
HEURISTIC ALGORITHMS FOR DISTRIBUTED QUERY PROCESSING’

P. Bodorik

School of Computer Science,
Technical University of Nova Scotia,

P.O. Box 1000, Halifax, Nova Scotia,
B3J 2X4, Canada

ABSTRACT

This paper examines heuristic algorithms for processing
distributed queries using generalized joins. As this optimization
problem is NP-hard heuristic algorithms are deemed to be
justified. A heuristic algorithm to form/formulate strategies to
process queries is presented. It has a special property in that its
overhead can be “controlled”: The higher its overhead the better
the strategies it produces. Modeling & a test-bed of queries is
used to demonstrate that there is a trade-off between the
strategy’s execution and formulation delays. The modeling
results also support the notion that simple greedy heuristic
algorithms such as are proposed by many researchers are
sufficient in that they are likely to lead to near-optimal strategies
and that increasing the overhead in forming strategies is only
marginally beneficial. Both the strategy formulation and
execution delays are examined in relation to the number of
operations specified by the strategy and the total sire of partial
results.

1. INTRODUCTION

Although researchers are currently turning their attention to
multi-query optimization [Cellery, 1980; Ounegbe, 1983; Carey,
1985; Reuter, 1986; Su, 1986; Kim, 1986; Sellis, 19881 and
dynamic query processing [Nguyen, 1981; Yu, 1983,1986;
Wong, 1986; Bodorik, 1988b, 1988~1, most research on
distributed query processing assumes a single query
environment and static processing. In a single query
environment, performance of a single query is optimized, while
static processing implies that an optimized strategy is not
modified (it remains static) once its execution commences.
Furthermore, most research concentrates on an important class
of queries, the Select-boject-loin (SPJ) queries [Ceri, 19841.

Reducing the size of relations by semi-joins has received a
great deal of attention [Hevner, 1979; Bernstein, 1981; Apers,
1983; Perizzo, 1984; Yu, 1982a, 1982b, 1985; C&,1986].
Although the use of semi-joins has generally been accepted as a
good processing tacticz, it has also been recognized [Bernstein,
198 1; Epstein, 19801 that semi-join and generalized join
processing tactics will have to be integrated.

Epstein et al. [1978] proposed one of the earliest methods
which uses joins as processing tactic. Their algorithm which is
an adaptation of the optimizing algorithm for the INGRBS
relational DBMS to the distributed environment [Epstein, 19861.
A join processing heuristic algorithm for the ADD [Mahmoud,
1979; Toth, 19821, first decomposes a query into a “Class A”

lThis research has been supported in part by a grant from the Natural
Science and Engineering Research Council of Canada.
2There are some exceptions such as Lehman [1985].

J.S. Riordon

Dept. of Systems and Computer Engineering,
Carleton University,

Ottawa, Ontario, KlS 5B6, Canada

sub-queries which produce results processed by a sub-optimal
heuristic. [Daniels, 1982; Selinger, 1980; Lehman, 1985;
Mackert, 1986a, 1986b] describe optimization of queries in
System R*. The optimizer generates alternative shrategies as is
performed for the System R, but modified for the distributed
environment. Dynamic programming is used to generate
alternative strategies, while detailed cost calculations, which
include both the network and CPU processing costs, are used to
evaluate alternatives for executing a join.

To optimize a distributed query implies that an optimizing
algorithm formulates/forms a strategy, which is a sequence of
relational operations and locations for their execution, to process
a given query. As various sub-problems dealing with
optimizing queries processed by semi-join or join processing
tactics have been shown to be NP-hard [Hevner, 1980; Yu,
1982a, 1982b; Gavish, 1982, Segev, 1986; Bodorik, 19871,
most algorithms to optimize strategies are heuristic. Although
various heuristic algorithms have been proposed, in particular
greedy [Horowitz, 19851 heuristic algorithms, relatively little
attention has been paid to their “performance”. Some of the
algorithms were evaluated to determine the delay induced
through execution of strategies they produce’. None of the
algorithms were evaluated, however, to determine how close
execution delays of “their” strategies are in comparison to the
delays of optimal strategies. Moreover, for all of these
algorithms it is assumed that the strategy formulation delay is
negligible in comparison to its (the strategy’s) execution delay.
It is these two issues that are primarily investigated in this paper
for a DDB in which partitioned relations are permitted.

For the purpose of this investigation it is assumed that the
query response time includes not only delays due to execution of
strategies but also delays due to their formulation. An algorithm
with a property, adopted from Artificial Intelligence research, in
that its overhead can be “controlled” is presented. Modeling on
a test-bed of sample queries is used to examine (i) existence of a
trade-off between the strategy’s performance/cost and overhead
expended in its formulation and (ii) a notion that simple greedy
heuristic algorithms, such as those that have been proposed by
many researchers, are sufficient in that they are likely to lead to
near-optimal strategies. Both the strategy formulation and
execution delays are examined in relation to the number of
operations specified by the strategy and the total size of partial
results.

lFor example, Black’s [1982] heuristic algorithm to formulate semi-join
programs is claimed to produce strategies which induce lower delay than that
of strategies produced by the algorithm for SDD-I [Bernstein, 19811. An
algorithm proposed for semi-join programs in [Yu, 19831 is claimed to
produce strategies which have a lower execution delay than that of strategies
produced by algorithms discussed in IBernstein, 19811 and [IHack. 1982].

CH2665-8/88/OOOO/0144$01.00 0 1988 IEEE
144

The following section presents assumptions for distributed
query processing. The presentation of the heuristic algorithm is
followed by the description of the modeled distributed
application and the sample queries. Finally, presentation and
analvsis of the modeline results is followed bv the summarv and
conclusions. The Appeidix includes further details describing
the parameters of the modelled application.

2. DISTRIBUTED PROCESSING MODEL

This section outlines a distributed query processing model’
in order to establish a framework for presentation and treatment
of the heuristic algorithms. As is usual with the treatment of
processing distributed queries, several assumptions on the query
form and its representation are made.

RELATIONS AND RELATIONAL OPERATIONS

Relations may be partitioned horizontally and/or vertically.
Composition of a vertically partitioned relation is achieved by an
equi-join. Composition of a horizontally partitioned relation is
achieved through a union. A join of two horizontally partitioned
relations is always preceded by a union to compose at least one
of the horizontally partitioned relations. Afragmented join is
available for a join of a non-fragmented relation with a
horizontally fragmented relation. The non-fragmented relation is
broadcast to the fragments of the partitioned relation. A “local”
join is executed as soon as the non-partitioned relation arrives to
a fragment’s location. Consequently, a fragmented join is a
collection of joins of the non-partitioned relation with partitions
of the other relation. The result is a relation which is
horizontally partitioned.

DISTRIBUTED QUERY PROCESSLNG

A query is assumed to be in the conjunctive normal form
such that each term/formula has at most two relational variables.
The two-variable terms are processed by joins. As one-variable
terms are processed first in order to reduce the size of relations
which are operands of expensive joins, it is also assumed that all
of the query’s terms are two-variable. Each term has a
selectivity factor which is used in estimation of partial results’
sizes [Epstein, 1980; Bernstein, 1981; Wang. 19821. A query
satisfying these assumptions can be represented by a hyper-edge
graph in which vertices represent relations and edges represent
the two-variable terms/formulas.2

L&t
Q; (Jttt) .R2epr,esRe;t the query where

- I n . . . 1s the set of relations referenced by
the query;

E = (PI, P2, Pm) . . . is the set of two-variable terms;
n .., dpdtes the number of relations referenced by the query

m . . . denotes the number of two-variable terms.

Each term h is of the form (Ri.a 8 R].b), where Ri, R] E V,
Rt.a and Rj.b are attributes of Ri, Rj, respectively; and 8 E (=,
c, >, I, 2) is an arithmetic relational operator. Also let

fk . . . denote the selectivity factor of the term Pk;

lFor details see [Bodorik, 19851.
21t is convenient to combine terms applying to the same two relational
variables (relations) into a conjunction of these terms and represent it by one
edge in the graph. In this way hyper-edges can be removed.

c[Ri] . . . denote the cardinality of the relation R,;
w[Ri] . . . denote the “width” of the relation Ri, i.e., the total

number of bytes taken by attribute values of each tuple
in Ri; and

s[Ri] . . . denwo;iihe size of the relation Ri; sIRi] = c[Ri] *

For convenience in determining the size of partial results it is
assumed that the values of attributes are distributed uniformly
and independently of each other. The query’s
terms/fotmulae/predicates are also assumed to be independent in
that no predicate is implied through others via transitivity. For
each of the two-variable terms/predicates, referring say to
relations Ri and Rj, there is a selectivity factor which determines
the expected fractton of tuple pairs from Ri and R. which satisfy
it. These assumptions imply that a partial result o f evaluating a
set of predicates has the cardinality which is the product of the
predicates’ selectivities and cardiialities of relations referred to
by these predicates [Ibaraki, 19841.

The cost of a network data transfer is assumed to be a linear
function of the volume of transferred data. The unit cost of a
network transfer is represented by a matrix. A matrix element
represents the cost/delay to transfer a unit of data (byte) between
two network locations.

As restrictions and projections are assumed to be processed
as soon as possible, a strategy is a specification of join
operations1 on relations and the network locations of their
execution. Obviously, some joins have operands which are
results of other join executions. A relational operation is
executed as soon as its operands are ready. A relation which is a
result of a relational operator execution is transferred to another
network location only when it is completely formed.
Consequently, pipelining, which may improve the query
response time is not considered. Semi-joins, as a processing
tactic, are not considered either.

The strategy’s execution cost is measured in term of its
delay. Any time an operation is under consideration, the delay
for the resulting relation is evaluated. It depends on the time
when the operation can commence, i.e., when its operands are
available, and on the delay to perform the operation itself. An
operation can be either transferring a relation or relational
operator execution. The delay to execute a relational operation
depends on the resulting access to the secondary storage devices;
thus it depends not only on the average delay to access such
devices but also on the size of operands which must be
retrieved, the size of the result which must be stored and the size
of any intermediate results which must be formed. For example,
to perform a projection on the relation R, the tuples of R must be
retrieved, sorted and only then duplicate tuples may be removed.
The delay to sort is included in the calculation of the projection’s
result delay.

3. HEURISTIC ALGORITHMS

To address the question of whether or not a trade-off
between the strategy formulation overhead and the strategy
execution delay exists an optimizing algorithm with a
controllable overhead has been developed. It is based on a
simple idea that the solution space, the space of strategies, can
be developed in “levels” as is proposed in [Reingold, 19771.
The remainder of this section is devoted to the description of this
algorithm. First, the representation of the space of strategies by

1Discussion of unions is postponed to the end of section 3.

14s

a graph is presented. The graph is a collection of non-disjoint
trees, such that each tree represents a strategy. It is organized in
Ievels such that each element of a level i represents a partial
result of i join executions. The space of strategies is non-
redundant, that is, each graph element represents a result of a
unique strategy/sub-strategy.

The algorithm OPT-GV, which constructs this complete
space of strategies level by level, is described fmt. The
presentation of the heuristic algorithm, which is a modification
of the algorithm OPT-GV, then follows. The section concludes
by discussing implications of existence of horizontally
partitioned relations and inclusion of the union operator which is
necessary for their processing.

(R1.a 81 R 2.b) (R2.c t3 2 R 3.d)

W X Y
W, X, Y are network locations

(a) Query graph for (RI.a 81 R 2.b) A (R2.c 82 R 3.d)

w R 0
Join in W

Join-in W

(2/$ A

W X Y

(b) Strategy representation with explicit joins

w X Y
(c) Strategy representation with implicit joins

Figure 1 Query graph and strategy representation

Identical sub

(a) A common sub-strategy for two strategies

W X Y

(b) Strategies with merged trees (sub-strategies)

Figure 2 Graph representation of strategies

SPACE OF STRATEGIES

Recall that a strategy specifies the sequence and network
locations of join executions. The space of strategies can
therefore be represented by a collection of trees, which are not
disjoint, such that each tree represents a strategy. Figure l(b)
shows the usual representation of a strategy by a bee. Since
restrictions and projections are assumed to be processed as soon
as possible, they are excluded from the tree representation. As
the only relational operations under considerations are joins, the
graphical representation can be simplified by their removal.
Figure l(c) shows the strategy’s simplified tree representation.
The leaves are assumed to be relations referenced by the query
while non-leaf nodes are results of join operations. Figure 2
shows a query and two strategies to process it. The strategies
are such that they have a common sub-strategy to derive an
identical partial result, that is, an identical relation stored by the
same information processor. Instead of representing each
strategy separately, their identical portions can be merged
together to obtain a graphical representation of both strategies as

146

is shown in Figure 2(c). In this way a space of strategies can be
developed such that each unique strategy/sub-strategy appears
only once in the solution space.

ALGORITHM FOR A COMPLETE SPACE OF STRATEGIES

The space of strategies can be simply viewed to consist of
levels 0, 1, n-l. Each level has elements which represent
relations. An element of level i represents a relation in a
particular network loc+ion which is a result of a unique sub-
strategy containing exactly i joins. The elements of the level
zero represent “original” relations referenced by the query,
which are assumed to have been “processed” by restrictions and
projections in order to reduce their size. Elements of the level n-
1, called final elements, represent the query result, each derived
by a unique strategy. Recall that n is the number of relations
referenced by the query and n-l is the number of joins required
to process it.

Query q in a conjunctive normal form, selectivities, INPUT:
statistical information about the relations, network locations of
relations, and delays due to CPU processing and network data
transfer per unit of data.

Space of strategies represented by a graph. OUTPUT:
METHOD: The graph of strategies consists of elements

organized in levels 0, 1, m, where m is the number of
joins required to process the query. Elements of the level 0
represent relations referred to by the query. An element of a
level p represents a relation which is a result of a unique
strategy consisting of exactly p joins. The level p is created
from elements/relations of levels px and pY. such that p = 1 +
px + py, that is from two relations such that one is a result of
px whrle the other the result of p,, join executions,
respectively.

-.

STEp 1: Create elements of the level 0, which represent
relations referred to bv the auerv. Calculate their cost (delav)
and size resulting from the b&ion of restrictions and . ’
projections. Projections remove attributes which are neither
target nor joining (not referred to be any of the query’s two-
variable terms).

STEP 2: Do Step (3) for p = 2,3, ..,, m, to create the level p on
each iteration. Each level contains elements which represent
relations which are results of p join executions.

STEp 3: Insert elements representing results of p join
executions into the level p of the graph of strategies by
executing Step (4) for px = p-l, p-2, Lp/2J.

STEP 4: Let the graph level pY be such that p = 1 + px + pY
For each element, representing a relation Ri of the level px,
search the level p

4
for elements representing relations which

can be joined wit Rl. For each such element, representing
say a relation Rj, create z new elements, each representing the
result of the join of R, with R* executed at one of the z unique
network locations (executed l! y one of the z possible
information processor). Calculate their size and delays and
insert them in the level p of the graph of strategies and save
information about the join operands used to create them. Each
element represents the result of a unique strategy consisting of
p joins.

(NOTE that the graph’s level m contains elements which
represent the query result, each obtained by a unique strategy.
To find the optimal strategy, the level m is searched for the
minimum cost element/relation.)

Figure 3 Algorithm OPT-GV

The graph can be built in levels. Elements of the level 0 arc
created first; they represent the relations referenced by the query
such that they are assumed to have been processed by
restrictions and projections. Then levels p = 1,2, n-l are
built in that order. An element of a level p, p > 0, represents a
partial result of p join executions, located in a specific network
location. It can be constructed from two elements of levels px
andpy,p,~Oandpy~O,suchthatp=l +px+py. Thetwo
elements represent partial results of px and pY joins, respectively;
they are operands of the join execution resultmg in the relation
represented by the level p element. An outline of the algorithm,
called OPT-GV (OPT&al for a Global View)t, is showd in
Figure 3, For details see [Bodorik, 19851. Once the space of
strategies is constructed, the optimal strategy can be found by
searching the level n-l for the minimum cost element. The level
n-l contains elements representing the query result such that
each is obtained by a unique strategy.

Note that the algorithm develops a non-redundant space of
strategies in that each of its elements is a result of a unique
strategy/sub-strategy. The whole solution space, however, has
to be stored to find the optimal strategy. If the solution space
were represented by a decision tree and developed through a tree
search such as the depth-first search, some sub-strategies would
bc examined/built many times over, but the entire tree would not
have to be stored at one time.

HEURISTIC ALGORlTHM

Consider now a greedy heuristic for the minimization
problem under consideration. Since the problem is to decide on
the sequence and network locations for executing joins, the
heuristic chooses the least expensive choice regardless of
consequences on the choices for the remainder of the strategy.
Thus, the heuristic chooses that join execution which incurs the
minimal cost. The query now can be modified to represent this
choice. The two operands of the selected join arc removed and
replaced by the join result and the process repeats; the heuristic
again chooses the “cheapest” join. This repeats until the query
result is obtained. In the context of the previously described
space of strategies this heuristic procedure implies that only the
first two levels of the solution space are developed. The
minimum cost partial result of one join is chosen, the query is
modified and the process repeats.

A simple modification to the algorithm which builds the
solution space also yields the greedy heuristic. In fact, the
modification can be such as to yield a range of heuristic
algorithms with different levels of overhead. Instead of
developing only the levels 0 and 1 of the solution space, the
algorithm may develop the levels 0, 1, N, N < n - 1. The
level N represents all possible results of N join executions. The
cheapest result is chosen from this level and the sub-strategy to
derive it is adopted as a part of the query processing strategy.
The relations and two-variable terms processed by the sub-
strategy are removed from the query and are replaced by the sub-
strategy’s result. The process continues until the query result is
obtained. This algorithm, called HEURISTIC, is outlined2 in
Figure 4 and an example of one of its iterations is shown in
Figure 5. It should be realized that if N is sufficiently large,
i.e., N 2 n - 1, where n - 1 is is the number of joins required to
process the query, the algorithm develops the whole solution
space on the first iteration and finds the query’s optimal strategy.

klobal View wmoud, 19791 of a distributed database is such that it does
not contain relations which are partitioned horizontally and/or vertically.
2The efficiency of the algorithm is further improved by retaining, whenever
possible, information (graph elements) from one iteration to another.

147

mUT: N, the number of levels of the partial graph of
strategies to be created on each iteration. Query q in a
conjunctive normal form, selectivities, statistical information
about the relations, network locations of relations, and delays
due to CPU processing and network data transfer per unit of
data.

A strategy to process the given query. OUTPUT:
&4ETHOD: There are three repeatedly executed phases:

a) Create the levels 0, 1, N of the graph of strategies
using the algorithm OPT-GV.
b) Find the minimum cost partial result of the level N. Save
the sub-strategy for this relation (it is adopted as part of the
query processing strategy).
c) Modify the query by (i) removing relations and two-
variable terms processed by the selected sub-strategy and (ii)
adding the relation, the result of the selected sub-strategy and
modifying the two-variable terms. Repeat (a) to (c) until the
strategy to process the query is completely derived.

y 1: Create a partial graph of ttrategies consisting of levels
N, possibly by the algonthm OPT-GV adapted for

&is’&k.
w 2: Search the level N for the minimum cost relation.

Save the sub-strategy to derive this relation; it will become the
part of the query processing strategy.

STEp 3: Remove any relations and two-variable terms
processed by the selected sub-strategy from the query.
Augment the query by the result of the sub-strategy and
modify the remaining two-variable terms. Assume for
example, that the selected sub-strategy processes two-variable
terms (R1.a 81 R2.b) and (R2.c 81 R3.d) by two joins
resulting in the relation R’. These two terms and relations RI,
R2 and R3 are removed from the query, the query is
augmented by the relation R’, the sub-strategy’s result. In
addition, any of the query’s two-variable terms which refers to
exactly one of the relations removed from the query, say Rk, is
modified to refer to the sub-strategy’s result, the relation R’.
For example, a two-variable term (R1.a 83 Rk.e) is modified
t0 @‘.a 83 &A).

Steps (1) to (3) are repeated until only one relation remains (the
query result).

Figure 4 Algorithm HEURISTIC

The parameter N specifies the number of levels to be
developed on each iteration. It is expected that as the value of N
increases, execution delays of strategies decrease. This is
because the amount of information used in their formulation is
increased; however, overhead also increases.

The algorithm just described was used on sample queries of
a particular application. The modeled application, queries, and
modeling results are described in subsequent sections. As the
modeled application includes relations which are horizontally
partitioned, their implications on the space of strategies and the
algorithms are briefly discussed.

HORIZONTALLY PARmONED RELATIONS

A horizontally partitioned relation, or a fragmented relation
for short, is assumed to be processed in the following way.
Any restrictions and/or projections are performed on each
partition/fragment as soon as possible. A join of two
fragmented relations is always preceded by a union of fragments
of at least one of the operand relations. A join of a non-
partitioned relation with a partitioned one leads to a “fragmented”

join. A copy of the non-fragmented relation is del; vered to each
of the fragments for a local join. The result of a frAgmented join
is a fragmented relation which is ready for a union of partitions
or another join.

The above assumptions regarding processing of fragmented
relations have the following implications on the space of
strategies and algorithms. A join of two non-fragmented
relations or a union of fragments is considered to be one
operation. A fragmented join is also considered to be one
operation. The space of strategies is still viewed 03 be organized
and built in levels. A level p contains elements, such that each
represents the result of a unique sub-strategy which consists of
exactly p operations.

The algorithms under discussion were used in modeling of
an application of a Distributed Data Base @DB) [Bodorik,
19851. The results of this modeling are described in the
following sections. Algorithms as used in modeling had one
additional restiction in that a join of non-fragmented relations,
or a union of fragments can be executed only at a network
location of one of its operands.

w X Y -, a!>

0
R4

(R1.a e1 &.b 1 A @2-c e2 R3.d 1 A (R3.e 83 R4 f)

W, X, Y and Z are network locations

(a) Query graph

minimum cost element
I

W X Y Z
(b) Levels (portions of) 0, 1 and 2 of the graph

of strategies

Y Z

QgTy@
3 .

(C) Modified query to reflect the adoption
of the sub-strategy which produces R22

Figure 5 One iteration of the algorithm
HEURISTIC with N = 2

148

4. MODELED APPLICATION

This section contains a brief outline of the modeled
application of the DDB. A more detailed outline can be found in
Appendix, while detailed description can be found in [Bodorik,
19851.

The modeled application of the DDB is claimed to be realistic
and one for which available networking and processing
resources are assumed to be modest. The data base is of a type
needed to support an information management system for a
medium size company having five geographically separated
offices. The company utilizes services of a public network to
which it is connected through rather slow connections ranging in
data transfer rate from 1200 to 9600 bits/set. Information
processors are minicomputers in the VAX 750 to 785 range.

The 21 modeled queries are of a type which might be utilized
in a management information system. They range from simple
queries referencing only one or two relations to queries which
are processed through a significant number of joins and/or
unions. They reference relations, some of which are
horizontally partitioned, with cardinalities ranging from a few
tuples to tens of thousands of tuples.

5. MODELING RESULTS

Recall that the heuristic algorithm HEURISTIC has a
parameter N which is used to control the amount of information
for “look-ahead” when making decisions on joins and/or unions
and their locations of execution. When deciding on which
join/union and where it should be executed, N controls the
number of levels that are considered in each iteration. An
increase in the value of N results in an increase in overhead, but
it is also anticipated that the execution delay of strategies would
be lower. If N is sufficiently large, the algorithm develops a
complete solution space and determines the minimum delay
strategy. To examine the relationship between the strategy
formulation and execution delays for the modeled application,
the algorithm HEURISTIC was used on a sample of 21 queries
which were chosen in such a way as to give a representative
range for the number of operations which are required for their
execution. From the 21 modeled queries:

3 require 2 operations; 6 require 3 operations;
5 require 4 operations; 3 require 5 operations;
2 require 6 operations; and 2 require 7 operations.

One would expect that, in general, most queries would
require between two to five joins and/or unions while the
number of queries which require six or seven operations would
be smaller. There would be a few queries requiring one or more
than seven joins and/or unions; none of the modeled queries fall
into this category.

m ..%note the number of modeled queries (m = 21);
ql . . . denote the ith query;

Tf[i, N=x] . . . denote the delay to formulate a strategy for the
query ql such that the algorithm uses the value of x for the
parameter N,

Te[i, N=x] . . . denote the execution delay of the strategy,
formulated by the algorithm using N=x, to process the query
qi;

Af[N=x] . . . denote the average delay to formulate strategies with
the parameter N having the value of x for each query:

Af[N=x] = 5 Tf[i, N=x] / m
i=l

A,[N=x] . . . denote the average execution delay of strategies
formulated by the algorithm with the parameter N having the
value of x:

Ae[N=x] = ? Te[i, N=xl / m
i=l

Tt[i, N=x] . . . denote the query response time for the query qi
which is processed by a strategy formulated by the algorithm
using N = x:
Tt[i, N=x] = Tf[i, N=x] + T,[i, N=x]

At[N=x] . . . denote the average query response time over all m
queries, such that each query is processed by a strategy
formulated with the value of x for the parameter N:

At[N=x] = 5 Tt[i, N=x] /m = AfEN=x] + Ae[N=x]
i=l

EXECUTION AND FORMULATION DELAYS

Figure 6 shows the average execution delay, Ae[N=x], for
strategies formulated with N = 1, 2, .,,, 7. The delays are
shown in the graphical form and also in the form of a table.
Recall that for any query which requires n - 1 operations, the
algorithm HEURISTIC finds the minimum execution delay
strategy if it is used with a parameter N such that

Ae[N=x]
(seconds)

22.00.
21.00.

20.00. -e-o

I I.“”

1 2 3 4 5 6 7
X

Figure 6 Average strategy execution delay, Ae[N=x]

N 2 n - 1. The modeled queries are such that the algorithm
finds optimal strategies ford queries when N = 7. In other
words, each of the modeled queries requires at most 7 multi-
operand relational operations (joins and/or unions) for its
execution.

It is evident from Figure 6 that, as expected, an increase in N
results in strategies of lower execution delay. It may therefore
be tempting to choose a sufficiently large N so that the algorithm
finds the minimum execution delay strategies. The high strategy
formulation delay, however, makes this prohibitive. Figure 7
shows the average delay to formulate the strategies as a function
of N. Clearly, it is unreasonable to accept an average delay of
about 26 seconds in formulating strategies which have an

149

average execution delay of 20 seconds. These values are shown
in figures 6 and 7, respectively, for N = 7. Increasing the value
of N does decrease the strategies’ execution delay, but this is at
the expense of increased delay in their formulation.

QUERY RESPONSE TIME

It was already stated that the modeled application
includes information processors comparable to the VAX family
of computers. As the formulation of strategies and modeling
was performed using a VAX-785 computer system, it is’
reasonable to calculate the average query response time using the
formulation delay derived in modeling. Figure 8 shows the total
strategy formulation and execution delay, At[N=x], for x = 1.2,
. . . . 7. The figure indicates that for this application the heuristic
a31gorithm IIlWRISTIC should be used with the parameter N =

Let

fi . . . denote that value of N for which

II 112 13 14 15 16 I7
A$=x] I] 0.191 0.351 0.791 2.011 5.81) 13.591 23.56

Af[N=x]
(seconds)

25.00 -

15.00.. /
l

lO.OO-

/
5.00 -.

0.00 a--* -y-y 4
1 1 2 2 3 3 4 4 5 5 6 6 7 7

Figure 7 Average strategy formulation delay, AAN=x] ’ Figure 7 Average strategy formulation delay, AAN=x] ’

II 1 12 I3 I4 15 I6 I7
At[:=x] I] 24.981 23.111 21.991 22.971 26.171 33.951 43.92

At[N=x]
(seconds)

45.00 - l

40.00’.

35.00’S /

30.00 -’

25.00 l -e
,/

Y-*
20.00 l 1

1 2 3 4 5 6 7

Figure 8 Average query response time (in seconds), At[N=t]

At&l = yi; (A‘[N=x]. x = 1, 2, 7)
X

For this application,

A&l = At[N=3] = 21.99 sec.

Using N = 3 results in the minimum query response time
from all At[N=x], x = 1,2, 7. On the average about 4
percent of the query response time is spent in the formulation of
strategies while 96 percent is spent in their execution. This
average response time is only 1.08 times higher than the
minimum execution delay of strategies which is Ae[N=7] =
20.36 seconds.

BEST ACHIEVABLE RESPONSE TIME

It has been assumed thus far that the algorithm HEURISTIC
is used with the same value for its parameter N for all of the
queries. This does not lead to the minimum query response time
as different values of N may be best for different queries. Let

tt[i] . . . denote the minimal query response time fbr the query qj,
which can be achieved using the algorithm HEUFUSTIC. It
is the minimal delay which can be achieved for the query
when both the strategy formulation and execution delays are
under consideration:

%t[i] = min (Tt[i, N=x], x = 1, 2, .,., 7) ;
(xl

%f[i], ?e[i] . . . denote the respective formulation and execution
components of the total delay ?&I:

Lf;[i] = +di] + ?,[i]

?t[N*] . . . denote the average query response time such that each
query ql is processed by a strategy formulated with that
value of N which leads to tt[i], i.e.,

/t;[N*, = 2 ?t[i] /m and
i=l

?f[N*], ‘ke[N*] . . . denote the average delays spent in
formulating and executing such strategies, respectively:

4;[N*] = ‘&N*] + +e[N*] , where

?tfN*l = i!l +t#] / m and ‘&~*I = itl ?&l/m

For the modeled application the above delays in seconds are:

$[N*] = 21.52 ; +f[N*] = 0.53 ; and ‘k’e[N*] = 20.99

The above average query response time, /t;[N* I = 2 1 S2
seconds, is the best that can be achieved with the algorithm
HEURISTIC for the modeled application of the DDB. On the
average, 2.5 percent of the query response time is spent in
formulating strategies while the remaining 97.5 percent is spent
in their execution. It should be noted, however, that to achieve
this response time the optimal value of N must be .known for a
given query before the algorithm struts formulating its strategy.
Although in reality the optimal value of N is not known, it was

150

already shown that when used with the specific value of N = 3,
the averagequeryresponse time of the modeledqueriesis At[h k I] 2 I 3 1 4 1 5 1 6 1 7
= AJN=31= 21.99 seconds. This is only 1.02 times higher Df[N=k] I] 0.141 0.411 1.791 11.871 24.16p24.22
than-the best possible response time which can be achieved
using the algorithm HEURISTIC, which is qt[N*] = 21.52
seconds. Consequently, when the algorithm is used with N = 3
for all queries, the average query response tie, A& =
At[N=3] = 21.99 seconds, is not only close to the best
achievable response time, ?‘t[N’], but also to the minimum
execution delay of strategies which is Ae[N=7] = 20.36
seconds.

GREEDY HEURISTlC

When the algorithm HEURISTIC is used with the parameter
N = 1, it becomes a simple hill climbing heuristic which is
similar in approach to those proposed in the scientific literature
to optimize processing of distributed queries. Its average delay
(i) due to the formulation of strategies can be found in Figure 6
and (ii) due to the execution of strategies it formulates in Figure
7. Its average query response time can be found in Figure 8.
Although its query response time is marginally higher than that
of the algorithm when used with N = 2,3 or 4, it is doubtful that
the higher complexities arising due to a search through a more
complete space of strategies are worth the effort This is even
more apparent when it is realized that the space of strategies is
developed using estimation techniques to predict (i) delays due
to transfer of data over the network, (ii) delays due to access to
the secondary storage devices and, in particular, (iii) sizes of
results of relational operations.

DELAYS, OPERATIONS AND SIZE OF RESULTS

This section concludes with examining the relationship
between the number of multi-operand relational operations (joins
and unions) which are required to execute a query and its
formulation and execution delays. The dependance of execution
delays on the total size of partial results is also examined. The
total size of partial results includes the size (ii bytes) of all
relations accessed and produced by the strategy used to derive
the query result. That is, it includes the size of relations referred
to by the query, any intermediate results/relations of executing
joins/unions, and also the relation which is the query result. Let

& .,. denote the set of indices for those queries which require k
operations for their execution and

mk . . . denote the number of queries which require k operations
(joins and unions) for their execution. In other words, mk is
the cardinality of the set &: mk = l&l.

Recall that there are m = 21 queries such that

3 require 2 operations (m2 = 3);
6 require 3 operations (m3 = 6);
5 require 4 operations (m4 = 5);
3 require 5 operations (ms = 3);
2 require 6 operations (mg = 2); and
2 require 7 operations (m7 = 2),

for their execution, where operations are assumed to be joins
and/or unions. Let

Df[N=k] . . . denote the average delay, of the heuristic algorithm
HEURISTIC using the parameter N = k. to formulate
strategies for the mk queries which require k operations for
their processing:

(a) DdN=k] -- table form
Df[N=k]

140.00-

120.00-' f

100.00-~

80.00-'

60.00-,

40.00-'

20.00
1

0.004 4

2 3 4 5 6 7
k

(b) DflN=k] -- regular scale

DdN=x]

1000.00’

100.00" 4

4
10.00 -- 4

4
1.00' I

0.10 i
4 10

4
k

(c) Df[N=k] -- semi-log scale

Figure 9 Average formulation delay (in seconds), Df[N=kl

Dt[N=k] = C TfIi, N=k] / mk , where
i 6 Qk

TBi, N=kl is the delay incurred by HEURISTIC using N =
k in formulating the strategy for the query qi, i E &;

D,[N=k] . . . denote the average execution delay of strategies,
formulated by HEURISTIC using the parameter N = k, for
queries which require k operations for their processing:

DJN=k] = C Te[i. N=k] / mk , where
iE Qk

Tc[i, N=k] is the execution delay of the strategy, formulated
by HEURISTIC using the N = k. for the query qi, i E &.

Note that since queries qi, where i e &, require k operations
for their processing the algorithm HEURISTIC with N = k
formulates the minimum delay (optimal) strategies for their
execution. DfEN=k] and DJN=k] are the formulation and

151

execution delays of those strategies. The average formulation
delay, DfIN=k], is shown in Figure 9(a) as a function of the
number of operations, k. It is also shown using the semi-log
scale in Figure 9(b). It appears to have an exponential shape and
thus empirically supports the theorem that the problem under the
consideration is NP-hard [Bodorik, 19871 and that the search for
optimal strategies is not desirab1e.l

D.$=kI II II 21.041 2 13 31.461 14 7.461 15 6.461 16 27.271 I7 32.20

De[N=k]
(seconds)

0.00 4 I
2 3 4 5 6 7

Figure 10 Execution delay De[N=k]
k

The average execution delay, De[N=k], is shown in Figure
10. The strategy execution delay does not appear to be a
function of the number of operations which are required to
process a query. This is somewhat surprising in that one would
expect that queries which require a higher number of joins
and/or unions would also have a higher strategy execution delay.
A brief reflection on this observation suggests a likely and also
obvious explanation that the execution delay depends not only
on the number of operations but also on the size of relations,
which include intermediate partial results, accessed in processing
the query. An examination of execution delays of optimal
strategies and the total size of partial results they create supports
this conclusion. Let

WI . . . denote the total size of partial results for the query qi
when it is processed by the minimum delay strategy and
also recall that

‘?e[i]. . .denotes the delay of the minimum execution delay
strategy for the query qi.

Figure 11 shows execution delays &[i]) and also the total
size of partial results (S[i]) for each query which is assumed to
be processed by the minimum delay strategy. It also shows the
execution delay versus the total size of partial results using a
scatter diagram in a log-log scale. A least-squares line,
calculated using the standard equations

: te[i] =ma+ b 5 S[i] and 5 (?&I S[i] > = bifl S[i] ,
i=l i=l i=l

lRecall that the search for optimal strategies is through a complete and non-
redundant space of strategies. That is, the space of strategies represents only
w strategies/sub-strategies.

. . . index of query qi, i = 1,2,.. ., 21
&[i] +, .~;~&~f;;~ds) of the minimum execution delay

Sri]. . .the total size o/partial results produced by the minimum
execution delay strategy for Ihe query 6

-
i

:
3
4

z
7

:
10

WI

562
3072
4162
6655
8112
4777
8743
9676
6660
5244

-
i

ii
12
13

it:

:;
18
19

i?
-

WI

-I_
2900

55350
135200

16386
763 12

119000
88712
36’63

29197
950

45675

‘?e[i] (seconds)

‘::jj~:~
100 41000 10000 100000 1000000

n ICIJ hIl_l _. _
!;[i] (bytes)

Figure 11 ?e[i] versus the total size of partial :results

has a slope of b = 0.00075 and the “axis S[i]” intercept of a = -
0.33. The correlation coefficient of the least square fit is r =
0.82. Whereas the execution delay did not appear to have been
dependent on the number of operations required I:O process the
query, it seems to be dependent on the size of partial results.
This is rather obvious in that the total size of partial results not
only affects the volume of data accessed in the secondary storage
devices, but it is also likely to affect the volume of data
transferred over the network. Consequently, the strategy’s
execution delay is likely to depend on the total size of partial
results regardless of the information processor and network
parameters.

The two results discussed in the for-going discussion
provide support for a two-phased approach to formulating
strategies to process distributed queries [Bodorik, 1987, 1988al.
The first phase finds that sequence or relational operations which
minimizes the size of partial results. The second phase
determines the network locations for their execution using an
objective, such as minimization of the network data transfer
delay, which is deemed to be appropriate for the intended
environment.

It should be stressed that the results presented herein are
claimed to be applicable only to the environment of the modeled
application and only for the described algorithms and their
assumptions. Obviously, to generalize these results further

152

work is necessary. It should also be pointed out, however, that
evaluating heuristic algorithms is exuemely difficult. Optimally,
evaluation should be analytical and show that a heuristic
algorithm is guaranteed to produce solutions which are within
certain bounds of an optimal solution. Failing that, the
evaluation should be probabilistic and show that generated
solutions fall with a high nrobabilitv within certain bounds of
optimal solutions. To&d best of the authors’ knowledge none
of these two approaches were used in evaluating heuristic query
optimizers proposed in the scientific literature. The next
approach to consider may be statistical, either through modeling
or, if at all possible, through implementing the algorithm and
observing its performance within an environment of a real
system. As is the case with modeling reported herein, however,
to generalize such results is difficult because of the high number
of parameters describing the distributed environment.

6. SUMMARY AND CONCLUSIONS

This paper examined use of heuristic algorithms which are
used to formulate strategies to process distributed queries by
joins. A heuristic algorithm with a special property in that its
overhead can be “controlled” was presented. Modeling on a
test-bed of queries was used to examine whether or not there
exists a trade-off between the strategy’s performance and the
overhead expended in its formulation. The results indicate that
although there is a trade-off between the strategy formulation
and execution delays, a simple greedy heuristic leads to near-
optimal strategies and increasing overhead in forming a strategy
appears to be only marginally beneficial. It thus confums an
often made assumption that a simple heuristic algorithm is
sufficient in optimizing distributed queries.

Both the strategy formulation and execution delays were
examined in relation to the number of operations and the total
size of partial results. The formulation delay appears to be an
exponential function of the number of joins and/or unions
required to process the query and it confirms the fact that the
problem of optimizing distributed queries is NP-hard. The
strategy execution delay, at least for the modeled application,
surprisingly does not appear to depend on the number of multi-
operand relational operations used to process the query. It was
shown, however, to be directly proportional to the total size of
partial results, These results support the previously described
two-phased formulation of strategies in which the first phase
minimizes the total size of partial results.

REFERENCES

Apers P., Hevner A., Yao S.B., 1983;
“Algorithms for Distributed Queries”, IEEE TOSE, Vol. SE-
9, No. 1, January 1983, 57-68.

Bernstein P., et al., 1981;
“Query Processing in a System for Distributed Databases
(SDD-l)“, ACM TODS, Vol. 6, No. 4, Dec. 1981,602-625.

Bertino E., 1987;
“An Evaluation of Precompilation and Interpretation in Distr.
DB Management Systems”, Comp. Jour., Vol. 30, No. 6,
1987, 519-528.

Black P., Luk W.S., 1982;
“A New Heuristic for Semi-Join Programs for Distr. Query
Processing”, Proc. of COMPSAC 82, IEEE Comp. Society’s
6th Int. Conf., 1982, 581-588.

Bodorik P., 1985;
“Query Processing Strategies in a Distributed Database”,
Ph.D. thesis, Carleton University, Ottawa, Canada, 1985.

Bodorik P. and Riordon J.S., 1987;
“Decomposition in Processing Distributed Queries”,
Technical Report, School of Computer Science,Technical
University of Nova Scotia, Halifax, Nova Scotia, Canada,
November 1987.

Bodorik P. and Riordon, J.S., 1988a;
“Distributed Query Processing Optimization Objectives”,
Proc. of the IEEE Fourth International Data Engineering
Conference, Los Angeles, CA, February 2-4, 1988,320-
329.

Bodorik P. and Riordon, J.S., 1988b;
“A Threshold Mechanism for Distributed Processing of
Queries”, Proc. of the ACM CSC ‘88 Conference. Atlanta,
GA Feb. 23-25, 1988, 616-625.

Bodoik P. and Riordon J.S., 1988c;
Proc of the IEEE Int. Conference on Distributed Computing
Systems, San Jose, California, June 13-17, 1988, 510-519.

Carey M., Livny M., Lu Hongjun, 1985;
“Dynamic Task Allocation in a Distributed Database System”,
Proc. of the 1985 IEEE Conf. on Distributed Comp.
Systems, 282-291,

Cellet-y W., Meyer D., 1980;
“A Multi-query approach to Distributed Processing in a
Relational Distributed Database Management System”,
Distributed Data Bases: Proc. Inter. Symp. on Distributed
Data Bases, Edited by Delobel C., Litwin W., North Holland
Publ. Co. March 1980.

Ceri S., Pellegati G., 1984;
Distributed Databases: Principles and Systems, McGraw Hill,
1984.

Ceri S., Gotlob G., 1986;
“Optimizing Joins between Two Partitioned Relations in
Distributed Databases”, Journal of Parallel and Distributed
Computing, Vol. 3, 1986, 183-205.

Christodoulakis S., 1983;
“Implications of Certain Assumptions in Database
Performance Evaluation”, ACM TODS, Vol. 9, No. 2, June
1984, pp. 173-186.

Chu W., Hurley P., 1982;
“Optimal Query Processing for Distributed Database
Systems”, IEEE TOC, Vol. C-31, No. 9, September 9182,
835-850.

Daniels et al., 1982;
“An Introduction to Distributed Querv Comuilation in System
R”, In Distributed ata Bw, S;hn&der H.J., editor, North
Holland, 1982, 24?290.

Epstein R.,.Stonebraker M., 1980;
“Analysis of Distributed Data Base Processing Strategies”,
6th VLDB Conf., Montreal, Quebec, Canada, 1980.92-101.

Gavish B., Segev A., 1982;
“Query Optimization in Distributed Computer Systems”, in

ment of Drsmbu&d Data Proc-, North Holland
mp., 1982, 233-252.

Hevner A., Yao S.B., 1979;
“Query Processing in Disaibuted Data Base Systems”, IEEE
TOSE, Vol. SE-S, No. 3, May 1979, 177-187.

Hevner A., 1980;
“Query Processing in Distributed Data Base Systems”, Ph.D.
thesis, Univ. of Minnesota, 1980.

Horowitz, 1985;
Fundamentals of Co puter a, Second Edition,
Computer Science &ss.

Ibarakl T., Kameda T., 1984;
“On the Optimal Nesting Order for Computing N-Relational
Joins”, ACM TODS, Vol. 9, No. 3, Sept. 1984, pp. 482-
502.

153

Kim W., 1985;
“Global Optimjzation of Relational Queries: A First Step”, in
Querv Process me in Diwuted I&& Base Svste ms, Edited
by Kim, Reinir and Batory, Springer-Verlag, 1985, pp. 207-
216.

Lohman G.M., et al., 1985;
“Query Processing in R*“, In Ouerv Processing in Datw
w, Edited by Kim W., Reiner D., Batory D., Springer
Verlag, 1985, pp. 31-47.

Mackert L.F., Lohman G.M.. 1986a;
“R* Optimizer Validation and Performance Evaluation for
Distributed Queries”, Proc. VLDB, 1986,149-159.

Mackert L.F., Lehman G.M., 19866;
“R* Optimizer Validation and Performance Evaluation for
Local Queries”, Proc. ACM SIGMOD, 1986.84-95.

Mahmoud S.A., Riordon J.S., Toth K.C., 1979;
“Distributed Database Partitioning and Query Processing”,
IFIP-TC-2, Venice, Italy, 1979,32-51.

Nguyen, N.G., 1981;
“Distributed Query Management for a Local Network”, Proc.
2nd Int. Conf. on Distributed Computing Systems, Paris,
France, April 1981, 188-196.

Ounegbe E., Rahimi S., Hevner A., 1983;
“Local Query Translation and Optimization in a Distributed
System”, Proc. NCC, July 1983, pp. 229-239.

Perizzo W., 1984;
“A Method for Processing Distributed Database Queries”,
IEEE TOSE, Vol. SE-lo, No. 4, July 1984,466-471.

Reingold E., 1977;
. . Combinatorial AJgpnthms. Theorv and Pracnce, Prentice-

Hall, 1977.
Reuter A., 1986;

“Load Control and Load Balancing in a Shared Database
Management System”, Proc. of the Int. Conf. on Data
Engineering, Los Angeles, CA, USA, Feb. 1986, pp. 188-
197.

Segev A., 1986;
“Global Heuristics for Distributed Query Optimization”, IEEE
INFOCOM’86, 388-394.

Selinger P.G., Adiba M., 1980;
“Access Path Selection in Distributed Data Base Management
Systems”, Proc. of the First Int. Conf. on Data Bases,
Aberdeen, 1980.

Sellis T-K., i988;
“Multiple-Query Optimization”, ACM TODS, Vol. 13, No.
1, Ma&h 1988; 23152.

Su S.Y.W., et al., 1986;
“A Distributed Query Processing Strategy Using
Decomposition, Pipelining and Intermediate Results Sharing
Techniques”, Proc. of the Int. Conf. on Data Engineering,
Los Angeles, CA, USA, Feb. 1986, pp. 94-102.

Toth K.C., Mahmoud S.A., Riordon J.S., 1982;
“Query Processing Strategies in a Distr. DB Architecture”,
Distributed Data Sharing Systems, North Holland Pubi.
Comp., 1982, 117-134.

Wong E., 1982;
“A Statistical Approach to Incomplete Information in
Database Systems”, ACM TODS, Vol. 7, No. 3, Sept. 1982,
470-488.

Wong E., 1986;
“Dynamic Rematerialization: Processing Distr, Queries Using
Redundant Data”, in The INGRES Papers: Anatomy of a
Relational DB System, Stonebraker M., Ed., Addison-
Wesley Publ. Comp. Inc., 1986, 215-224.

Yu C., e<al., 1982a; -
“Two surprising results in Processing SimpIe Queries in
Distributed Databases”, IEEE CQMPSAC, Nov. 1982,377-
384.

Yu C., et al., 1982b;
“A Promising Approach to Distributed Query Processing”,
Berkeley Conf. on Distr. DBs, Feb. 1982.363-390.

Yu C., et a%, 1983;
“On the design of a Distributed Query Processing Strategy”,
Proc. of the ACM SIGMOD Conf., May 1983, pp. 30-39.

Yu C.T.. 1985:
“Dis&bu& Database Query Processing”, Query Processing in Data
P&e.lms, Edited by Kim W., Reiner D.. Batory D., Springer Verlag,

Yu C., et al., 1986;
“Adaptive Techniques for Distributed Query Optimization”,
Proc. of the Int. Conf. on Data Engineering, Los Angeles,
CA, USA, Feb. 1986, pp. 86-93.

APPENDIX

The appendix outlines the modeled application in terms of
relations, queries and parameters describing information
processors and the network. The modeled application of the
DDB is claimed to be realistic and one for which available
networking and processing resources are assumed to be modest.
The data base is of a type needed to support an information
management system for a medium size company having five
geographically separated offices. The company utilizes services
of a public network to which it is connected through rather slow
connections ranging data transfer rates from 1200 to 9600
bits&c. Information processors are minicomputers in the VAX
750 to 785 range. It is assumed that a CPU processing delay
depends primarily on the delay caused by access to the
secondary storage devices. Disks are assumed to be comparable
to RA8 1 disk packs.

The queries are of a type which might be utilized in a
management information system. They range from simple ,
queries referencing only one or two relations to queries which
are processed through a significant number of joins and/or
unions. The number of modeled queries is 21. They reference
relations, some of which are horizontally partitioned, with
cardinalities ranging from a few tuples to tens of thousands of
tuples. Relations, information processor parameters and some
sample queries are shown below.

NETWORK-

The delay in seconds and dollar cost of transferring a unit of
data (byte) between any two information processors is shown
below. The dollar cost is comparable to that of the DATAPAC
network. Delays are based on the assumption that information
processors are connected to the network using modems with
rates of either 1200 or 2400 bits/second. Only the connection
between MONAXW and MONAXC! is a connection with a rate
of 9600 bits/second.

DOLLAR COST TO TRANSFER A UNIT OF DATA
($ / 1000 bytes)

r 1 I MONWI MONC I MONR 1 HOHFX I HOEDM

154

INFORMATION PROCESSOR PARAMETERS

Information processors are assumed to be of capacities
comparabfe to those of the VAX family of computers. The
secondary storage devices attached to the processors are of
storage capacities and delays comparable to those of RA81 disk
pack with 28 msec average seek time, 8.3 msec average latency
and 17 megabits/set data transfer rate. Data is stored in pages of
1024 bytes each. It is assumed that each 512 bytes of retrieved
data incurs one disc access with one track seek (28 msec) and
8.3 msec latency, This is prorated over one byte, giving a delay
of approximately O.OCKKl35 set/byte due to access to secondary
storage devices. Further slow down by a factor of 1.5 is
assumed to be due to processing of data by other applications
coexisting within the time-sharing environment. The dollar cost
ranges between $0.9 to $1.2 per 100,000 bytes of data
transferred to/from the secondary storage devices.

RELATIONS

Relations are listed using the following format. The relation
name is followed by its cardinality enclosed in parentheses and
then by a list of attribute names. Note that “-C” at the end of an
attribute name stands for a “-CODE”.

OFFICE (5): OFF#, OFF-NAME, LOCATION
DEPT (30): DEPI’#, DEPT-NAME
OFFICE-DEPT (30): OFF#, DEPT#
DEPT-POSITION (120): DEPT#, POSITION-C, POSITION

_NUM, POSNLIM-FILL
EMP (240): EMP#, POSITION-C, PAY-RATE.

START-DATE, END-DATE, TERMINATE-C,
EXPERIENCE-C

DEPT-EMp (240): DEl’T#, EMP#
JOB-CUSTOMER (10): JOB#. CUST#, JOB-NAME.

JOB-LOCATION
JOB-OFFICE (10): JOB#, OFF#, HQ#
EMP-JOB (650): EMP#, JOB#, JOB-POS-C,

PERCENT-TIME. START-DATE. END-DATE
JOB-PHASE(100): JOB& l%ASE;C, PROPOSE-DATE,

START-DATE, END-DATE
JO&-pWIEC;AL (2500): JOB#, ITEM#, QTY, PHASE-C,

JOB-MANPOWER (300): JOB#, PHASE-C, POSITION-C,
RATE-CHARGED, HOURS

ITEMS (7000): ITEM#, ITEM-NAME, WEIGHT,
ITEM-DESCRIPTION

SUPPLY-ORDER (1000): JOB#, PG#
PO-SUPPLIER (1000): PO!+, SUPPLIER#, PO-STATUS-C
PO (1000): Po#, ITEM#, Ql-Y, ORDER-DATE.

DELIVERY-DATE, PRICE

PO-RCVD (7000): Po#, lTEM#, QTY, DATE
QUOTES (10000): ITEM#. SUPPLIER#. QTY,

QUOTE_PRICE, DATE
SUPPLY (10000): ITEM#,SUPPLIER#
SUPPLIER (50): SUPPLIER++. SUP-NAME. ADDRESS,

STATUS-C .
CUSTOMER (10): CUSTOMER#, CUST-NAME,

ADDRESS, STATUS-C

OUERIES

Three out of the 21 modeled queries are shown in English
and also in their conjunctive normal for&.

“List all currently employed programmers in offices Ouerv I:
MONAXW and MONREAL. List employee, department and
office numbers and also the department name,”

(EMP.POSITION-C = “p(-jM”
(OFFICE-DEPT.DEPT# = DEPT-EMP.DEm# ; i%
(DEPT-EMP.EMP# = EMP-EMP#
(DEPT-EMP.DEPF# = DEff+DEPT# 1%
(OFFICEDEPT.DEPT# = DEPT.DEPT# >

Target attributes: EMP.EMP#, DEPT.DEPT#,
OFFICE-DEPT.OFF#, DEPT.NAME

Query 2: “Find employees who work on a job with a job
number “JOB02”. List employee, department and office
numbers and also the department name.”

(EMP.EMP# = EMP_JOB.EMP#) AND
(DEPT-EMP.EMP# = EMP,EMP#
@EPT.DEPT# = DEPT-EMP.DEPT+?)%%
(EMP_JOB.JOB# = “JOB,,“)

Target attributes: DEPT_EMP.EMP#, DEPT.DEPT#,
DEPT.NAME, OFFICE-DEPT.OFF#

-3: “Find jobs worked on by employees for a given
department with the number “DEPT2”. For each employee list
the job numbers currently worked on, job phases. job position
code, percent time and start and end dates. Also list the office
number for the office managing the job. employee numbers and
the department name.”

(EMP-JOB.EMP# = DEPT.-EMP.EMP#
(DEPT-EMP.DEPT# = DEPT.DEPT#
(EMP-JOB.JOB# = JOB-OFFICE.JOB#
(DEPT-EMP.DEPT# = “DEPT2”)

Target attributes: DEPT.DEPT-NAME, DEPT-EMP.EMP#,
JOB-OFFICE.JOB#, EMP-JOB.JOB-POS-C,
EMP-JOB.PERCENT_TIME, EMP-JOB.START-DATE,
EMP-JOB.END-DATE

t55

