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Abstract—Deep learning applications are usually very
compute-intensive and require a long run time for training
and inference. This has been tackled by researchers from both
hardware and software sides, and in this paper, we propose a
Roofline-based approach to performance analysis to facilitate
the optimization of these applications. This approach is an
extension of the Roofline model widely used in traditional high-
performance computing applications, and it incorporates both
compute/bandwidth complexity and run time in its formulae to
provide insights into deep learning-specific characteristics. We
take two sets of representative kernels, 2D convolution and long
short-term memory, to validate and demonstrate the use of this
new approach, and investigate how arithmetic intensity, cache
locality, auto-tuning, kernel launch overhead, and Tensor Core
usage can affect performance. Compared to the common ad-hoc
approach, this study helps form a more systematic way to analyze
code performance and identify optimization opportunities for
deep learning applications.

Index Terms—Roofline, Performance Analysis, Deep Learning,
NVIDIA GPU, PyTorch, TensorFlow

I. INTRODUCTION

Deep learning has gained popularity in recent years due
to its high prediction accuracy [1], [2], and two of the
most important neural networks in deep learning are the
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). CNNs can extract both low-level and high-
level features in its input data, and have enabled a range
of novel applications such as generative adversarial networks
(GANs) and variational autoencoders (VAEs) [3]. While CNNs
are good at dealing with spatial data, RNNs have been widely
adopted in temporal data analysis such as time-series predic-
tion and natural language processing (NLP) [4], [5], [6], and
one very good example is the long short-term memory (LSTM)
neural network. These neural networks have very deep layers,
and their training and inference process is usually a long one
due to the large training/test dataset and vast parameter search
space [7].

To help understand and improve the performance of these
deep learning applications, benchmarking, profiling and per-
formance analysis is crucial. Several deep learning frameworks
and vendors have provided profiling tools to help tackle this
problem [8], [9], [10], and research has been conducted on
more detailed analysis of the key computational kernels [11]

or representative workloads [12]. Unfortunately, most of the
performance analysis so far [13], [14], [15], [16], [17] has
been focused solely on the run time, and not much insight
has been provided on how different networks, algorithms, or
frameworks utilize the different hardware capabilities, such as
compute capability for different data precisions and memory
bandwidth on various cache levels.

Fig. 1: Run time of a 2D convolution kernel with 256 filters
in half-precision on a V100 GPU. Although TensorFlow v2’s
performance suffers in the backward pass, such run time
plots provide not much insight into how different frameworks
exercise different architectural bottlenecks.

As an example, Fig. 1 shows the run time for a 2D con-
volution kernel implemented in three different deep learning
frameworks, PyTorch, TensorFlow v1 and TensorFlow v2, in
both forward and backward pass. TensorFlow v2 presents a
much longer run time in the backward pass due to a different
algorithm choice, however, this can not be seen in a run time
chart, nor be easily modeled by a traditional Roofline model.
The traditional Roofline [18] can provide valuable insights
into how different kernels exercise the different architectural
components and has been applied to deep learning analy-
sis [19], [20]. But given the algorithm change, even if the
computational throughput (FLOP/s) is higher on the Roofline,
it does not mean the ultimate run time is better for certain
algorithms.

In this paper, we extend the traditional Roofline model
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Fig. 2: Expanding the Roofline model to incorporate time and complexity. (a) Traditional Roofline, (b) Computational-Bandwidth
Complexity, (c) Compute and Bandwidth Time, (d) 4D Complexity-Time Roofline. Note that all plots are in log-log scale.

to incorporate both computational/bandwidth complexity and
run time into the model, and provide a more comprehensive
and in-depth methodology for performance analysis of deep
learning applications. Throughout the rest of this paper, we
will leverage this methodology to analyze Conv2D and LSTM
kernels written in PyTorch, TensorFlow v1, and TensorFlow v2
as we vary precision and parameters.

II. METHODOLOGY

A. Roofline Model

The Roofline performance model is a visually-intuitive
performance analysis model used to analyze the performance
of applications and computational kernels. Previous studies
have shown that this model can provide valuable insights into
performance analysis on various architectures [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32].

Roofline is based on two components: 1) characterization
of a target architecture in terms of compute (GFLOP/s) and
bandwidth (GB/s) potential and 2) characterization of a kernel
in terms of “arithmetic intensity” (a data locality metric
expressed as FLOPs:Bytes) and computational throughput
(sustained GFLOP/s). By construction, the Roofline bound is
defined as the minimum of either peak performance or the
product of arithmetic intensity and peak bandwidth:

GFLOP/s ≤ min
{

Peak GFLOP/s
Peak GB/s× Arithmetic Intensity (1)

Fig. 2(a) shows an example of the Roofline model for
a nondescript architecture. In this particular case, we in-
corporate GPU kernel launch overhead into the traditional
Roofline model through an additional ceiling (another term
in Roofline’s min function). This resultant ceiling, defined
as total GFLOPs / total overhead, is well above the peak
of the machine and thus does not constrain performance.
Had overhead been higher (more kernels) or total GFLOPs
lower (smaller kernels), peak performance would have been
unattainable. As a result, one can see how the compute (red)
and bandwidth (blue) constrain performance and tessellate
the resultant 2D locality-performance plane into four regions:
bandwidth bound, compute-bound, poor performance, and

unattainable performance (above the Roofline). By scattering
two kernels (blue square and red circle) into the resultant
space, one can analyze their data locality and performance
with the red kernel showing markedly superior data locality
and performance (albeit less than machine peak). Given the
superior performance of the red kernel, how could the blue
kernel ever have a lower run time?

B. Computational and Bandwidth Complexity

A common Roofline misconception is that kernels with
superior data locality or FLOP rates perform better. Such ker-
nels may utilize the underlying architecture more efficiently,
but Roofline hides whether they require the same number of
FLOPs to complete (4× more work at 2× the rate).

Traditionally, computational complexity (Big O notation)
has been used to analyze different algorithms by counting
the number of operations. In the case of CNNs, one can
choose from several competing algorithms to perform the
convolution: GEMMs, FFTs, and Winograd convolutions.
Each of these methods has a very different computational
complexity. Unfortunately, as Roofline has shown, counting
only FLOPs is insufficient in analyzing performance. To that
end, we augment computational complexity with bandwidth
complexity. A measure of how much data movement (Bytes)
is required to execute an algorithm.

Fig. 2(b) shows that we may create a new model for
algorithm complexity. The axes are defined as the computa-
tional and bandwidth complexity of an algorithm. Isocurves
of constant arithmetic intensity are diagonals through the re-
sultant plane with machine balance denoting the architecture-
specific arithmetic intensity where compute begins to dominate
data movement. We can similarly define a box (complexity
less than the product of peak performance and total over-
head) wherein GPU kernel launch overhead dominates data
movement and compute. As in Roofline, we may calculate
kernel computational and bandwidth complexity and scatter
plot performance in the 2D complexity plane. Kernels near
the origin perform little work while kernels far from the origin
have high complexity.



Generally speaking, as one changes algorithm, parameter, or
deep learning framework, one can observe how computational
and bandwidth complexity evolve (the trendline/trajectory of
an application in the plane). For example, in Fig. 2(b), we
observe both the red and blue kernels are moderately complex
with the red kernel having higher computational complexity
but lower bandwidth complexity thereby moving it into the
compute-bound regime.

Note, the overhead bound region can grow if an algorithm
requires more GPU kernel launches or if an alternate archi-
tecture has higher overhead. Similarly, increasing peak perfor-
mance with the use of tensor cores shifts the machine balance
diagonal (transition from bandwidth to compute-bound) to a
higher arithmetic intensity.

C. Compute and Bandwidth Time
Although orthogonalizing complexity into computational

and bandwidth allows users to rapidly and visually analyze
the cost of algorithms relative to machine capabilities, it hides
perhaps the most important facet: run time. The key insight of
this paper is that we can remap the computational-bandwidth
complexity coordinate system into a 2D time coordinate sys-
tem: compute time and bandwidth time. In essence, if a kernel
is compute-bound in the complexity plane, then we define
its compute time as the kernel’s run time and its bandwidth
time as its run time scaled down by the ratio of arithmetic
intensity to machine balance (2), (3). Conversely, if the kernel
is memory-bound, we define its bandwidth time as run time
and its compute time as its run time scaled down by the ratio of
machine balance to arithmetic intensity. Implicitly, we assume
that the smaller time can be perfectly overlapped with the
larger time (i.e. compute time can overlap with bandwidth
time).

Compute Time=min(
Computational Complexity

Peak Performance ,
Bandwidth Complexity·AI

Peak Performance ) (2)

Bandwidth Time=min(
Bandwidth Complexity

Peak Bandwidth ,
Computational Complexity

AI·Peak Bandwidth ) (3)

Fig. 2(c) shows that we can create a compute-bandwidth
time model with axes of compute and bandwidth time. Kernels
are scattered into the resultant 2D plane. As before, kernels are
overhead-bound if both coordinates are less than the total time
spent in GPU kernel launches, bandwidth-bound if bandwidth
time exceeds compute time, and compute-bound otherwise.
Total run time can be visualized as isocurves in the 2D time
domain. Thus, if bandwidth-bound, run time increases only if
bandwidth time increases, while if compute-bound, run time
increases only if compute-time increases. Kernels nearer the
origin have shorter run times while kernels further from the
origin have longer run times.

Whereas the traditional Roofline in Fig. 2(a) can only show
that the red kernel attained higher performance, the time
Roofline in Fig. 2(c) clearly explains why the red kernel is
slower — its run time is determined by its compute time which
is greater than the blue kernel’s run time (memory time). This
is instantly visualized as it is above the temporal isocurve.

Ultimately, we can combine complexity and time into a
single 4-dimensional figure. Fig. 2(d) shows that rather than

trying to plot a 4D tesseract on a 2D piece of paper, for each
kernel, we plot the first two coordinates (computational and
bandwidth complexity) using a closed symbol on the primary
axes and the second two coordinates (compute and memory
time) using an open symbol on the secondary axes (each kernel
has two symbols). By scaling compute and bandwidth time by
peak GFLOP/s and peak GB/s, we can immediately assess data
locality (arithmetic intensity), algorithmic efficiency (complex-
ity), and run time (compute/bandwidth time). Moreover, the
proximity of the open (actual run time) symbol to the closed
(complexity) symbol allows us to assess performance (distance
from the Roofline). A kernel whose symbols are widely
separated dramatically underperforms its Roofline bound. A
kernel whose symbols are close attains near peak Roofline
performance.

III. EXPERIMENTAL SETUP

A. Hardware and Software Configuration

Results presented in this paper are obtained from the
Cori supercomputer and in particular its GPU partition, at
the National Energy Research Scientific Computing Center
(NERSC), Lawrence Berkeley National Laboratory (LBNL).
The GPU partition is primarily deployed for GPU porting,
benchmarking, and testing efforts in the NERSC Exascale
Science Application Program (NESAP). Each node contains
two Intel Xeon Gold 6148 Skylake CPUs, 384 GiB DDR4
memory, and 8 NVIDIA V100 GPUs. Each GPU has 16 GiB
of HBM2 memory and 80 SMs, and GPUs on a node are
connected in a ‘hybrid cube-mesh’ topology.

On the software side, we have used CUDA 10.2.89, cuDNN
7.6.5, Nsight Compute 2019.5.0, Python 3.7, PyTorch GPU
1.5.0, TensorFlow GPU 1.15.0 (TF1), and TensorFlow GPU
2.2.0 (TF2), for the study in this paper.

B. Roofline Data Collection

To measure the kernel launch overhead, we have created a
micro-benchmark (see [33]) and tested with a wide range of
launch parameters, and the average latency we have obtained
is 4.2 microseconds on V100s.

For the machine characterization, we have used the Empiri-
cal Roofline Toolkit (ERT) [34] to collect a set of characteris-
tics empirically, such as the HBM bandwidth (828.8 GB/s),
single-precision peak (15.16 TFLOP/s), and half-precision
peak (29.18 TFLOP/s). The V100 clock rate, 1.312 GHz,
can be collected by using the NVIDIAs System Management
Interface (nvidia-smi) with the command nvidia-smi
dmon. Thus the Tensor Core peak used in this paper is
calculated based on the theoretical hardware limits, i.e. 80 ×
8 × 1.312 × 43 × 2 = 107.479 TFLOP/s. ERT was recently
updated with more precision and architecture support, and
the implementation details are discussed in [35]. Note that
the machine balance diagonal presented in this paper is the
Tensor Core peak performance divided by the HBM bandwidth
(107479 / 828.8 = 129.68).

For application performance data, we utilize a methodology
proposed in [36] based on Nsight Compute 2020 metrics.



A set of metrics are collected to measure the kernel run time,
computational complexity, and bandwidth complexity (please
refer to [35], [24] for more details). Throughout this paper,
computational complexities are treated equally thus precision-
agnostic.

C. 2D Convolution

In CNN models, the 2D Convolution (or Conv2D) layer
are usually the most compute-intensive components in deep
learning applications [37]. In a forward pass, it performs a
convolution of an input tensor and a convolution kernel (or
filter), and generates a new tensor as the output. For an input
tensor A of shape N ×H ×W ×C (where N is the number
of samples in the batch, H and W are the height and width,
and C is the number of channels), and a convolution kernel
K of shape KH , KW , C, C ′, the output tensor B is of shape
N×H ′×W ′×C ′ with H ′ = H−KH+1, W ′ =W−KW+1,
and the convolution is defined as

Bnhwc =

C−1∑
m=0

K−H−1∑
Kh=0

KW−1∑
Kw=0

Anh+Khw+whmKkhkwmc (4)

After the convolution, there is usually an offset value added
to each element, called the “bias”, and a non-linear activation
function such as ReLU [38] is applied, but this is usually
light on computation. In the backward pass, the gradients
are computed with respect to all trainable variables, and it is
usually more computationally intensive than the forward pass.

In this study, we will focus on the performance character-
istics of a typical Conv2D kernel in one of the most widely
used networks for image analysis, ResNet50 [7]. Both single-
precision and half-precision data will be evaluated as they
are the most relevant data types in deep learning. To make
a fair comparison among different frameworks, we initialize
the convolution kernel beforehand and focus only on the com-
putation loop itself. As a result, filling input data with random
number generators or kernel initialization is not included in the
measurement. To achieve this, the profile-from-start
option is disabled in Nsight Compute and CuPy [39] is
used to explicitly restrict the profiling region to include the
computation loop only. Also, we set up a warm-up loop
with 5 iterations before the computation loop to get rid of
unoptimized auto-tuning kernels in TensorFlow. The profiling
results include on average over 20 iterations of the computa-
tion kernel.

D. LSTM (Long Short-Term Memory neural networks)

LSTMs are in the family of recurrent neural networks
(RNNs) and usually used for speech and language processing
as well as time-series sequential data. For sequential data in
general, recurrent models have the capabilities to maintain
hidden state ht−1 representing features in the previous time
steps. Hence, the prediction at the current step ot should take

account of both the current input xt and the hidden state
feature from the previous time step ht−1.

ft = σ(Wf [ht−1, xt] + bf )

it = σ(Wi[ht−1, xt] + bi)

Ĉt = tanh(WC [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ Ĉt

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(5)

The main advantage of LSTMs over basic RNNs is their
capability to learn long-term dependencies during training,
which helps to overcome the vanishing gradient problem.
Besides the hidden state feature ht being passed through the
network in basic RNNs, LSTMs introduce an additional data
flow Ct carrying the information which combines the current
input xt and hidden feature from past steps ht−1. The gates
related to this data flow are used to control the information
being sent to the next time-step. Ideally, the carry data flow
modulates the next output ot and the next state ht, and it
allows for

Compared to Conv2D kernels which can be fully paral-
lelized, operations in an LSTM cell have dependencies and
part of them will only be executed sequentially. For example,
the computation of gates, i.e., ft, it, Ĉt and ot, takes the
same input and can be performed in parallel without issues.
However, the computation of current cell state Ct depends
on gate values (5) thus has to be performed in serial. In
the end, the hidden state ht depends on the cell state so
theoretically there are at least three steps run sequentially to
calculate one LSTM cell. Except for computing Ct which is
similar to a common convolution operation, other operations
involved in this process are clearly less compute-intensive than
in a Conv2D kernel. Moreover, since LSTM cells at different
time steps have to be calculated sequentially as well, we can
conclude that it has less parallelism than Conv2D. Also, we
can expect that LSTM kernels have a low FLOP/s performance
and high data movement compared to Conv2D. Profiling set up
for LSTM is the same as Conv2D where we evaluate single-
precision and half-precision data respectively and focus on
the pure computation loop without kernel or data initialization
included.

IV. RESULTS

In this section, we will examine the effects of different
input parameters on the performance of Conv2D and LSTM
kernels using our time-based Roofline methodology. We have
implemented these kernels in three different frameworks, Py-
Torch, TF1, and TF2, and trendlines or trajectory lines will be
presented for results from the same framework and precision
format (FP32 or FP16). Solid lines connect solid symbols to
represent computational and bandwidth complexity and dashed
lines connect open symbols to show run time (see description
in Sec. II-B and II-C). Note that for each algorithm, the
overall overhead is calculated as the average overhead (4.2
ms) multiplies with the total number of invocations involved
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Fig. 3: Performance effects by varying the batch size in a Conv2D kernel. The two TensorFlow frameworks tend to use the
same underlying algorithms and deliver very similar run time performance. PyTorch presents the same bandwidth complexity
in half and single precisions, suggesting the use of an implicit type conversion mechanism.

in the algorithm. While a range of model parameters will be
examined, only one will vary at a time. Due to a large number
of results, only a select set is presented in this section. For
more complete results, please see [40].

A. 2D Convolution

The four parameters we study for the Conv2D kernel are
the batch size, number of filters, kernel size, and stride size.
Unless otherwise stated, the default batch size is 16, stride size
is 2, input tensor shape is 112× 112× 64, and the kernel size
is 3× 3× 64×C ′, where C ′ is the number of filters defined
in (4), C ′ = 64 by default.

1) Batch Size: Fig. 3 shows the time-based Roofline charts
when varying the batch size from 16, 32 to 64. In the
forward pass, Fig. 3(a) and 3(b) specifically, the arithmetic
intensity (AI) is preserved for each framework, PyTorch,
TF1, or TF2, and that suggests that the same underlying
algorithm is used regardless of the batch size. The TF1
and TF2 results are highly correlated since their trendlines
are always identical, with slight shifting. This shifting is
caused by an extra FillPhiloxRandomKernelLaunch
call invoked in TF1 but not in TF2, and as a result, TF2
performs slightly better than TF1 in both run time and compute
throughput. PyTorch, however, presents a different pattern. In
theory, when switching from FP16 to FP32, a 2× increase
in data movement is expected - TF1 and TF2 show a 3×
increase, but the bandwidth complexity for PyTorch stays
almost constant, indicating that there is possibly an auto type-
conversion mechanism taking place to convert the data to
lower precisions implicitly in order to improve the overall
efficiency.

In the backward pass, the kernel performance is not as uni-
form as in the forward pass. One obvious difference between
different frameworks is the number of kernel invocations and
this can be seen by the sizes of the overhead boxes in Fig. 3(c).

TF2 (green) has significantly higher net launch overhead than
TF1 (red), while PyTorch (blue) is in the middle. The differ-
ence between TF1 and TF2 could be caused by the extensive
use of Eigen [41] functions in TF2 which has contributed to the
overall launch overhead. In terms of kernel run time, PyTorch
outperforms TF1 and TF2 as it has fewer zero-AI kernels used
for data padding, shuffling, and rearranging, than in TF1 and
TF2. Out of the three frameworks, TF1 is the only one that
does not use Tensor Core operations at smaller batch sizes,
resulting in lower arithmetic intensity; however, its auto-tuning
mechanism does direct to Tensor Core implementations as the
batch size increases.

2) Number of Output Channels: In the forward pass, TF1
and TF2 deliver a very similar performance since both of their
trendlines are highly coherent (Fig. 4). Besides, compared to
relatively constant FLOP/s performance and AIs showed in
Fig. 3(b), we can find that a larger number of output channels
will result in a higher FLOP rate and higher arithmetic
intensity for both TF1 and TF2. It’s simply because the kernel
is much smaller than the input tensor so compared to the
increase of memory space to store more channels, the increase
of FLOP counts brought by extra channels is tremendously
more significant. However, the same conclusion cannot be
applied to describe single-precision PyTorch behavior since
the performance rarely changed. The bandwidth complexity is
proportional to its computational complexity. In half-precision,
all three frameworks have very similar trendlines and TF2
outperforms the other two due to less data movement. We find
that three frameworks use the same 2D convolution kernel but
PyTorch invokes an extra nchwToNhwcKernel function to
perform data transpose.

The backward pass performance is highly diverse based
on the number of filters, the precision, and the framework
(see Fig. 5). In general, TF1 has the lowest computational
complexity among the three frameworks and is the least
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PyTorch kernel remains constant.
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Fig. 5: The backward pass of an FP16 Conv2D kernel as the
number of filters varies. Algorithmic choices are in constant
change.

concerned by the kernel launch latency. In half-precision, we
can conclude that the choice of algorithms across all three
frameworks seems very sensitive to the number of output
channels since they never reuse the same set of kernels for
a different parameter in this case. In the end, with 512 filters,
kernels in all three frameworks are transferred from memory-
bound to compute-bound. TF2 delivers the highest FLOP/s
performance and arithmetic intensity and also requires the
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Fig. 6: The classic Roofline plot highlights FLOP/s perfor-
mance that cannot be reflected by the time-based Roofline.
PyTorch single-precision FLOP/s performance remains con-
stant implying it’s saturating certain hardware resources.
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Fig. 7: Performance effects by varying the stride size in a FP16
Conv2D forward pass.

longest run time.
3) Kernel Size: Similar to varying the number of output

filters, the increase of kernel size should also augment com-
putation complexity for the same amount of data transfer
so it will result in a higher arithmetic intensity and higher
FLOP/s performance. Also, constant data movement across
different kernel sizes can be expected since the kernel is
usually much smaller than the input tensor. Profiling results
approve the above statement except that PyTorch delivers a
constant FLOP/s performance in single-precision (see Fig. 6).
This indicates that the algorithm has saturated certain hardware
resources thus no matter how kernel size increases, the perfor-
mance will not increase anymore. To improve this situation,
the possibility of using an alternative convolution algorithm
should be investigated.



4) Stride Size: Increasing stride size signifies a lower
computational complexity for the same bandwidth complexity
since more input data is masked out during the computation.
Profiling results (see Fig. 7) are coherent with expectation
since bandwidth complexities are relatively constant compared
to computational complexities. Besides, it should be noted
that lower computational complexity doesn’t necessarily mean
fewer invocations so the kernel becomes more overhead-bound
when the stride size increases.
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Fig. 8: Sudden performance drop is often related to poor
algorithmic choices. TF2 delivers a significantly lower per-
formance when stride_size=3 because it uses single-
precision algorithm for half-precision data.

In half-precision with stride size equaling to 1, PyTorch
and TF2 codes are compute-bound while TF1 is memory-
bound. Furthermore, PyTorch and TF2 both have a FLOP/s
performance higher than TF1 (Fig. 8). Also, we can find that
TF1 performance drops largely with larger stride sizes. The
reason is that TF1 tends to use a non-Tensor Core algorithm,
wgrad_alg0_engine, for stride size equals to 2 and 3,
which delivers a peak performance of only 5 TFLOPs per
second. The same as the forward pass, TF2 drops performance
with stride size equals to 3 because of the use of single-
precision algorithms for half-precision data.

B. LSTM

As eluded to in Section III-D, LSTM is computationally
different from convolutional kernels since it is not dominated
by compute-intensive GEMM operations. In this section, we
will vary four parameters in the LSTM kernel and discuss how
they impact performance. The four parameters are batch size,
sequence length, number of features, and hidden feature size,
with default values as 16, 16, 32, and 16 respectively.

1) Batch Size: Fig. 9 shows the time-based Roofline of
LSTM when running with four different batch sizes, 16, 32, 64
and 128. The result is very different from convolution kernels
and the computation is always overhead-bound regardless of
the batch size and forward/backward pass. It is clear that a
larger batch size will bring more FLOPs and data movement
to perform thus brings a visible increase in computational
complexity. However, since the kernel is overhead-bound in
nature, trivial improvements on AIs or FLOP/s performance
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Fig. 9: Performance effects of batch size in half-precision
LSTM backward pass. The kernel is always overhead-bounded
and run time remains the same no matter how we vary the
batch size.

will not affect kernel run time. The run time is only a function
of launch latency and the number of kernels invoked in the
computation. In theory, the kernel should perform at least
1.06e14 × 4.2e−6 = 0.4452 GFLOPs which is about 3000
samples in one batch (batch size = 3000) in the current
forward pass test to be not bounded by the kernel launch
latency.

We noticed that TF1 and TF2 invoke significantly more
kernels than PyTorch since their overhead boxes are larger
than that of PyTorch (Fig. 9). Detailed profiling shows that
in the forward pass with default parameters, there are 36
invocations in the PyTorch forward pass where 16 of them are
single precision GEMM operations, gemmSN_TN_kernel.
We also find that this GEMM kernel is always invoked
along with LSTM_elementWise_fp thus this function pair
represents 32 invocations in total. In theory, 16 convolutions
are required to compute 16 time steps but PyTorch invokes
another two half-precision S884 GEMM kernels on top of the
16 single-precision convolutions. In the end, there are only
two zero-AI kernels for pure data movement purposes. For the
same test case, TF1 and TF2 have 277 and 243 invocations
respectively. Note that Eigen functions are observed to be
widely used in these two frameworks and the drawback is
that Eigen tends to invoke a large number of memory-intensive
EigenMetaKernel with very low FLOP/s performance (0
∼ 1 GFLOPs/s). As for the convolution kernel in TF1 and TF2,
we can find that TF1 is always using the Tensor Core S884
GEMM algorithm and TF2 employs gemmSN_NN_kernel
which is similar to PyTorch but with 2× more invocations.
In terms of FLOP/s performance, TF2 has similar trend-
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Fig. 10: Performance effects of sequence length in LSTM.
Long sequence length implies repeating the same computation
for more times. Kernel AI remains constant and run time is
proportional to sequence length.

lines to PyTorch other than TF1. In conclusion, PyTorch
could be further optimized by applying a more proper half-
precision GEMM kernel. Though TF1 has a better choice
of the GEMM algorithm, it loses its efficiency by invoking
too many housekeeping kernels. TF2 doesn’t use the proper
half-precision GEMM algorithms and it performs redundant
GEMM operations as well. However, it invokes less memory-
intensive kernels than TF1 thus TF1 and TF2 finally attain the
same run time.

Similar conclusions in this section can be applied to chang-
ing the number of features and hidden size as well. In all three
cases, kernel invocations are pretty constant within the same
framework no matter how the parameter varies and PyTorch
is always the most efficient framework due to the least kernel
invocations.

2) Sequence Length: Among four parameters we tested
for an LSTM kernel, changing sequence length is the only
case where run time and kernel invocations will vary along
with the parameter value. Equation (5) shows the computation
to perform for each time step and increasing the sequence
length indicates how many times this process will be repeated
in a sequence. The sequence cannot be parallelized thus
kernel invocations should be proportional to the sequence
length. Fig. 10 confirms this suspicion. It shows the time-
based Roofline with four sequence lengths: 16, 32, 64, and
128. Besides, it can be found that all solid symbols and
their corresponding open symbols are lying on the same AI
diagonals meaning the algorithmic choice is constant. As a
result, we will find the FLOP/s performance will remain the
same when varying the sequence length. PyTorch outperforms

the other two as it moves less data, performs fewer FLOPs,
and requires fewer kernel invocations.

V. CONCLUSION

In this paper, we proposed a new time-based Roofline
model as an extension to the traditional Roofline, to model
both computational/bandwidth complexity and run time. This
new model helps users understand important performance
characteristics such as algorithm changes and high kernel
launch overhead that are pertinent to deep learning applications
and could not be modeled by the traditional Roofline.

We have applied this new methodology to two representative
deep learning kernels, 2D convolution (from CNN) and LSTM
(from RNN), to demonstrate the use of this model and its ef-
fectiveness. Three common frameworks, PyTorch, TensorFlow
v1, and TensorFlow v2, are compared. Results show that the
use of the Tensor Core pipeline and cuDNN functions are
critical to achieving optimal performance on NVIDIA V100
GPUs. 2D convolutions are compute-intensive and benefit well
from the Tensor Core utilization. LSTM is computationally
distinct from 2D convolution and kernel performance is highly
bounded by its launch overhead. In both test cases, PyTorch
outperforms the other two frameworks in terms of run time as
it moves less data, performs fewer FLOPs and requires fewer
kernel invocations.

Ultimately, we show that the new time-based Roofline
model can provide a more systematic way of understanding
deep learning application performance and comparing different
implementations that may have similar FLOP/s performance
and arithmetic intensity but are completely different in com-
putational and bandwidth complexity. By applying it into the
design and development of new deep learning architectures or
frameworks, architects and engineers can rely on one single
model to identify the performance issue without going through
a large collection of different performance metrics. Finally
yet importantly, it is a generic methodology for performance
analysis thus can be perfectly applied on non deep learning
use cases as well.
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