation, based on the worst-case value
of n (the number of messages sent per simulated transmis-
sion). To verify that this time scale was safe (i.e. that we did
not violate our condition for correctness, Equation 2), we
developed a program called nocsim.

We modified a sequential MANET simulator such that
it creates log files listing, for every simulated node, ev-
ery event (and corresponding timestamp) executed during
a given simulation. The log file for a particular node cor-
responds to the code that would be executed by the NoC
processor simulating the node in our TBS-based MANET
simulator. nocsim uses these logs, along with estimates of
the time to execute events and to send messages through
the NoC interconnect, to check whether such a simulation
would execute correctly using the time scale we derived
from Equation 7.

We obtained our estimates of the time to execute events
by compiling for the MIPS ISA [13] (which is simi-
lar to the NoC processors’ ISA [14]) the event-execution
code segments from the sequential simulator, and run-
ning them in a MIPS simulator to obtain worst-case in-
structions counts (because the NoC processors do not have
caches, memory access time is uniform). We turned these
instruction counts into times by assuming 500 MHz proces-
sors (this is conservative for the process, TSMC 0.18µm,
that we shall use for the NoC). We assumed a worst-case de-
lay of 100 ns to send a message; this delay is great enough
to include the time for a message to cross one inter-chip
boundary [28]. We assumed the time to send one reserva-
tion message into the NoC interconnect was 8 ns.

Results. We now present simulation results that show how
various characteristics of a simulated MANET influence the
performance of the TBS-based simulator, relative to that of
the sequential simulator that we used to produce the log
files for nocsim. The scenarios we simulated are similar
to those used in [2] and [5]. We used networks consisting
of 100 nodes using the IEEE 802.11 Distributed Coordina-
tion Function (DCF) MAC layer [10] and the Ad-hoc On-
Demand Distance Vector (AODV) routing protocol [24].
The channels have a bandwidth of 2 Mbps. A fraction of the
total nodes were constant-bit-rate sources, a fraction were
sinks, and the rest forwarded packets between the sources
and sinks. The nodes used a standard random-waypoint mo-
bility model [12]. We used a two-ray path loss model and a
simple radio model that does not take into account acous-
tic noise. We varied the density of the networks by adjust-
ing the size of the simulated terrain.

Time to simulate a MANET for 60 seconds, varying number of nodes

NoC

0

2000

4000

6000

8000

10000

12000

14000

16000

0 200 400 600 800 1000 1200 1400 160

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Number of nodes

Sequential

Figure 3. Execution times of the sequential simulator and

the TBS-based simulator running on the NoC, various numbers

of nodes.

Figure 3 shows the actual execution time of our sequen-
tial simulator and the projected execution time of the TBS-
based simulator running on the NoC for MANETs of vari-
ous sizes. The different simulated networks have all of the
same characteristics (density, fraction of nodes serving as
sources or sinks, packet size, etc.), and only vary in size.
From this figure we can see that the TBS-based simulator
is faster than the sequential simulator for networks contain-
ing as few as a hundred nodes, and that the disparity be-
tween the speeds of the two simulators increases dramati-
cally as we increase the number of nodes in the simulated
network.

Figure 4 shows the execution times of the sequential and
TBS-based simulators for networks containing 100 nodes
for various densities. The x axis shows, for a particular
MANET, the largest number of messages that any NoC pro-
cessor had to send to simulate a single transmission. This
number corresponds to the density of the MANET—in a



50

NoC

60 70 80 90 10

R
un

tim
e 

(s
ec

on
ds

)

Highest number of neighbours

Time to simulate a 100−node MANET for 60 seconds, varying connectivity interval

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40

Sequential

Figure 4. Execution times of the sequential simulator and the

TBS-based simulator running on the NoC, various densities.

simulation of a denser MANET, each NoC processor will
typically have to send more messages to simulate a trans-
mission. In these scenarios, 50% of the simulated nodes
are constant-bit-rate (CBR) sources or sinks (simulations of
networks with different fractions of nodes acting as sources
and sinks yielded similar results). The sources generate two
512-byte packets every second.

There are two points to note from Figure 4. First, the pro-
jected execution time of the TBS-based simulator is supe-
rior to that of the sequential simulator, even for networks
containing only 100 nodes. As we increase the number of
nodes (while keeping the density the same), this disparity
will increase, since the execution time of the sequential sim-
ulator will scale, at best, linearly [30], while the execution
time of our simulator will remain constant, even for net-
works containing tens of thousands of nodes.

The second point to note is that the TBS-based simu-
lator’s advantage over the sequential simulator decreases
when simulating MANETs that are extremely dense or
sparse. In extremely sparse networks, many nodes are in-
active; the sequential simulator therefore has less computa-
tion to perform, so it performs relatively well. The high con-
nectivity of extremely dense networks means that simulat-
ing some transmissions requires a large number of messages
(sometimes as many as 99), thus limiting the TBS-based
simulator’s time scale (see Equation 7). The MANETs for
which our simulator performed the best are those in which
all processors are busy, yet connectivity remains fairly low.

Figure 5 shows the execution times of the two simula-
tors as we vary the rate at which the simulated CBR sources
generate packets. Changing the packet-generation rate is
similar to changing the density in that higher rates, like
higher densities, lead to busier processors. However, this in-
crease in busyness comes without an increase in connectiv-
ity. Hence, the advantage of the TBS-based simulator in-
creases monotonically with higher packet-generation fre-
quency.

5

Sequential

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400 160

R
un

tim
e 

(s
ec

on
ds

)

Packet−generation rate (packets/sec)

Time to simulate a 100−node MANET for 60 seconds, varying packet−generation rate

0

NoC

Figure 5. Execution times of the sequential simulator and

the TBS-based simulator running on the NoC, various packet-

generation rates.

5

NoC

10

15

20

25

30

35

40

10 15 20 25 30 35 40 45 50 55 60

R
un

tim
e 

(s
ec

on
ds

)

Percent of nodes serving as sources and sinks

Time to simulate a 100−node MANET for 60 seconds, varying percent CBR nodes

0

Sequential

Figure 6. Execution times of the sequential simulator and the

TBS-based simulator running on the NoC, various percentages

of nodes serving as CBR sources and sinks.

Likewise, Figure 6 shows how changing the percent-
age of nodes serving as CBR sources and sinks (all of the
sources are producing one 512-byte packet per second) af-
fects the relative performance of the two simulators. The re-
sults in this figure are similar to those in Figure 5, since in-
creasing the number of nodes serving as sources or sinks re-
sults in a nondecreasing amount of work for each processor
in the TBS-based simulator without changing the connec-
tivity of the simulated MANET.

The projected execution times for the TBS-based simula-
tor shown in Figure 5 and Figure 6 are constant: Changing
the packet-generation rate or the percentage of nodes act-
ing as sources or sinks does not change any of the param-
eters used by Equation 7 to determine the time scale. The
time scales for Figure 4, on the other hand, varied with the
worst-case number of messages per transmission. The high-
est time scale that was twenty two, and the lowest was four.
Note, however, that the TBS-based simulator’s best perfor-
mance, relative to the sequential simulator, did not come



when it used the lowest time scale; the MANETs which dic-
tated such low time scales also very little activity, allowing
the sequential simulator to simulate them very quickly.

The time scales used for the MANETs presented in
this section should work for larger MANETs, as long
as the MANETs’ density remains the same. We veri-
fied this for many classes of MANETs by creating log
files for MANETs containing thousands of nodes and us-
ing nocsim to check that Equation 2 was true for every
message.

6. Related Work

Most researchers studying MANETs simulate networks
with ns-2 [21], Glomosim, Opnet [7], or QualNet. Of these,
only Glomosim and QualNet are parallel simulators, both
of which use conservative event-synchronization protocols.
SWAN is another recently-developed conservative parallel
simulator.

The authors of [31] show the speedup over sequential
execution of parallel Glomosim simulations of MANETs
with at most 3,000 nodes. The greatest speedup in the pa-
per is a factor of nine, with sixteen processors, using an
IBM 9076 SP (a distributed-memory multicomputer). Sim-
ilarly, [1] contains the results of simulations of wireless
networks up to 3,000 nodes, with a maximum speedup of
slightly less than eight, on sixteen processors.

QualNet is the commercial successor to Glomosim.
The creators of QualNet report speedup of 12 with a
16-processor machine running a 10,000-node model [26].

The authors of [20] use SWAN to simulate a network
with 10,000 nodes using a simplified MAC-layer model.
They report that simulating 1,000 simulated seconds took
more than ten hours to complete with five processors. The
paper does not include speedup results. The results of [19]
show speedup of five when using eight processors.

As we have shown in Section 5, our simulator (when run
on the NoC) should be able to simulate networks like those
simulated in the papers cited above many times faster than
real time. This ability results from the excellent scaling abil-
ities of the hardware and the software.

The most commonly-cited event-synchronization proto-
cols are the optimistic Time Warp [11] protocol and the
conservative null-message protocol. Further descriptions of
synchronization protocols are found in [9] and [29].

Our approach is somewhat similar to the technique of
network emulation. Examples of network emulation include
dummynet [25].

7. Summary

In this paper we have presented a new synchroniza-
tion protocol, TBS. We have shown how to design a TBS-

based MANET simulator for execution on a highly-parallel
message-passing machine, and we have demonstrated that
our combination of hardware and software is capable of
simulating large-scale networks faster than real time.

In the future, we plan to evaluate how well simulators us-
ing conventional event-synchronization protocols, such as
the null-message protocol or Time Warp, would execute on
a parallel machine like the NoC (such simulators would
have no need for the timer coprocessor). We also plan to
design and evaluate a TBS-based MANET simulation in
which a logical process can simulate more than one node,
or in which more than one logical process can run on a sin-
gle computer. If, for example, we used either of these new
mapping techniques to simulate a hundred nodes on one
processor, then hundred-workstation NoW could simulate
a 10,000-node MANET. The longer latency to pass mes-
sages in a NoW and the affects of simulating more than one
node per processor would naturally make such a simulation
slower than a simulation using a 10,000-processor collec-
tion of NoC chips, but such a simulator would not require
any custom hardware, and might still be faster than a simu-
lator using a conventional event-synchronization protocol.

We also plan to explore the possibility of a new class of
MANET routing protocols that take advantage of the faster-
than-real-time speed of our simulator. Imagine, for instance,
a MANET in which some of the nodes contain NoCs. Dur-
ing the life of the MANET, if such a node faced a choice—
such as whether to move north or south, for example—it
could use its NoC to quickly predict the effects of both op-
tions on the future behavior of the network and then make
the best choice.

Acknowledgments

This work was supported by the Multidisciplinary Uni-
versity Research Initiative (MURI) under the Office of
Naval Research Contract N00014-00-1-0564.

References

[1] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Mar-
tin, and H. Song. PARSEC: A Parallel Simulation Environ-
ment for Complex Systems. IEEE Computer, 31(10):77–85,
October 1998.

[2] J. Broch, D. Maltz, D. Johnson, Y. Hu, J. Jetcheva. A Perfor-
mance Comparison of Multi-Hop Wireless Ad Hoc Nework
Routing Protocols. In Proc. of the ACM/IEEE MobiCom, Oc-
tober 1998.

[3] R. Bryant. Simulation of Packet Communications Architec-
ture Computer Systems. MIT-LCS-TR-188, Massachusetts
Institute of Technology, 1977.

[4] K. Chandy and J. Misra. Asynchronous Distributed Simula-
tion via a Sequence of Parallel Computations. Communica-
tions of the ACM 24, 11 (November 1981), 198-205.



[5] S. Das, C. Perkins, E. Royer, and M. Marina. Performance
Comparison of Two On-demand Routing Protocols for Ad
hoc Networks. IEEE Personal Communications Magazine
special issue on Ad hoc Networking, February 2001, p. 16-
28.

[6] DaSSF: The Darthmouth Scalable Simulation Framework.
http://www.cs.dartmouth.edu/research/DaSSF/.

[7] F. Desbrandes, S. Bertolotti, and L. Dunand. Opnet 2.4: an
environment for communication network modeling and sim-
ulation. Proceedings of the European Simulation Sympo-
sium, pp. 609–614, Delft, Netherlands, October 1993.

[8] The Earth Simulator: System Configuration.
http://www.es.jamstec.go.jp/esc/eng/Hardware/system.html.

[9] R. Fujimoto. Parallel discrete event simulation. Communica-
tions of the ACM, 33(10): 30-53, October 1990.

[10] IEEE Computer Society LAN MAN Standards Committee.
Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. IEEE Std 802.11-1997. The In-
stitute of Electrical and Electronics Engineers, New York,
New York, 1997.

[11] D. Jefferson. Virtual Time. ACM Transactions on Program-
ming Languages and Systems, 7(3):404–425, July 1985.

[12] D. Johnson and D. Maltz. Dynamic source routing in ad
hoc wireless networks. In Mobile Computing, edited by
Tomasz Imielinski and Hank Korth, Chapter 5, pages 153-
181. Kluwer Academic Publishers, 1996.

[13] G. Kane and J. Heinrich. Mips Risc Architecture. Prentice
Hall. 1991.

[14] C. Kelly. Wireless Network Simulation Done Faster Than
Real Time. Master’s Thesis, Cornell University, Ithaca, NY,
2002. Available from http://www.csl.cornell.edu/∼clint/.

[15] C. Kelly, V. Ekanayake, and R. Manohar. SNAP: A Sensor
Network Asynchronous Processor. Proceedings of the Ninth
International Symposium on Asynchronous Circuits and Sys-
tems, Vancouver, BC, May 2003.

[16] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. ISCA 1997: 241-251.

[17] B. Leiner, R. Ruth, and A. Sastry. Goals and Challenges of
the DARPA GloMo Program. IEEE Personal Communica-
tions, 3(6):34-43, December 1996.

[18] M. Liljenstam, R. Ronngren, and R. Ayani. MobSim++:
Parallel Simulation of Personal Communication Networks.
IEEE DS Online 2, 2.

[19] J. Liu and D. Nicol. Lookahead revisited in wireless network
simulations. Proceedings of the 16th Workshop on Parallel
and Distributed Simulation (PADS’02), pages 79-88, May
2002.

[20] J. Liu, L. F. Perrone, D. M. Nicol, M. Liljenstam, C. El-
liott, and D. Pearson. Simulation modeling of large-scale ad-
hoc sensor networks. European Simulation Interoperability
Workshop, 2001.

[21] S. McCanne and S. Floyd. The ns network simulator.
http://www.isi.edu/nsnam/ns/.

[22] R. Meyer and R. Bagrodia. Path Lookahead: A Data Flow
View of PDES Models. Proceedings of the 13th Workshop
on Parallel and Distributed Simulation (PADS ’99), May 1-
4, 1999 in Atlanta, Georgia.

[23] Myrinet Performance.
http://www.myri.com/myrinet/performance/

[24] C. Perkins and E. Royer. Ad-hoc On-Demand Distance Vec-
tor Routing. Proceedings of the 2nd IEEE Workshop on Mo-
bile Computing Systems and Applications, New Orleans, LA,
February 1999, pp. 90-100.

[25] L. Rizzo. Dummynet: a simple approach to the evaluation of
network protocols. ACM Computer Communication Review,
Jan. 1997.

[26] Scalable Network Technologies. Qualnet.
http://www.scalable-networks.com/.

[27] Sivakumar, Sinha, Bharghavan. CEDAR: A Core-Extraction
Distributed Routing Algorithm. IEEE Journal on Selected
Areas in Communications. Vol 17, No. 8, August 1999.

[28] J. Teifel. Interchip Communication in Asynchronous VLSI
Systems. Cornell Computer Systems Lab Technical Report
CSL-TR-2002-1027, October 2002.

[29] V. Vee and W. Hsu. Parallel Discrete Event Simluation: A
Survey. Technical Report, Centre for Advanced Information
Systems, Nanyang Technological University, Singapore, Au-
gust 1999.

[30] K. Walsh, E. Sirer. Staged Simulation for Improving the
Scale and Performance of Wireless Network Simulations.
Winter Simulation Conference, New Orleans, LA, Decem-
ber 2003.

[31] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a Li-
brary for Parallel Simulation of Large-scale Wireless Net-
works. Proceedings of the 12th Workshop on Parallel and
Distributed Simulations—PADS ’98, Banff, Alberta, Canada,
May 1998.


