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Abstract
The CORBA layer in a distributed system hides the

heterogeneity of the underlying computer network. The
interactions of objects located at different computing
systems are described in terms of IDL specifications and
the ORB takes care of the actual transfer of messages
along the wire. In fact, an object interaction is translated
into the transfer of GIOP messages over TCP/IP networks
(IIOP). The advantages in terms of interoperability and
portability are obvious. Currently, OMG is in the process
of standardising the Open Communication Interface
(OCI). Through OCI, a protocol module can be plugged
into any ORB and hence, the distributed application
including the ORB can be put on top of any network
without changing the application’s code, thus
implementing network transparency. Obviously, the QoS
of distributed applications depends on the QoS of the
underlying network protocols, e.g., best effort versus
guaranteed bandwidth. Through OCI we are able to use
the network protocol that is needed to satisfy the QoS
requirements of a specific distributed application. In this
paper, we propose to extend CORBA with specialised
protocols for QoS provisioning using OCI. We have
prototyped protocol plug-in’s, including a plug-in that
exploits IP Multicast. The IP Multicast plug-in can be
used in situations where one client communicates with a
group of replicated servers. In fact, we have used this
mechanism to implement replication transparency in
CORBA. We have shown that the OCI interface can be
used for QoS provisioning in CORBA. Based on our
hands-on experience, we also have identified some
shortcomings in the proposed OCI specification.

1 Introduction
We make two observations about CORBA. The first is

that the CORBA specification does not provide any
means to influence the Quality of Service (QoS) that is
provided. There is no interface defined to do this, or even
inquire about the offered QoS. What is offered is simply a
best effort QoS.  The second observation is that CORBA
does not exploit all features of the underlying network.
The OMG has only specified one protocol, called IIOP,
which uses TCP/IP as a transport protocol. ORB vendors
can support other protocols and network technologies, but
they are then delivered as proprietary extensions. These
extensions are not available in an interoperable manner,

although they could be very helpful to fulfil the QoS
requirements of an application.

To use different networks than TCP/IP the OMG is in
the process of standardising the Open Communication
Interface (OCI), as part of the CORBA/IN interworking
RFP [1]. The OCI is used in the CORBA/IN interworking
specification to use signalling protocols from Intelligent
Networks (IN) to convey CORBA method invocations.
However, the OCI has a much broader use than IN only.
The OCI specifies interfaces within an ORB that will
enable a developer to create his own protocol that can be
used with any ORB that complies to these interfaces. OCI
is primarily intended to enable the usage of CORBA with
all kinds of different (non-IP based) networks, like in the
CORBA/IN Interworking RFP where it is used to
transport GIOP requests over SS7.

This paper describes how OCI can be used to extend an
ORB with specialised protocols to support the
provisioning of QoS, while remaining interoperable. We
believe that distributed systems, such as CORBA based
systems, should take more advantage of the available
resources in a distributed system. We focus on the
network resources and demonstrate how an ORB
implementation can be extended with a specialised
transport protocol.

1.1 Structure
Section 2 introduces QoS, and describes how QoS

provisioning can be included in a CORBA environment.
Section 3 explains how the OCI specification works, and
how the OCI ensures interoperability between different
ORBs. Section 4 describes and evaluates our prototype
implementation. Section 5 evaluates OCI and describes
related work. Section 6 ends the paper with conclusions
and future work.

2 QoS provisioning in CORBA
For a CORBA application object with QoS

requirements the CORBA specification does not provide
an interface to indicate these requirements to the ORB
and the ORB cannot inform application objects whether
the QoS requirements are met. This section describes an
architecture for incorporating QoS provisioning in
CORBA systems.



2.1 QoS provisioning
Provisioning of QoS usually involves a common

understanding between two or more parties about the
quality characteristics of the service. These parties can be
end-users, but they can just as well be software
components. This section describes the generic concepts
that are used throughout this paper to describe QoS
provisioning. These concepts are based on the ISO/IEC
QoS Framework [2,3].

The ISO/IEC QoS provisioning model defines two
roles for entities in a distributed system. These two basic
roles are Service Provider and Service User. The Service
Provider has a number of QoS characteristics, such as
availability and response time of the service. The Service
User has a number of User Requirements, some of which
may be related to the QoS expected from the Service
Provider. However, User Requirements do not have to be
expressed in terms of the QoS characteristics of the
Service Provider. For example, a user requirement could
be “ the service should always be accessible” . Often the
User Requirements are expressed as subjective
requirements, whereas the Service Provider needs
objective requirements in order to handle them [4]. The
user requirements must therefore be translated into one or
more QoS Parameters that are expressed in terms of the
QoS characteristics of the Service Provider. The QoS
provisioning model, as depicted in Figure 1, should
enable entities to express their quality requirements.

The relevant QoS concepts used in this paper are
defined as follows:

QoS characteristic: A quantifiable aspect of QoS,
which is defined independently
of the means by which it is
represented or controlled.
Examples are: delay,
throughput, availability and
integrity.

QoS requirement: QoS information that expresses
part or all of a requirement to
manage one or more QoS
characteristics, e.g. a maximum
value, a target, or a threshold;
when conveyed between service
user and service provider, a QoS
requirement is expressed in
terms of QoS parameters.

The QoS characteristics of the Service Provider are
determined by the QoS management functions that the
Service Provider has. On the other hand, the QoS
management functions effect the QoS characteristics. The
relations between these QoS concepts inside the Service
Provider are depicted in Figure 2.
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QoS actions

Figure 2: QoS provisioning inside the Service
Provider

QoS management
function

A function specifically
designed with the objective to
meet QoS requirements

QoS mechanism A specific mechanism that
may use QoS parameters or QoS
context, possibly in conjunction
with other QoS mechanisms, in
order to support establishment,
monitoring, maintenance,
control, or enquiry of QoS.

2.2 ORB structure
The generic QoS provisioning model can be applied to

the architecture of an ORB. The architectural pattern used
for ORB based systems is a layered pattern, with
application objects on the top layer, the OS and network
layer at the bottom and the ORB in the middle. Figure 3
shows the architectural layers of an ORB based system.

The application objects are faced with a number of
interfaces to the ORB, such as the Client IDL stubs, the
ORB interface, the skeletons and the object adapter.
These ORB components are held together by the ORB
core.

User Requirements

Service User

QoS
characteristics

Service Provider

QoS Requirements
conveyed as QoS Parameters
associated to QoS characteristics.

Figure 1: Gener ic QoS provisioning model



The ORB core deals with the Operating System (OS)
and the network environment.

In most current CORBA implementations the
architectural distinction between the components can not
be found in the implementation code. For example, the
code that deals with ORB specific tasks is often
intertwined with the code that deals with the network.

The boundaries between these ORB components can
be seen as boundaries between Service Users and Service
Providers. In the case of QoS provisioning, they can be
used as potential boundaries between users and providers
of QoS. Candidate QoS Providers can be: the ORB core,
the (Portable) Object Adapter, a CORBA implementation
object (servant), the network, the OS, the stub and the
skeleton.

Based on these observations, we introduce the notion
of QoS in CORBA systems.

2.3 QoS in CORBA
The next step is to devise a QoS architecture for

CORBA systems. This includes the definition of QoS
specific extensions for the current CORBA specification,
in order to introduce QoS-awareness for CORBA based
applications.

These extensions could best be positioned as a QoS
provisioning facility, that could be used by the CORBA
application objects to establish their required QoS. The
main concern of the facility is to know the available
mechanisms in the ORB and in the network that are
suitable for controlling the QoS. Based on this
knowledge, the QoS provisioning facility can configure
the ORB and the network according to the QoS
requirements of the application objects.

The detailed functionality of the QoS provisioning
facility is for further study and outside the scope of this
paper. To add QoS provisioning to CORBA systems it is
necessary that the ORB has a number of QoS mechanisms
available, which allow the QoS provisioning facility to
control the QoS provisioning capabilities of the ORB.

The QoS experienced by CORBA  application objects
is determined by several factors such as for example the
scheduling of the Operating System (OS) and the de-
multiplexing of object invocations by the ORB [5]. Some
QoS characteristics are directly related to the QoS
characteristics of the network. In this paper we focus on
how an ORB can exploit network specific features. Figure
4 depicts an ORB which provides mechanisms for high-
availability and real-time that use group communication
and bandwidth reservation features of the underlying
network.

3 The Open Communicati on Inter face
Ongoing work in the OMG proposes the Open

Communications Interface (OCI). The OCI is part of the
submission to the CORBA/IN Interworking RFP [1]. This
section explains the rationale behind the OCI and
describes the impact on current ORB implementations.

3.1 Adding dedicated protocol s
The main purpose of an ORB is the transportation of

(remote) object invocations between client and server
objects. The structure and content of the invocation
messages is defined in the Generic Inter ORB Protocol
(GIOP) specification [6]. CORBA 2.x compliant ORBs
have to implement IIOP, which maps GIOP requests to
TCP/IP.

The current state-of-practice is that ORBs are provided
as binary components, with no API for managing the
transport protocol that is used. Most ORBs make direct
use of the TCP/IP interface and hide all transport network
details from the application objects. This makes it almost
impossible to take advantage of network features that may
be useful for an application.

An open interface that allows protocols to be added to
the ORB would be very beneficial. This becomes even
more apparent when the QoS parameters of the transport
network enable the ORB to meet the QoS requirements of
the applications objects.
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The next section describes how the OCI meets the need
for adding protocols to an ORB implementation.

3.2 OCI specification
Despite the fact that most ORBs are provided as a

black box, some layering can be distinguished. Each ORB
requires a layer that is responsible for exchanging
messages, since object invocations require request and
reply messages to be exchanged. GIOP is an example of a
specification for the messaging layer.  For transporting
these messages a transport layer can be identified, such as
TCP/IP.

The main purpose of the OCI initiative is create more
openness for CORBA by defining standard interfaces,
specified in IDL, for the messaging and transportation
layers. The Remote Operation Interface (ROI) resides
between the ORB Core and the messaging layer. The
Message Transport Interface (MTI) resides between the
messaging and transport layers. The OCI layers and the
two interface sets are depicted in Figure 5.

                      ORB Core

Transport Layer

   The OCI
     Levels

MTI

ROI

Messaging Layer

Registration in
the ORB core

Figure 5: Communication layers of an ORB
A major benefit of the OCI is that new messaging

and/or transport layers can be added to any ORB
implementation because the OCI ensures that the layer is
portable between ORB implementations. This leads to the
concept of pluggable protocols. An implementation of the
ROI or the MTI is called a protocol plugin.

The OCI is specified in terms of locality constrained
IDL and a protocol plugin is the implementation of this
IDL. The IDL is locality constrained, i.e. no remote
interactions on these interfaces are allowed, because
protocol plugins are local to the ORB Core. Currently,
only detailed IDL specifications of the MTI are available
and their definition is based on the Connector/Acceptor
pattern [7],[8]. In the following sections we discuss the
classes as defined for the MTI.

3.2.1 Client side classes

The following classes bear a responsibility at the client
side of a transport plugin. They deal with establishing
transport connections to servers and transporting request
data.

The Connector class is responsible for establishing a
transport channel between a client and server. This
channel should behave as a full duplex communication
channel. A Connector object creates a communication
port and sends a connect request to the server through this
port. After connection establishment, the connector object
creates a Transport object and offers the reference of this
object to the messaging layer.

The Connector Factory class is responsible for creating
Connectors. A client may create a connector object
whenever a connection to server is needed. A Connector
Factory object manages all outgoing connections of a
client by controlling the lifecycle of Connector objects.

3.2.2 Server  side classes

The following classes bear a responsibility at the server
side of a transport plugin. They deal with accepting
transport connections from clients and transporting reply
data.

The Acceptor class is responsible for accepting
connections. An Acceptor object creates a communication
port and waits for connection requests. After receiving a
valid request the Acceptor creates a Transport object and
offers the reference of this object to the messaging layer.

The Transport class is responsible for transporting
messages received from the messaging layer.
Fragmentation and re-assembly is a task of the Transport
class. A Transport object is deleted when the underlying
transport protocol closes the associated connection or
when the messaging layer instructs it to close a
connection.

3.2.3 Registration classes

The hooks for plugging in a transport layer are formed
by two registry objects: the Connector Factory Registry
and Acceptor Registry. A transport layer is registered by
adding a Connector Factory object and an Acceptor object
to the appropriate registries.

The registry for Connector Factory objects is available
from the ORB core and the registry for acceptors is
available from the Object Adapter. Incorporating these
hooks into CORBA specification requires a revision of
the standard.

3.2.4 Helper  classes

The Buffer class is a helper class, which is used by the
Transport class to manipulate transport data. A Buffer
object holds data in an array of octets with a position
counter. The position counter determines how many
octets have already been sent or received. A buffer object
can be used to provide an interface to a zero-copy buffer.

3.2.5 OCI interactions



Two phases of the OCI are relevant for explaining the
lifecycle and interactions of the OCI objects. This first
phase is the connection establishment phase. During this
phase a transport connection is established, which is used
during the second phase to transport messages. Figure 6
shows the interactions between the messaging layer (that
uses the GIOP protocol in our case) and the OCI objects
in a UML message sequence diagram. The ‘ listen’  and
‘connect’  messages in the diagram are implementation
specific and depend on the API of the underlying
transport network.

The main purpose of the connection establishment
phase is to create two associated Transports objects. The
Transport objects can then be used to exchange (GIOP)

messages. Figure 7 depicts the message sequence for a
request from a client to a server. Note that the
implementation of the Transport object can hide the
fragmenting of messages from the GIOP layer.

3.3 Interoperability compromised ?
One of the major goals of the OMG is to define

specifications for products that work together.
Interoperability between software components that were
developed for different hardware platforms and with
different implementation languages is mandatory for all
CORBA specifications.

IIOP is a key asset of the OMG to reach the
interoperability goal. A first glance at the OCI solution
may suggest that interoperability can easily be
compromised when an ORB is extended with dedicated
protocol plug-ins. This section explores how
interoperability can still be maintained with pluggable
protocols. We first describe how interoperability is
achieved with IIOP and then how this is done with MTI
compliant protocol plugins.

3.3.1 Interoperability with I IOP

CORBA 2.x compliant ORBs rely on IIOP for
interoperability between ORB implementations from
different vendors. Each ORB vendor implements an IIOP
engine, inside its product. Mutual understanding of the
messages generated by these IIOP engines is guaranteed
because the on-the-wire encoding, the sequences of valid
messages and the use of TCP/IP is specified in the
standard. Client and servants can be implemented on top
of these ORB implementations because a standardised
interface to the ORB is available. The IIOP reference
points are shown in Figure 8. The reference points are
both horizontally and vertically directed, this is an
important difference with the interoperability reference
points defined by the MTI.
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Transpor t Network GIOPLayer  
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accept
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Figure 6: OCI connection establishment
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3.3.2 Interoperability with MTI

When ORBs are equipped with the MTI, the
interoperability reference points are located at a different
position. Protocol plugins encapsulate the valid messages
and message sequences, so no agreement for the on-the-
wire encoding is needed. The trade-off for loosing the
network interoperability reference point is that the MTI
itself becomes a reference point. Figure 9 shows how
protocol plugins are positioned in a multi-ORB situation.
Plugins can be built by a third party and plugged into
various ORB implementations.

Changing the interoperability reference points allows
extension of the ORB with specialised protocols. With
these extensions the ORB can exploit specific features of
the network, such as specific QoS characteristics, without
compromising the interoperability of application objects.

The OCI provides a good means for extending ORB. If
the QoS management functions are able to choose from a
number of transport plug-ins, QoS provisioning becomes
more feasible in CORBA based systems. In terms of the
QoS provisioning model of Figure 2 a transport plug-in
can be seen as a QoS mechanism.

4 Prototypes
This section describes our prototypes and their design.

We have developed two protocol plugins that use the MTI
interface to validate the usefulness of OCI as a building
block for QoS provisioning. We first describe the design
of a transport layer using UDP/IP and then extend this
with the design of a transport layer based on the IP
Multicast protocol. Before describing the design issues
and patterns, we first describe the requirements of a
transport plugin from the GIOP layer and the implications
of multiple plugins for object references.

4.1 Transport layer  requirements
The GIOP layer imposes a number of requirements on

the transport layer. We summarise these requirements,
taken from the CORBA specification [6]:
• Connection oriented
• Reliable data transport
• Data is transported as a stream (i.e., no restriction on

the length of messages)
• Notification of connection loss

These requirements are very well met by the TCP/IP
protocol, but the use of the TCP protocol implies that
some of the QoS features of the ORB are fixed. For
example, TCP is a point-to-point protocol, which does not
exploit the inherent redundancy of network resources and
the failure of a TCP connection usually means the loss of
service from CORBA applications objects.

To use other protocols than TCP/IP for the
implementation of a transport plugin, connection
establishment, reliability and packet-to-stream conversion
must be taken into account. The use of these protocols for
an OCI-compliant transport plugin requires the design of
additional functionality on top of the services provided by
these protocols. For example, to have reliability with a
UDP based transport extra actions are needed, such as
acknowledgements and retransmission of data packets.

Moreover TCP/IP is a peer-to-peer transport protocol
whereas IP Multicast has a many-to-many group
dynamics i.e. a sender can send a message to a group of
recipients at once. This property of IP Multicast requires
more implementation to deal with group communication
among IP Multicast group members. The next three
sections describe the required extensions and
implementations for supporting other transport protocols.

4.2 Interoperable Object Refer ence
Extending an ORB with transport plugins means that a

CORBA object can potentially be reached through several
communication paths. To establish a communication path
from a client to a server object, the transport address of
the server must be known by the client. CORBA server
objects publish this transport address information as part
of the Interoperable Object Reference (IOR). An IOR is a
flexible data structure, which is generated at run-time by a
server object and read by the client application object.
The ORB at the client side is responsible for interpreting
the contents of an IOR and the details are hidden from the
CORBA application developer. Figure 10 shows how an
IOR is structured.

The TypeID indicates the type of an object. The value
of a TypeId is derived from the interface definition (IDL)
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Figure 9: Reference points for  protocol plugins
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of an object. The sequence Header field contains the
length information of the rest of an IOR. Every IOR has
one or more Tagged Profiles and each Profile contains the
information for a specific protocol that can be used to
access the object. Since we are interested in supporting
other transport protocols than TCP/IP we focus on tagged
profiles and the information stored in them. Figure 11
shows the design of a tagged profile for UDPIOP and in
Figure 12 we show the design of a Tagged Profile for IP
Multicast communication.

The Tag is a constant value, which indicates the
protocol used in a Tagged Profile. OMG [6] has assigned
the Tag value 01 for the IIOP protocol. In our
experiments we picked an arbitrary number for each of
the plugins.  The rest of the Tagged Profile structure is
very similar. For the UDP profile we use the IP number
and a port number to identify a transport address. For the
IP multicast profile, we use a class D multicast address
and a port number. Both profiles include an object key,
which identifies a particular instance of an object. The
combination of TypeId, transport address and the object
key should uniquely identify an object.

4.3 Implementing MTI  with UDP/IP
UDP/IP is a connection less, thus does not meet the

requirements of the GIOP layer. Therefore we have
designed and implemented an additional protocol that
leverages the features of UDP to the expected level. We
denote our intermediate protocol as MTI-UDP protocol.

MTI-UDP can establish a connection by sending a
transport layer ConnectRequest message (to the remote
transport layer, which also contains MTI-UDP) and
request for a connection establishment. The remote
transport layer responses to this ConnectRequest with a
Connection Reply, indicating that it can accept a request.

MTI-UDP supports two other messages for reliability:
PacketLost and PacketRedelivery. Figure 13 shows a
format in which these messages can be embedded. These
messages are sent in a UDP Datagram packet therefore
host and port information is available in the header of
packets.

4.4 Implementing MTI  with IP Multicast
We have implemented and named another protocol as

MTI-IPM, which uses IP Multicast for transport. MTI-
IPM is a connection oriented, reliable, stream based
transport protocol. MTI-IPM is a one-to-many protocol.
GIOP can use MTI-IPM to multicast a request message
but in connection oriented, reliable and stream based
manner.  

Connection establishment and reliability issues are
solved with a similar approach to MTI-UDP protocol, by
sending out additional control messages using the IP
multicast service. However in this prototype we multicast
a message to a group of server object replicas. Therefore
the sender MTI-IPM will receive multiple replies. We
have implemented group abstraction in MTI-IPM to
accept multiple replies from server replicas but forward
one message to GIOP in client side. The initial version of
the prototype returns the first reply message generated by
a member server object replica to the client.

An important decision was to put the IP Multicast
group address in the IOR. This IP Multicast address is a
unique address for each group of replicas. It is generated
in all of the server objects of the group in the start up
phase, without requiring any run time agreement between
the members. The object key and object name are used to
generate a unique multicast address.

A server object replica can become a member of an IP
Multicast group by joining a group. Joining a group is
supported by the Java IP Multicast API through the Join
method.

4.5 Prototype evaluation
We have developed two transport plug-ins. We have

successfully plugged them into the ORB. We have
experienced that the standard messaging protocol (GIOP)
can smoothly interact with other protocols than TCP/IP if
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these protocol are leveraged to be connection oriented,
reliable, and stream oriented.

We are aware that the IP multicast plugin does not
support all the nice features of a flexible and dynamic
group communication protocol. Currently, the number of
replicas in a group is static and no support for
synchronisation between group members is implemented.
These features have not been added to the prototype,
because our focus was on evaluating the MTI as a means
for QoS provisioning in CORBA and not on
implementing a feature rich group communication
protocol.

5 Evaluation and related work

5.1 Evaluation of MTI
We have implemented two protocol plugins that

comply with the MTI interface of OCI. The
implementation activities have focused on developing a
transport plug-in that supports replication transparency
and encapsulates IP Multicast.

Unfortunately at this stage only one ORB
implementation, i.e. ORBacus [9], supports the MTI. It is
therefore not yet possible to test if another ORB
implementation can seamlessly integrate with our plugins.

From our prototyping efforts we have learned that the
OCI specification should be further detailed in order to
remove some ambiguities. An example of such an
ambiguity is the synchronisation between the messaging
layer (GIOP) and the transport layer with respect to the
Buffer object (see Section 3.2.4 for an explanation of the
Buffer object). Another ambiguity is the management of
the protocol plugins. When multiple transport protocols
are plugged in to an ORB, it is not defined which
transport protocol should be used. The choice for a
particular plugin is left to the ORB core and cannot be
influenced by the CORBA application objects.

Although the OCI specification contains some
ambiguities, our overall experiences with OCI are
positive. We think that the ability to plugin a protocol to
an ORB makes CORBA a more open and extendible
architecture. The OCI provides the necessary
functionality to add transport protocols to an ORB, but
could be extended in at least two ways. First, interfaces
for managing the configuration of messaging layers and
transport layers must be added. Second, a management
interface for adding plugins at run-time would prevent
plugin developers from recompiling the entire ORB. This
could even allow for dynamically downloading plug-ins.

5.2 Related work
In our IP multicast plugin we claim that group

communication can increase the availability of CORBA
objects by making them fault-tolerant. The current
implementation of the multicast plugin provides only

limited support for fault tolerance. More advanced group
communication mechanisms, such as ISIS [10], Horus
[11] or Ensemble [12] could be used to really improve the
availability of CORBA objects.

 Orbix-Isis [13] is an example implementation that
addresses the integration of a group communication
protocol with a standard ORB. However, the integration is
done as a proprietary extention to the Orbix ORB, and no
public interface is defined between the ORB code and the
Isis code. The Orbix-Isis integration effort can not be
reused with other ORB implementations and therefore
interoperability between Orbix-Isis and other ORB
implementations seems very unlikely.

In [14] and [15] an architecture is described for Quality
of Service of CORBA Objects. This architecture is called
QuO and extends IDL with a QoS Description Language
(QDL). QDL is used to specify an application’s expected
usage patterns and QoS requirements for a connection to
an object. The application can adapt its behaviour
depending on the status of a connection, but it cannot
influence the QoS, which is possible in our approach.

Another relevant initiative in this direction is The
Realize middleware [16]. Realize extends CORBA with
object replication. It does this by intercepting IIOP
messages at the TCP/IP layer, and diverting them to a so
called Replication Manager that uses the earlier
mentioned QoS Description Language to decide how
many replicas are required. The Totem multicast group
communication system is used for multicasting the
messages. Our approach manipulates messages at the
GIOP level, while this approach manipulates messages at
the lower TCP level. possibly causing extra overhead in
analysing the content of the TCP request. Another
difficulty with this approach is that the TCP messages
have to be intercepted in an operating system dependent
manner. In addition, the notion of plugging in a different
protocol or QoS mechanism is not taken into account.

Globe [17] is an object based framework in which an
object (or servant) is not necessarily located on a single
host like with CORBA. Instead it is left to the developer
how an object is distributed over a number of hosts.
Globe claims to offer an efficient solution for replication,
especially in a wide-area context. A benefit of Globe is
more flexibility is choosing the replication (or another
QoS related) mechanism, but compliance with CORBA is
not possible (without loosing this flexibility) and
interoperability in general between two independently
developed Globe-based applications might be a problem.
The implementation of Globe seems much less developed
than the implementation of CORBA.

HTTP-NG [18] is a proposed solution to improve the
current HTTP protocol. The architecture of HTTP-NG is
based on a three layer model, consisting of a transport
layer, a remote invocation layer and a web application
layer. The architecture enables web applications to run
over other protocols than TCP/IP and seems to match



closely with the layering of OCI. Although the current
focus of HTTP-NG is on supporting web applications and
not on generic distributed object systems, our approach
for QoS provisioning could be applied to HTTP-NG.

6 Conclusion and Future work

6.1 Conclusions
We have successfully used the Open Communication

Interface for extending an ORB with specialised protocols
instead of the normal IIOP. The ability to extend an ORB
with specialised protocols is a necessary, but not
sufficient, requirement for QoS provisioning in CORBA.
To this extent OCI seems very beneficial but also requires
a more detailed specification. Our experience with the
OCI shows that it provides the necessary interfaces to
plugin other transports than TCP/IP to an ORB. However,
the specification is not clear in all parts and could cause
interoperability problems when implemented by other
ORB vendors. For example, when multiple transport
protocols are plugged in to an ORB, it is not defined
which transport protocol is used. This is left to the ORB
developer. The problem of managing communication
layers becomes even more apparent when other
messaging layers than GIOP become available.

Very important is that OCI keeps interoperability.
Instead of standardising the protocol used to communicate
between client and server, in OCI an ORB internal
interface is specified to achieve interoperability.

Our IPM Prototype is a first step towards replication
transparency and reliability in CORBA. It is an example
of how to extend CORBA using the OCI to achieve QoS
provisioning. We have found that OCI has some
ambiguities, but most importantly OCI does not
adequately specify a policy interface to select a plug-in.
This policy interface is required, and should be
standardised to be able to create portable application
code.

OCI specifies two interface layers, we have only used
and evaluated the MTI interfaces. The ROI interfaces,
which allows a designer to replace GIOP with another
messaging layer, is something for which we see no
immediate need.

6.2 Future work
In the current prototype of the IP Multicast plug-in the

group abstraction and virtual synchrony are very
primitive. We are considering using Cornell’ s Ensemble
or some other group communication mechanism to make
our plug-in more sophisticated.

Although we consider IP Multicast to be a natural fit
for a plug-in to achieve reliability, we want to try
different approaches to be able to compare them and to do
some benchmarking.

In our work so far we have limited ourselves to an IP
network, but in some cases it could be much more
interesting to use other kinds of networks, e.g. ISDN or
ATM.

In the current situation, what plug-in’s will be
available and used has to be decided design-time. If a
good policy object would exist, the decisions on what
plug-in’s to have available could be delayed untill
compile-time, and the decision which plugin is used until
run-time. But ideally, what plug-in will be available and
what will be used will both be decided at the latest time
possible, thus at run-time. This approach seems feasible
for certain implementation languages. For example in a
Java scenario one could make a plug-in-repository
available, which has Java byte-code that implements the
OCI interface together with a formal description on the
required  (network and computing) resources and offered
QoS. Depending on the required QoS from the application
(and thus from the user), the policy object can query the
plug-in repository which plug-in best fits the needs.
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