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Abstract

Research on data confidentiality, integrity and availability is gaining momentum in the ICT community, due to the intrinsically
insecure nature of the Internet. While many distributed systems and services are now based on secure communication protocols
to avoid eavesdropping and protect confidentiality, the techniques usually employed in distributed simulations do not consider
these issues at all. This is probably due to the fact that many real-world simulators rely on monolithic, offline approaches and
therefore the issues above do not apply. However, the complexity of the systems to be simulated, and the rise of distributed and
cloud based simulation, now impose the adoption of secure simulation architectures. This paper presents a solution to ensure both
anonymity and confidentiality in distributed simulations. A performance evaluation based on an anonymized distributed simulator
is used for quantifying the performance penalty for being anonymous. The obtained results show that this is a viable solution.
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I. INTRODUCTION

The complexity of many systems that are studied today requires scalable and efficient modeling and simulation tools.
Whether we are dealing with the Internet of Things (IoT), military scenarios, or bio-medical systems, these models require
huge computation times in order to obtain credible results [11]. Multilevel, hybrid and distributed simulation are all helpful
techniques that can be employed to build scalable simulations by aggregating a pool of resources [12]. Of course, this flexibility
has a price in terms of computation and communication overhead.

Traditionally, the research community working on distributed simulation focused on increasing the efficiency of Parallel And
Distributed Simulation (PADS) engines to improve scalability. However, efficiency and scalability are not the only properties
that matter in this context. In fact, confidentiality and anonymity can pay an even more important role in some contexts. For
example, let us suppose that we are running a distributed simulation – say, a highly classified warfare simulation – over a
pool of servers connected through the Internet. How can we make sure that the data exchanged among the hosts can not be
intercepted or tampered with? Sniffing the interactions among the components of a distributed simulation can provide a lot of
details on the structure of the simulated system. While this problem is obvious and can be solved using standard end-to-end
encryption techniques (e.g., virtual private networks), there are particular situations where this is not enough. Indeed, encryption
can hide the content of a message so that only the intended recipient is allowed to recover it; however, encryption alone may
still leak the sender and receiver of a message in the form of their IP addressed and other sensitive information.

There are a number of scenarios where anonymity is important. For example, “what-if analysis” is an important support
tool for military decision processes, and it requires both confidentiality and large-scale simulations to assess multiple war
scenarios quickly; indeed, this kind of simulations must often be executed faster than real-time. Cyber-warfare is another
prominent example that is getting a lot of attention. Cyber-warfare is about the actions by a nation-state (or another international
organization) to attack and possibly damage the computing infrastructures or the communication network of an opponent. This
is usually done by means of computer viruses/worms, distributed denial-of-service attacks or exploiting software vulnerabilities.
In this scenario, the simulation assets that are used for managing critical infrastructures or planning the conventional military
operations can be considered both sensitive and critical [20].

Of course, the trivial “solution” of centralizing all simulation components so that their interactions do not happen over
the public Internet may not be acceptable. Not only centralized solutions are more difficult to scale, but in some cases large
simulations are realized by federating components who are owned or controlled by different organizations that may not be
willing to run their code out of their premises. Many modern simulation models are composed of components that are run on
private or public computing infrastructures. As a matter of fact, many component-based simulations are distributed simulations.
In general, anonymity can be a useful add-on in all those scenarios where the simulation working nodes are deployed on a
network. The current trend is to exploit the computational capabilities offered by cloud computing. The possibility to take
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advantage of services which allow a dynamic and rapid re-configuration of the computation capacity, by adding and removing
working nodes on demand, is fundamental for building simulation models with a certain degree of complexity. However, there
is a number of threats concerned with the use of third party computation data-centers, whose interaction requires the use of
Internet-based communication. Moreover, one of the top public cloud computing threats is concerned with malicious insiders.
Even when a data center is trusted, we still might want to avoid tracking where the simulation components of a distributed
simulation are executed.

Confidentiality and availability are other fundamental requirements for distributed simulation when dealing with sensitive
data and applications. While simulation can be used to model and understand cyber-threats and cyber-warfare, strategies are
needed to prevent that through these same threats unauthorized entities gain access to the simulated data or alter the simulation
behavior. More specifically, availability is a main requirement in every distributed application and system. It is worth noting
that availability and anonymity are, at least in part, correlated. In fact, being anonymous can prevent specific types of attacks
by some malicious subjects (e.g. distributed denial of service attacks), since the attackers cannot know where simulation
components are located and how to reach them.

In this work we discuss how to integrate the anonymity functionalities provided by a free software to enable anonymous
communication (i.e., Tor) in the ARTÌS PADS middleware [3, 10]. This involves both modifying the design of the simulation
middleware (in order to make it able communicating using Tor) but also preventing information leaks that could disclose sensible
data of a simulation component to other parts of the distributed simulation. We evaluate the performance of the distributed
anonymized simulation to quantify the overhead introduced by the Tor layer on the simulation execution time. Our results
demonstrate that it is possible to build a distributed simulation that supports a high degree of anonymity of its components. It
is worth noting that the studied approach does not solve all aspects related to the security of distributed simulations. In fact,
being anonymous requires the adoption of operational security practices that are not limited to the mere installation (or usage)
of a software. It is also important to underline the price to pay in terms of performance for being anonymous. In this work,
the cost of anonymity in distributed simulation is investigated and quantified.

The remainder of this paper is organized as follows. Section II describes the background and related works. In Section III
we present the anonymous distributed simulator. Results from a performance evaluation are discussed in Section IV. Finally,
Section V provides some concluding remarks.

II. BACKGROUND AND RELATED WORK

In this section we provide the background information that is required to understand the rest of the paper, including related
works on simulation and security.

A. Background

1) Tor: is an open network protocol [4], for which free implementations are provided, that is designed and operated for
improving privacy and security on the Internet. The aim of Tor is to make anonymous communications possible. This is
achieved through an overlay network over the public Internet that is currently composed of about 6000 volunteer-operated
servers. The basic component of Tor is the onion routing algorithm that allows end-to-end anonymity through multiple layers
of encryption. In Tor, the user data (in our case, the simulation events) is encrypted multiple times and sent through a virtual
circuit composed of a set of Tor relays (i.e., application-level routers, also called onion routers) that are randomly selected. A
virtual circuit has a limited life span, meaning that after a certain amount of time a virtual circuit is no longer valid and must be
rebuilt. It is worth noting that Tor encrypts both the user data and some metadata such as the IP address of the next destination
of a packet. Each Tor relay can decrypt one layer of encryption only, so it can only know the next relay in the virtual circuit
to forward the data to. In presence of correct operational security, and assuming that there are no vulnerabilities in all software
components of the Tor network (including the communicating parties), this approach can hide the users’ location from network
surveillance and traffic analysis. Tor has been initially conceived for providing anonymity to users that access online services,
but it can also be used to hide the true identity of servers. The servers that are reachable through the Tor network are called
hidden services. The IP address of a service would obviously reveal its identity and location. For this reason, each hidden
service is accessible only using its onion address, an identifier provided by the Tor network. An onion address allows clients
to access a service without knowing its IP address. All client connections to hidden services are encrypted end-to-end, and
therefore eavesdropping is not an effective attack method. A detailed description of Tor is outside the scope of this paper; a
comprehensive introduction can be found in [6].

2) Parallel And Distributed Simulation: the traditional approach to the implementation of a simulation model is through a
serial program. This means that a single execution unit is in charge of running the whole simulation model. In recent years,
sequential simulations have shown many limitations [10] mainly in terms of lack of scalability when dealing with large and
complex models. A Parallel and Distributed Simulation (PADS) takes advantage of multiple execution units to efficiently handle
large simulations [16]. These execution units can be distributed across the Internet, or grouped as massively parallel computers
or multicore processors. In the PADS approach, the simulation model is partitioned in submodels, called Logical Processes



(LPs) which can be evaluated concurrently by different execution units. More precisely, the simulation model is described in
terms of multiple interacting entities that are assigned to different LPs. Each LP runs on a different execution unit, where an
execution unit acts as a container of a set of entities. The simulation progress through the exchange of timestamped messages,
representing events that must be exchanged among entities.

B. Related Work

Even if security is often listed among the requirements for creating reliable and scalable distributed simulations for real-time
decision making [18], the research done on this topic is quite limited. In fact, more attention has been devoted to the usage of
simulation for investigating systems security, that is clearly a totally different topic with respect to the problem addressed in
this paper.

A large part of the research on the security of distributed simulations is strictly related to the High Level Architecture
(HLA). The HLA is a general architecture that aims at improving the interoperability of distributed simulators [2] through
the composition of software components called federates. In essence, a federate represents a portion of a (possibly large)
simulation model. The main security issues of HLA are discussed in [15]. The authors investigate the usage of the IPsec
protocol to provide confidentiality to the federates communicating through the HLA runtime infrastructure (RTI). Additionally,
the authors envision the adoption of a public key infrastructure for access control on specific parts of the simulation model
(e.g., the federation object model).

In [24] and [7], the authors discuss the security of distributed simulation and describe the trusted third party architecture
that is implemented in the CERTI/ONERA RTI. The threat model considered by the authors assumes that each federate can
trust some components of the RTI, but does not trust the other federate components. The proposed approach relies on secure
domains and on the use of Generic Security Services Application Program Interface to secure communications between remote
federates and the RTI.

More recently, in [26] the authors propose the usage of secure protocols (e.g., HTTPS) and an authentication framework
based on a public key infrastructure to enable the execution of a specific HLA RTI on a cloud environment. In this case, the
main goal is to provide data confidentiality and integrity of services.

Among the few research efforts that are not strictly related to HLA, in [21] the authors discuss the challenges in developing
a security framework for the Agent-Based Environment for Linking Simulations (ABELS) framework. Many security aspects
such as authentication, authorization and integrity of the distributed simulator are considered. Specifically, the proposed system
is based on different security modes and a brokering security mechanism.

Finally, in [23] the same security aspects are discussed when applied to a distributed co-simulation in which different
simulation models are interconnected together.

III. ANONSIM: AN ANONYMOUS SIMULATOR

This section presents AnonSim, a new distributed simulator that implements a method for anonymizing the communication
streams among LPs. AnonSim is based on the GAIA/ARTÌS distributed simulation middleware [8] and relies on Tor for the
exchange of information among LPs. We first provide some information on the GAIA/ARTÌS middleware, and then describe
the modifications that have been applied to achieve anonymity.

In some systems it is possible to find that some LPs need to be anonymous while this might not be true for others. For the
sake of simplicity, in this paper we assume that the anonymized version of the simulator is applied to all the LPs that are part of
the distributed simulation (i.e., all LPs use Tor). Under the implementation viewpoint, this means that all the communications
between the LPs must be done relying on the usage of the onion address of the LPs.

A. GAIA/ARTÌS logical architecture

ARTÌS [8] is a distributed middleware that allows seamless execution of sequential/parallel/distributed simulation models
using different communication (e.g., shared memory, TCP/IP, MPI) and synchronization methods (e.g., time-stepped, conserva-
tive, optimistic). The GAIA framework [10] runs on top of ARTÌS and provides a high level application program interfaces that
greatly simplifies the development of simulation models according to an agent-based approach. Furthermore, GAIA implements
strategies for balancing the communication and computation load among the LPs based on adaptive partitioning, i.e., dynamic
self-clustering of the simulation agents. This can reduce the communication overhead and achieve a more uniform usage of
the computation resources, therefore speeding up the simulation.

B. AnonSim communication architecture

An important component of ARTÌS is the SImulation MAnager (SIMA). The SIMA is used only for bootstrapping the
simulation runs and, in this specific phase, it works as the central coordinator of the LPs. Specifically, it records information
about all the LPs involved in the simulation, and at startup, the SIMA performs the role of simulation initiator. Thus, at the
simulation bootstrap each LP must contacts the SIMA to receive information about the other participants in the simulation
run, and the simulation starts only once the transmission channels between the LPs have been initialized.



Figure 1. Communication architecture of ARTÌS.

Figure 1 depicts the communication architecture of ARTÌS. Each LP contacts the SIMA to register itself (black lines in the
figure). Since the SIMA knows in advance the number of LPs in each simulation run, it waits until every LP has registered.
The simulation starts when each LP receives from the SIMA the information about all other LPs. After that, the nodes can
start interacting by exchanging messages (red dotted lines). In the figure it is shown that LPs can communicate through two
different mechanisms: shared memory (SHM in the figure), or (secured) TCP connections. Shared memory is used only among
LPs that are executed on the same physical host.

In AnonSim, the SIMA receives only anonymized information about all the LPs, meaning that compromising the SIMA is
not sufficient, e.g., for discovering the real location of the LPs. All TCP communications are tunneled through Tor by using
the Socket Secure (SOCKS) protocol. Thus, each LP (and the SIMA) relies on SOCKS to interoperate with the simulation
middleware and network communications, and this imposes that each host running a LP has a running local SOCKS server; in
practice SOCKS provides encryption and anonymity for transmitted messages. All the simulation components are in fact Tor
hidden services. As described above, the hidden service functionality is essential for providing anonymization of the simulation
components. The interaction of SOCKS with the Tor protocol can be summarized as follows:

1) Each LP connects to its local SOCKS server, instead of directly connecting to the destination hidden service (e.g., SIMA
or other LPs);

2) The local SOCKS server sends a connect request to the receiver using onion address of the destination;
3) The hidden service (SIMA or LP) replies to the SOCKS server with an answer code: if the request is accepted by the

destination then the SOCKS server tries to establish a connection to the destination hidden service.
Using this communication mechanism, each LP first registers to the SIMA in order to know how to contact other LPs. Due

to the nature of the Tor network, LPs may have to retry several times the initial SOCKS connect request. Once the SOCKS
response is received, an LP has its own connection to communicate with the SIMA. In its first message, the LP provides to the
SIMA all the needed information for being contacted, such as its onion address and TCP port. Then the SIMA answers with
a unique identifier that is specific for this LP. Once all information about each LPs have been collected, the SIMA broadcasts
is formation of all LPs in the simulation run. Note that all the information above is completely anonymous. In fact, each LP
is represented only by the identifier assigned by the SIMA (which acts as a pseudonym) and is reachable only using the onion
address of its hidden service that is provided by Tor. Figure 2 summarizes the interactions during this initialization phase.

After the initialization, each LP establishes a connection to all other LPs, thus creating a complete anonymous undirected
overlay graph. In particular, since each network connection is bidirectional, a LP instantiates a connection only with those LPs
that have a lower identifier (the one assigned by the SIMA). This avoids the creation of redundant pairs of (bidirectional) network
connections. After this step, the simulation can start. All the communications will pass through these SOCKS connections,
which are kept anonymous by the Tor network.

AnonSim is available for peer review and it will be integrated in the next release of the GAIA/ARTÌS simulation middle-



Figure 2. Sequence diagram of the communication initialization using ARTÌS APIs. The interaction between the LP, the SIMA and the local SOCKS server
are reported.

ware [3].

IV. PERFORMANCE EVALUATION

In this section we evaluate the performance of AnonSim to assess the impact of the network anonymization provided by
Tor.

A. Simulation model

The model used in this performance evaluation is the “MIGRATION-WIRELESS” discrete event simulation model provided
in the ARTÌS package [3, 10]. The model is agent-based and consists of a set of Simulated Mobile Hosts (SMHs) wandering
over a bi-dimensional toroidal space according to the Random Waypoint (RWP) mobility model [10, 22]. The SMHs interact
by exchanging ping messages that are sent by each SMH to all SMHs that are within a fixed distance. From the simulator
point of view, each SMH is implemented as a separate entity; the SMHs are initially randomly distributed across the LPs. The
model uses the time-stepped synchronization scheme [10].

B. Simulation architecture

Given the expected use cases for AnonSim (i.e., running a distributed simulation over the Internet with confidentiality
and anonymity requirements), the “MIGRATION-WIRELESS” model has been executed on three interacting hosts that are
physically distributed through Europe. More specifically, each host will accommodate a single LP. The computational resources
were supplied by two cloud providers. In particular, two instances were hosted by Amazon EC2 [5] and one by Okeanos [1].
The two EC2 machines were instances of the type ec2.micro located in Ireland (named EC2.dublin) and in Germany (named
EC2.frankfurt). The remaining Okeanos host was physically placed in Greece. The detailed characteristics of the cloud instances
used in this setup were:

• ec2-instaces: 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB memory; network performances declared: low to moderate.
• okeanos: 4 vCPUs, 2.1 GHz, AMD-V Family, 4 GiB memory; network performances not specified.



Figure 3. Simulation distribution of the hosts used in performance evaluation of AnonSim.

Figure 3 shows the geographical location of the hosts running the anonymized distributed simulation. For each host, the IP
address (red) and the onion address (purple) are also shown. The SIMA was placed in the EC2.dublin instance. For this reason,
this host has two different onion addresses: one for the SIMA and the other one for the LP.

It is worth noting that it is easy to record the path followed by the TCP segments used for delivering the simulation messages
when the distributed simulation is run without using the anonymization provided by Tor, e.g., using applications like traceroute.
On the other hand, in presence of the Tor network the path followed by the encapsulated TCP segments is harder to trace due
to the use of virtual circuits and the characteristics of the Tor anonymization protocol.

C. Tor performances

The use of the Tor overlay network instead of the physical communication layer leads to a higher communication latency;
therefore, an overall increase of the Round-Trip Time (RTT) is to be expected. We use the tcpping [25] software to get an
estimate of the RTT. tcpping mimics the behavior of the classic ping application, but at the TCP layer. The use of tcpping is
necessary since Tor does not support ICMP packets employed by the ping program.

Table I
ROUND-TRIP TIMES OF STANDARD TCP/IP AND TOR COMMUNICATIONS: THE RESULTS ARE OBTAINED WITH 200 DIFFERENT ping, ONE EVERY 3 SEC.,

BETWEEN OUR CLOUD INSTANCES.
x ARE THE MEAN VALUES; σ ARE THE STANDARD DEVIATIONS.

TCP/IP Tor
x (ms) σ (ms) x (ms) σ (ms)

EC2.dublin - Okeanos 92.91 0.75 326.42 278.52
Okeanos - EC2.frankfurt 67.14 0.16 282.74 104.83

EC2.frankfurt - EC2.dublin 20.84 0.20 540.74 54.5

Table I shows the RTTs between the hosts, using plain TCP (without Tor) and with Tor. As expected, Tor increases the
network latency considerably, and also increases the variability of such latencies (i.e., introduces a wide standard deviation).
Such high variability is due to the ephemeral nature of the virtual circuits provided by Tor. Such variability can be explained
by considering several factors: the nature of the relays which compose the Tor network; the positions of the onion routers in
a circuit; finally – and extremely relevant – the fact the circuits change over time. The latter implies a costly reconstruction of
new circuits.

To illustrate the high RTT variability caused by Tor, we show in Figures 4, 5 and 6 the RTT distribution of 200 ping packets.
We remark that the distribution has been obtained during a single execution of a simulation. Due to the nature of the Tor



network and the volatility of its virtual circuits, a considerably larger number of experiment would be needed to construct a
reliable statistics. Despite this, we report our results to provide some quantitative evidence on the amount of delay that might
be introduced by Tor, and that will affect the results provided in the remaining part of this section.
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Figure 4. RTT frequency distribution of 200 ping packets (encapsulated by Tor) between the EC2.dublin instance and the Okeanos instance. The mean value
(x) is 326.42 ms and the standard deviation (σ) is 278.52 ms.
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Figure 5. RTT frequency distribution of 200 ping packets (encapsulated by Tor) between the Okeanos instance and the EC2.frankfurt instance. The mean
value x is 282.75 ms and the standard deviation σ is 104.83 ms.

D. AnonSim execution results

The tests that have been performed to assess the performance of AnonSim are classified as follows:
• TCP/IP (or Tor) ALL_OFF: the load balancing mechanism provided by GAIA (i.e., the dynamic migration of SMHs

based on self-clustering) is disabled. This means that every LP contains the same SMHs for the whole duration of the
simulation runs.

• TCP/IP (or Tor) ALL_ON: the load balancing mechanism provided by GAIA is enabled. The standard self-clustering
heuristic provided by GAIA is used; no tuning of the heuristic parameters has been performed.
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Table II
WALL-CLOCK-TIME (WCT) FOR THE EXECUTIONS OF THE SIMULATION MODEL WITH 3000 SMHS. ALL VALUES ARE IN SECONDS.

Configuration Mean WCT Std Dev Min Max CI

TCP/IP ALL_OFF 130 1 128 132 1
TCP/IP ALL_ON 107 4 103 115 2
Tor ALL_OFF 924 414 508 1684 216
Tor ALL_ON 529 100 425 709 52

The results shown in the following of this section are obtained by averaging 10 simulation runs for each scenario.
In Table II we report the average WCT of the simulation model with 3000 SMHs, its standard deviation, the minimum and

maximum WCT recorded over the 10 independent runs, and the half-width of the confidence interval (CI) for the mean WCT
computed at 90% confidence level. We observe that, when run with load balancing turned off, AnonSim requires on average
seven times the WCT required by the plain setup without Tor. As reported before, this is expected since the overhead added
by the Tor virtual circuits is not negligible. The wide standard deviation of the WCT confirms that during the different sample
runs, the Tor circuits changed, altering the overall performance of the simulator.

When adaptive load balancing is enabled, the speedup of the simulator using adaptive load balancing with respect to the base
version not using it (computed as the ratio between {TCP/IP, Tor} ALL_OFF and {TCP/IP, Tor} ALL_ON) is approximately
1.75. Figure 7 shows the reduction of the wall-clock time and, more importantly that is obtained thanks to a significant
reduction of the number of messages exchanged among the LPs, that is one of the beneficial effects of the dynamic self-
clustering provided by GAIA. While the interaction between Tor and the self-clustering heuristics is quite difficult to analyze,
and outside the scope of this paper, we can see that the total number of SMHs migrations (for self-clustering) requested by
GAIA is on average 7, 582.40 when Tor is enabled and 7, 677.00 when it is not used. In other words, it seems that Tor does
not affects significantly the ability of GAIA to provide communication and computational load-balancing.

Table III
WALL-CLOCK-TIME (WCT) MEASURED FOR THE EXECUTIONS OF THE SIMULATION MODEL WITH 6000 SMHS. ALL VALUES ARE IN SECONDS.

Configuration Mean WCT Std Dev Min Max CI

TCP/IP ALL_OFF 528 26 466 554 14
TCP/IP ALL_ON 167 13 157 198 7
Tor ALL_OFF 1586 826 939 3403 430
Tor ALL_ON 1022 203 736 1336 106

As shown in Table III, similar results are obtained when the number of SMHs is doubled. Figure 8 shows a WCT that is
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Figure 7. Average WCTs for the simulation model with 3000 SMHs.
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Figure 8. Average WCTs for the simulation model with 6000 SMHs and relative confidence intervals.

lower for the TCP/IP execution version with respect to the Tor one. In this case, the speedup obtained thanks to GAIA is
3.15 while in the anonymous version the speedup is 1.55. It is worth noticing that increasing the number of SMHs causes a
higher workload on the LPs (whose number remained constant with respect to the case with 3000 SMHs) both in terms of
communication and computation. This makes it more difficult for GAIA to improve the clustering of SMHs thus resulting in
a higher amount of messages exchanged in the distributed simulator.

All the considerations reported above are confirmed when the amount of SMHs is set to 9000 (see Table IV and Figure 9).
The speedup for the anonymous version is further reduced to 1.32 whilst for the TCP/IP version is 2.91.

E. Reliability

The main conservative synchronization mechanisms (e.g., the Chandy-Misra-Bryant NULL messages protocol) [9] and the
time-stepped approach [14, 17] assume that the communication channel among the LPs is reliable, i.e., no message is lost
or corrupted. This assumption is mostly true in conventional distributed simulations relying on the TCP protocol. However,
the assumption is no longer true when we consider TCP connections that are encapsulated in Tor virtual circuits. Tor virtual
circuits are ephemeral for security reasons; therefore, the periodic restructuring activity of the virtual circuits can result in



Table IV
WALL-CLOCK-TIME (WCT) MEASURED FOR THE EXECUTIONS OF THE SIMULATION MODEL WITH 9000 SMHS. ALL VALUES ARE IN SECONDS.

Configuration Mean WCT Std Dev Min Max CI

TCP/IP ALL_OFF 1156 58 1076 1220 30
TCP/IP ALL_ON 397 69 344 505 36
Tor ALL_OFF 2275 1010 1144 3822 526
Tor ALL_ON 1720 279 1232 2072 145
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Figure 9. Average WCTs for the simulation model with 9000 SMHs and relative confidence intervals.

transient connection failures that are observed at the application level. Indeed, during our tests we discovered that the TCP
connections encapsulated in the Tor virtual circuits are unable to deal with the underlying failure of virtual circuits. This affects
the reliability of the simulator and the visible effect is that some simulation runs fail due to the unpredictable behavior of the
communication infrastructure.

This issue can be addressed in may ways. Firstly, it is possible to implement solutions that address the more general problem
of fault-tolerance in distributed simulation. For example, in [13] we have proposed an approach based on functional replication
that is capable of tolerating crash-failures of computing nodes and offers some protection against Byzantine failures. Secondly,
it would be possible to check the correct delivery of simulation events among the LPs by adding an additional reliability
layer on top of the TCP-based communications. This mechanism should be implemented in each LP and it would be in
charge of verifying that all the messages have been correctly received and, in case of failures, of triggering application layer
retransmissions. Thirdly, it would be possible to port the whole simulator to a synchronization protocol such as Time Warp [19]
that does not assume the reliability of communication channels. Of course, this would require a large scale refactoring of the
GAIA/ARTÌS simulator; additionally, it has been shown that Time Warp may not be the most efficient protocol for all kinds
of simulation models or execution architectures [14].

V. CONCLUSIONS AND FUTURE WORK

In this paper we described a mechanism that realizes confidentiality and anonymity in distributed simulation. The proposed
solution has been implemented in a distributed simulator called AnonSim. AnonSim is based on the GAIA/ARTÌS simulation
framework and the Tor network as the underlying system to anonymize and make untraceable all the communications. The
proposed approach has been demonstrated as a viable solution, although at the cost of higher communication latencies, and a
longer initialization phase. However, the benefits for anonymity and untraceability are evident in many distributed simulation
scenarios.

As a future work, we plan to integrate in AnonSim the fault-tolerance mechanism based on functional replication described
in [13]. This would make AnonSim more robust with respect to spurious failures introduced by the Tor network, while still
supporting anonymity and confidentiality of communications.
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