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ABSTRACT 

This paper examines heuristic algorithms for processing 
distributed queries using generalized joins. As this optimization 
problem is NP-hard heuristic algorithms are deemed to be 
justified. A heuristic algorithm to form/formulate strategies to 
process queries is presented. It has a special property in that its 
overhead can be “controlled”: The higher its overhead the better 
the strategies it produces. Modeling & a test-bed of queries is 
used to demonstrate that there is a trade-off between the 
strategy’s execution and formulation delays. The modeling 
results also support the notion that simple greedy heuristic 
algorithms such as are proposed by many researchers are 
sufficient in that they are likely to lead to near-optimal strategies 
and that increasing the overhead in forming strategies is only 
marginally beneficial. Both the strategy formulation and 
execution delays are examined in relation to the number of 
operations specified by the strategy and the total sire of partial 
results. 

1. INTRODUCTION 

Although researchers are currently turning their attention to 
multi-query optimization [Cellery, 1980; Ounegbe, 1983; Carey, 
1985; Reuter, 1986; Su, 1986; Kim, 1986; Sellis, 19881 and 
dynamic query processing [Nguyen, 1981; Yu, 1983,1986; 
Wong, 1986; Bodorik, 1988b, 1988~1, most research on 
distributed query processing assumes a single query 
environment and static processing. In a single query 
environment, performance of a single query is optimized, while 
static processing implies that an optimized strategy is not 
modified (it remains static) once its execution commences. 
Furthermore, most research concentrates on an important class 
of queries, the Select-boject-loin (SPJ) queries [Ceri, 19841. 

Reducing the size of relations by semi-joins has received a 
great deal of attention [Hevner, 1979; Bernstein, 1981; Apers, 
1983; Perizzo, 1984; Yu, 1982a, 1982b, 1985; C&,1986]. 
Although the use of semi-joins has generally been accepted as a 
good processing tacticz, it has also been recognized [Bernstein, 
198 1; Epstein, 19801 that semi-join and generalized join 
processing tactics will have to be integrated. 

Epstein et al. [1978] proposed one of the earliest methods 
which uses joins as processing tactic. Their algorithm which is 
an adaptation of the optimizing algorithm for the INGRBS 
relational DBMS to the distributed environment [Epstein, 19861. 
A join processing heuristic algorithm for the ADD [Mahmoud, 
1979; Toth, 19821, first decomposes a query into a “Class A” 

lThis research has been supported in part by a grant from the Natural 
Science and Engineering Research Council of Canada. 
2There are some exceptions such as Lehman [1985]. 
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sub-queries which produce results processed by a sub-optimal 
heuristic. [Daniels, 1982; Selinger, 1980; Lehman, 1985; 
Mackert, 1986a, 1986b] describe optimization of queries in 
System R*. The optimizer generates alternative shrategies as is 
performed for the System R, but modified for the distributed 
environment. Dynamic programming is used to generate 
alternative strategies, while detailed cost calculations, which 
include both the network and CPU processing costs, are used to 
evaluate alternatives for executing a join. 

To optimize a distributed query implies that an optimizing 
algorithm formulates/forms a strategy, which is a sequence of 
relational operations and locations for their execution, to process 
a given query. As various sub-problems dealing with 
optimizing queries processed by semi-join or join processing 
tactics have been shown to be NP-hard [Hevner, 1980; Yu, 
1982a, 1982b; Gavish, 1982, Segev, 1986; Bodorik, 19871, 
most algorithms to optimize strategies are heuristic. Although 
various heuristic algorithms have been proposed, in particular 
greedy [Horowitz, 19851 heuristic algorithms, relatively little 
attention has been paid to their “performance”. Some of the 
algorithms were evaluated to determine the delay induced 
through execution of strategies they produce’. None of the 
algorithms were evaluated, however, to determine how close 
execution delays of “their” strategies are in comparison to the 
delays of optimal strategies. Moreover, for all of these 
algorithms it is assumed that the strategy formulation delay is 
negligible in comparison to its (the strategy’s) execution delay. 
It is these two issues that are primarily investigated in this paper 
for a DDB in which partitioned relations are permitted. 

For the purpose of this investigation it is assumed that the 
query response time includes not only delays due to execution of 
strategies but also delays due to their formulation. An algorithm 
with a property, adopted from Artificial Intelligence research, in 
that its overhead can be “controlled” is presented. Modeling on 
a test-bed of sample queries is used to examine (i) existence of a 
trade-off between the strategy’s performance/cost and overhead 
expended in its formulation and (ii) a notion that simple greedy 
heuristic algorithms, such as those that have been proposed by 
many researchers, are sufficient in that they are likely to lead to 
near-optimal strategies. Both the strategy formulation and 
execution delays are examined in relation to the number of 
operations specified by the strategy and the total size of partial 
results. 

lFor example, Black’s [1982] heuristic algorithm to formulate semi-join 
programs is claimed to produce strategies which induce lower delay than that 
of strategies produced by the algorithm for SDD-I [Bernstein, 19811. An 
algorithm proposed for semi-join programs in [Yu, 19831 is claimed to 
produce strategies which have a lower execution delay than that of strategies 
produced by algorithms discussed in IBernstein, 19811 and [IHack. 1982]. 
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The following section presents assumptions for distributed 
query processing. The presentation of the heuristic algorithm is 
followed by the description of the modeled distributed 
application and the sample queries. Finally, presentation and 
analvsis of the modeline results is followed bv the summarv and 
conclusions. The Appeidix includes further details describing 
the parameters of the modelled application. 

2. DISTRIBUTED PROCESSING MODEL 

This section outlines a distributed query processing model’ 
in order to establish a framework for presentation and treatment 
of the heuristic algorithms. As is usual with the treatment of 
processing distributed queries, several assumptions on the query 
form and its representation are made. 

RELATIONS AND RELATIONAL OPERATIONS 

Relations may be partitioned horizontally and/or vertically. 
Composition of a vertically partitioned relation is achieved by an 
equi-join. Composition of a horizontally partitioned relation is 
achieved through a union. A join of two horizontally partitioned 
relations is always preceded by a union to compose at least one 
of the horizontally partitioned relations. Afragmented join is 
available for a join of a non-fragmented relation with a 
horizontally fragmented relation. The non-fragmented relation is 
broadcast to the fragments of the partitioned relation. A “local” 
join is executed as soon as the non-partitioned relation arrives to 
a fragment’s location. Consequently, a fragmented join is a 
collection of joins of the non-partitioned relation with partitions 
of the other relation. The result is a relation which is 
horizontally partitioned. 

DISTRIBUTED QUERY PROCESSLNG 

A query is assumed to be in the conjunctive normal form 
such that each term/formula has at most two relational variables. 
The two-variable terms are processed by joins. As one-variable 
terms are processed first in order to reduce the size of relations 
which are operands of expensive joins, it is also assumed that all 
of the query’s terms are two-variable. Each term has a 
selectivity factor which is used in estimation of partial results’ 
sizes [Epstein, 1980; Bernstein, 1981; Wang. 19821. A query 
satisfying these assumptions can be represented by a hyper-edge 
graph in which vertices represent relations and edges represent 
the two-variable terms/formulas.2 

L&t 
Q; (Jttt) .R2epr,esRe;t the query where 

- I n . . . 1s the set of relations referenced by 
the query; 

E = (PI, P2, . . . . Pm) . . . is the set of two-variable terms; 
n .., dpdtes the number of relations referenced by the query 

m . . . denotes the number of two-variable terms. 

Each term h is of the form (Ri.a 8 R].b), where Ri, R] E V, 
Rt.a and Rj.b are attributes of Ri, Rj, respectively; and 8 E ( =, 
c, >, I, 2 ) is an arithmetic relational operator. Also let 

fk . . . denote the selectivity factor of the term Pk; 

lFor details see [Bodorik, 19851. 
21t is convenient to combine terms applying to the same two relational 
variables (relations) into a conjunction of these terms and represent it by one 
edge in the graph. In this way hyper-edges can be removed. 

c[Ri] . . . denote the cardinality of the relation R,; 
w[Ri] . . . denote the “width” of the relation Ri, i.e., the total 

number of bytes taken by attribute values of each tuple 
in Ri; and 

s[Ri] . . . denwo;iihe size of the relation Ri; sIRi] = c[Ri] * 

For convenience in determining the size of partial results it is 
assumed that the values of attributes are distributed uniformly 
and independently of each other. The query’s 
terms/fotmulae/predicates are also assumed to be independent in 
that no predicate is implied through others via transitivity. For 
each of the two-variable terms/predicates, referring say to 
relations Ri and Rj, there is a selectivity factor which determines 
the expected fractton of tuple pairs from Ri and R. which satisfy 
it. These assumptions imply that a partial result o f evaluating a 
set of predicates has the cardinality which is the product of the 
predicates’ selectivities and cardiialities of relations referred to 
by these predicates [Ibaraki, 19841. 

The cost of a network data transfer is assumed to be a linear 
function of the volume of transferred data. The unit cost of a 
network transfer is represented by a matrix. A matrix element 
represents the cost/delay to transfer a unit of data (byte) between 
two network locations. 

As restrictions and projections are assumed to be processed 
as soon as possible, a strategy is a specification of join 
operations1 on relations and the network locations of their 
execution. Obviously, some joins have operands which are 
results of other join executions. A relational operation is 
executed as soon as its operands are ready. A relation which is a 
result of a relational operator execution is transferred to another 
network location only when it is completely formed. 
Consequently, pipelining, which may improve the query 
response time is not considered. Semi-joins, as a processing 
tactic, are not considered either. 

The strategy’s execution cost is measured in term of its 
delay. Any time an operation is under consideration, the delay 
for the resulting relation is evaluated. It depends on the time 
when the operation can commence, i.e., when its operands are 
available, and on the delay to perform the operation itself. An 
operation can be either transferring a relation or relational 
operator execution. The delay to execute a relational operation 
depends on the resulting access to the secondary storage devices; 
thus it depends not only on the average delay to access such 
devices but also on the size of operands which must be 
retrieved, the size of the result which must be stored and the size 
of any intermediate results which must be formed. For example, 
to perform a projection on the relation R, the tuples of R must be 
retrieved, sorted and only then duplicate tuples may be removed. 
The delay to sort is included in the calculation of the projection’s 
result delay. 

3. HEURISTIC ALGORITHMS 

To address the question of whether or not a trade-off 
between the strategy formulation overhead and the strategy 
execution delay exists an optimizing algorithm with a 
controllable overhead has been developed. It is based on a 
simple idea that the solution space, the space of strategies, can 
be developed in “levels” as is proposed in [Reingold, 19771. 
The remainder of this section is devoted to the description of this 
algorithm. First, the representation of the space of strategies by 

1Discussion of unions is postponed to the end of section 3. 
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a graph is presented. The graph is a collection of non-disjoint 
trees, such that each tree represents a strategy. It is organized in 
Ievels such that each element of a level i represents a partial 
result of i join executions. The space of strategies is non- 
redundant, that is, each graph element represents a result of a 
unique strategy/sub-strategy. 

The algorithm OPT-GV, which constructs this complete 
space of strategies level by level, is described fmt. The 
presentation of the heuristic algorithm, which is a modification 
of the algorithm OPT-GV, then follows. The section concludes 
by discussing implications of existence of horizontally 
partitioned relations and inclusion of the union operator which is 
necessary for their processing. 

(R1.a 81 R 2.b) (R2.c t3 2 R 3.d) 

W X Y 
W, X, Y are network locations 

(a) Query graph for (RI.a 81 R 2.b) A (R2.c 82 R 3.d) 

w R 0 
Join in W 

Join-in W 

(2/$ A 

W X Y 

(b) Strategy representation with explicit joins 

w X Y 
(c) Strategy representation with implicit joins 

Figure 1 Query graph and strategy representation 

Identical sub 

(a) A common sub-strategy for two strategies 

W X Y 

(b) Strategies with merged trees (sub-strategies) 

Figure 2 Graph representation of strategies 

SPACE OF STRATEGIES 

Recall that a strategy specifies the sequence and network 
locations of join executions. The space of strategies can 
therefore be represented by a collection of trees, which are not 
disjoint, such that each tree represents a strategy. Figure l(b) 
shows the usual representation of a strategy by a bee. Since 
restrictions and projections are assumed to be processed as soon 
as possible, they are excluded from the tree representation. As 
the only relational operations under considerations are joins, the 
graphical representation can be simplified by their removal. 
Figure l(c) shows the strategy’s simplified tree representation. 
The leaves are assumed to be relations referenced by the query 
while non-leaf nodes are results of join operations. Figure 2 
shows a query and two strategies to process it. The strategies 
are such that they have a common sub-strategy to derive an 
identical partial result, that is, an identical relation stored by the 
same information processor. Instead of representing each 
strategy separately, their identical portions can be merged 
together to obtain a graphical representation of both strategies as 
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is shown in Figure 2(c). In this way a space of strategies can be 
developed such that each unique strategy/sub-strategy appears 
only once in the solution space. 

ALGORITHM FOR A COMPLETE SPACE OF STRATEGIES 

The space of strategies can be simply viewed to consist of 
levels 0, 1, . . . . n-l. Each level has elements which represent 
relations. An element of level i represents a relation in a 
particular network loc+ion which is a result of a unique sub- 
strategy containing exactly i joins. The elements of the level 
zero represent “original” relations referenced by the query, 
which are assumed to have been “processed” by restrictions and 
projections in order to reduce their size. Elements of the level n- 
1, called final elements, represent the query result, each derived 
by a unique strategy. Recall that n is the number of relations 
referenced by the query and n-l is the number of joins required 
to process it. 

Query q in a conjunctive normal form, selectivities, INPUT: 
statistical information about the relations, network locations of 
relations, and delays due to CPU processing and network data 
transfer per unit of data. 

Space of strategies represented by a graph. OUTPUT: 
METHOD: The graph of strategies consists of elements 

organized in levels 0, 1, . . . . m, where m is the number of 
joins required to process the query. Elements of the level 0 
represent relations referred to by the query. An element of a 
level p represents a relation which is a result of a unique 
strategy consisting of exactly p joins. The level p is created 
from elements/relations of levels px and pY. such that p = 1 + 
px + py, that is from two relations such that one is a result of 
px whrle the other the result of p,, join executions, 
respectively. 

-. 

STEp 1: Create elements of the level 0, which represent 
relations referred to bv the auerv. Calculate their cost (delav) 
and size resulting from the b&ion of restrictions and . ’ 
projections. Projections remove attributes which are neither 
target nor joining (not referred to be any of the query’s two- 
variable terms). 

STEP 2: Do Step (3) for p = 2,3, ..,, m, to create the level p on 
each iteration. Each level contains elements which represent 
relations which are results of p join executions. 

STEp 3: Insert elements representing results of p join 
executions into the level p of the graph of strategies by 
executing Step (4) for px = p-l, p-2, . . . . Lp/2J. 

STEP 4: Let the graph level pY be such that p = 1 + px + pY 
For each element, representing a relation Ri of the level px, 
search the level p 

4 
for elements representing relations which 

can be joined wit Rl. For each such element, representing 
say a relation Rj, create z new elements, each representing the 
result of the join of R, with R* executed at one of the z unique 
network locations (executed l! y one of the z possible 
information processor). Calculate their size and delays and 
insert them in the level p of the graph of strategies and save 
information about the join operands used to create them. Each 
element represents the result of a unique strategy consisting of 
p joins. 

(NOTE that the graph’s level m contains elements which 
represent the query result, each obtained by a unique strategy. 
To find the optimal strategy, the level m is searched for the 
minimum cost element/relation.) 

Figure 3 Algorithm OPT-GV 

The graph can be built in levels. Elements of the level 0 arc 
created first; they represent the relations referenced by the query 
such that they are assumed to have been processed by 
restrictions and projections. Then levels p = 1,2, . . . . n-l are 
built in that order. An element of a level p, p > 0, represents a 
partial result of p join executions, located in a specific network 
location. It can be constructed from two elements of levels px 
andpy,p,~Oandpy~O,suchthatp=l +px+py. Thetwo 
elements represent partial results of px and pY joins, respectively; 
they are operands of the join execution resultmg in the relation 
represented by the level p element. An outline of the algorithm, 
called OPT-GV (OPT&al for a Global View)t, is showd in 
Figure 3, For details see [Bodorik, 19851. Once the space of 
strategies is constructed, the optimal strategy can be found by 
searching the level n-l for the minimum cost element. The level 
n-l contains elements representing the query result such that 
each is obtained by a unique strategy. 

Note that the algorithm develops a non-redundant space of 
strategies in that each of its elements is a result of a unique 
strategy/sub-strategy. The whole solution space, however, has 
to be stored to find the optimal strategy. If the solution space 
were represented by a decision tree and developed through a tree 
search such as the depth-first search, some sub-strategies would 
bc examined/built many times over, but the entire tree would not 
have to be stored at one time. 

HEURISTIC ALGORlTHM 

Consider now a greedy heuristic for the minimization 
problem under consideration. Since the problem is to decide on 
the sequence and network locations for executing joins, the 
heuristic chooses the least expensive choice regardless of 
consequences on the choices for the remainder of the strategy. 
Thus, the heuristic chooses that join execution which incurs the 
minimal cost. The query now can be modified to represent this 
choice. The two operands of the selected join arc removed and 
replaced by the join result and the process repeats; the heuristic 
again chooses the “cheapest” join. This repeats until the query 
result is obtained. In the context of the previously described 
space of strategies this heuristic procedure implies that only the 
first two levels of the solution space are developed. The 
minimum cost partial result of one join is chosen, the query is 
modified and the process repeats. 

A simple modification to the algorithm which builds the 
solution space also yields the greedy heuristic. In fact, the 
modification can be such as to yield a range of heuristic 
algorithms with different levels of overhead. Instead of 
developing only the levels 0 and 1 of the solution space, the 
algorithm may develop the levels 0, 1, . . . . N, N < n - 1. The 
level N represents all possible results of N join executions. The 
cheapest result is chosen from this level and the sub-strategy to 
derive it is adopted as a part of the query processing strategy. 
The relations and two-variable terms processed by the sub- 
strategy are removed from the query and are replaced by the sub- 
strategy’s result. The process continues until the query result is 
obtained. This algorithm, called HEURISTIC, is outlined2 in 
Figure 4 and an example of one of its iterations is shown in 
Figure 5. It should be realized that if N is sufficiently large, 
i.e., N 2 n - 1, where n - 1 is is the number of joins required to 
process the query, the algorithm develops the whole solution 
space on the first iteration and finds the query’s optimal strategy. 

klobal View wmoud, 19791 of a distributed database is such that it does 
not contain relations which are partitioned horizontally and/or vertically. 
2The efficiency of the algorithm is further improved by retaining, whenever 
possible, information (graph elements) from one iteration to another. 
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mUT: N, the number of levels of the partial graph of 
strategies to be created on each iteration. Query q in a 
conjunctive normal form, selectivities, statistical information 
about the relations, network locations of relations, and delays 
due to CPU processing and network data transfer per unit of 
data. 

A strategy to process the given query. OUTPUT: 
&4ETHOD: There are three repeatedly executed phases: 

a) Create the levels 0, 1, . . . . N of the graph of strategies 
using the algorithm OPT-GV. 
b) Find the minimum cost partial result of the level N. Save 
the sub-strategy for this relation (it is adopted as part of the 
query processing strategy). 
c) Modify the query by (i) removing relations and two- 
variable terms processed by the selected sub-strategy and (ii) 
adding the relation, the result of the selected sub-strategy and 
modifying the two-variable terms. Repeat (a) to (c) until the 
strategy to process the query is completely derived. 

y 1: Create a partial graph of ttrategies consisting of levels 
N, possibly by the algonthm OPT-GV adapted for 

&is’&k. 
w 2: Search the level N for the minimum cost relation. 

Save the sub-strategy to derive this relation; it will become the 
part of the query processing strategy. 

STEp 3: Remove any relations and two-variable terms 
processed by the selected sub-strategy from the query. 
Augment the query by the result of the sub-strategy and 
modify the remaining two-variable terms. Assume for 
example, that the selected sub-strategy processes two-variable 
terms (R1.a 81 R2.b) and (R2.c 81 R3.d) by two joins 
resulting in the relation R’. These two terms and relations RI, 
R2 and R3 are removed from the query, the query is 
augmented by the relation R’, the sub-strategy’s result. In 
addition, any of the query’s two-variable terms which refers to 
exactly one of the relations removed from the query, say Rk, is 
modified to refer to the sub-strategy’s result, the relation R’. 
For example, a two-variable term (R1.a 83 Rk.e) is modified 
t0 @‘.a 83 &A). 

Steps (1) to (3) are repeated until only one relation remains (the 
query result). 

Figure 4 Algorithm HEURISTIC 

The parameter N specifies the number of levels to be 
developed on each iteration. It is expected that as the value of N 
increases, execution delays of strategies decrease. This is 
because the amount of information used in their formulation is 
increased; however, overhead also increases. 

The algorithm just described was used on sample queries of 
a particular application. The modeled application, queries, and 
modeling results are described in subsequent sections. As the 
modeled application includes relations which are horizontally 
partitioned, their implications on the space of strategies and the 
algorithms are briefly discussed. 

HORIZONTALLY PARmONED RELATIONS 

A horizontally partitioned relation, or a fragmented relation 
for short, is assumed to be processed in the following way. 
Any restrictions and/or projections are performed on each 
partition/fragment as soon as possible. A join of two 
fragmented relations is always preceded by a union of fragments 
of at least one of the operand relations. A join of a non- 
partitioned relation with a partitioned one leads to a “fragmented” 

join. A copy of the non-fragmented relation is del; vered to each 
of the fragments for a local join. The result of a frAgmented join 
is a fragmented relation which is ready for a union of partitions 
or another join. 

The above assumptions regarding processing of fragmented 
relations have the following implications on the space of 
strategies and algorithms. A join of two non-fragmented 
relations or a union of fragments is considered to be one 
operation. A fragmented join is also considered to be one 
operation. The space of strategies is still viewed 03 be organized 
and built in levels. A level p contains elements, such that each 
represents the result of a unique sub-strategy which consists of 
exactly p operations. 

The algorithms under discussion were used in modeling of 
an application of a Distributed Data Base @DB) [Bodorik, 
19851. The results of this modeling are described in the 
following sections. Algorithms as used in modeling had one 
additional restiction in that a join of non-fragmented relations, 
or a union of fragments can be executed only at a network 
location of one of its operands. 

w X Y -, a!> 

0 
R4 

(R1.a e1 &.b 1 A @2-c e2 R3.d 1 A (R3.e 83 R4 f ) 

W, X, Y and Z are network locations 

(a) Query graph 

minimum cost element 
I 

W X Y Z 
(b) Levels (portions of) 0, 1 and 2 of the graph 

of strategies 

Y Z 

QgTy@ 
3 . 

( C ) Modified query to reflect the adoption 
of the sub-strategy which produces R22 

Figure 5 One iteration of the algorithm 
HEURISTIC with N = 2 
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4. MODELED APPLICATION 

This section contains a brief outline of the modeled 
application of the DDB. A more detailed outline can be found in 
Appendix, while detailed description can be found in [Bodorik, 
19851. 

The modeled application of the DDB is claimed to be realistic 
and one for which available networking and processing 
resources are assumed to be modest. The data base is of a type 
needed to support an information management system for a 
medium size company having five geographically separated 
offices. The company utilizes services of a public network to 
which it is connected through rather slow connections ranging in 
data transfer rate from 1200 to 9600 bits/set. Information 
processors are minicomputers in the VAX 750 to 785 range. 

The 21 modeled queries are of a type which might be utilized 
in a management information system. They range from simple 
queries referencing only one or two relations to queries which 
are processed through a significant number of joins and/or 
unions. They reference relations, some of which are 
horizontally partitioned, with cardinalities ranging from a few 
tuples to tens of thousands of tuples. 

5. MODELING RESULTS 

Recall that the heuristic algorithm HEURISTIC has a 
parameter N which is used to control the amount of information 
for “look-ahead” when making decisions on joins and/or unions 
and their locations of execution. When deciding on which 
join/union and where it should be executed, N controls the 
number of levels that are considered in each iteration. An 
increase in the value of N results in an increase in overhead, but 
it is also anticipated that the execution delay of strategies would 
be lower. If N is sufficiently large, the algorithm develops a 
complete solution space and determines the minimum delay 
strategy. To examine the relationship between the strategy 
formulation and execution delays for the modeled application, 
the algorithm HEURISTIC was used on a sample of 21 queries 
which were chosen in such a way as to give a representative 
range for the number of operations which are required for their 
execution. From the 21 modeled queries: 

3 require 2 operations; 6 require 3 operations; 
5 require 4 operations; 3 require 5 operations; 
2 require 6 operations; and 2 require 7 operations. 

One would expect that, in general, most queries would 
require between two to five joins and/or unions while the 
number of queries which require six or seven operations would 
be smaller. There would be a few queries requiring one or more 
than seven joins and/or unions; none of the modeled queries fall 
into this category. 

m ..%note the number of modeled queries ( m = 21 ); 
ql . . . denote the ith query; 

Tf[i, N=x] . . . denote the delay to formulate a strategy for the 
query ql such that the algorithm uses the value of x for the 
parameter N, 

Te[i, N=x] . . . denote the execution delay of the strategy, 
formulated by the algorithm using N=x, to process the query 
qi; 

Af[N=x] . . . denote the average delay to formulate strategies with 
the parameter N having the value of x for each query: 

Af[N=x] = 5 Tf[i, N=x] / m 
i=l 

A,[N=x] . . . denote the average execution delay of strategies 
formulated by the algorithm with the parameter N having the 
value of x: 

Ae[N=x] = ? Te[i, N=xl / m 
i=l 

Tt[i, N=x] . . . denote the query response time for the query qi 
which is processed by a strategy formulated by the algorithm 
using N = x: 
Tt[i, N=x] = Tf[i, N=x] + T,[i, N=x] 

At[N=x] . . . denote the average query response time over all m 
queries, such that each query is processed by a strategy 
formulated with the value of x for the parameter N: 

At[N=x] = 5 Tt[i, N=x] /m = AfEN=x] + Ae[N=x] 
i=l 

EXECUTION AND FORMULATION DELAYS 

Figure 6 shows the average execution delay, Ae[N=x], for 
strategies formulated with N = 1, 2, .,,, 7. The delays are 
shown in the graphical form and also in the form of a table. 
Recall that for any query which requires n - 1 operations, the 
algorithm HEURISTIC finds the minimum execution delay 
strategy if it is used with a parameter N such that 

Ae[N=x] 
(seconds) 

22.00. 
21.00. 

20.00. -e-o 

I I.“” 

1 2 3 4 5 6 7 
X 

Figure 6 Average strategy execution delay, Ae[N=x] 

N 2 n - 1. The modeled queries are such that the algorithm 
finds optimal strategies ford queries when N = 7. In other 
words, each of the modeled queries requires at most 7 multi- 
operand relational operations (joins and/or unions) for its 
execution. 

It is evident from Figure 6 that, as expected, an increase in N 
results in strategies of lower execution delay. It may therefore 
be tempting to choose a sufficiently large N so that the algorithm 
finds the minimum execution delay strategies. The high strategy 
formulation delay, however, makes this prohibitive. Figure 7 
shows the average delay to formulate the strategies as a function 
of N. Clearly, it is unreasonable to accept an average delay of 
about 26 seconds in formulating strategies which have an 
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average execution delay of 20 seconds. These values are shown 
in figures 6 and 7, respectively, for N = 7. Increasing the value 
of N does decrease the strategies’ execution delay, but this is at 
the expense of increased delay in their formulation. 

QUERY RESPONSE TIME 

It was already stated that the modeled application 
includes information processors comparable to the VAX family 
of computers. As the formulation of strategies and modeling 
was performed using a VAX-785 computer system, it is’ 
reasonable to calculate the average query response time using the 
formulation delay derived in modeling. Figure 8 shows the total 
strategy formulation and execution delay, At[N=x], for x = 1.2, 
. . . . 7. The figure indicates that for this application the heuristic 
a31gorithm IIlWRISTIC should be used with the parameter N = 

Let 

fi . . . denote that value of N for which 

II 112 13 14 15 16 I7 
A$=x] I] 0.191 0.351 0.791 2.011 5.81) 13.591 23.56 

Af[N=x] 
(seconds) 

25.00 - 

15.00.. / 
l 

lO.OO- 

/ 
5.00 -. 

0.00 a--* -y-y 4 
1 1 2 2 3 3 4 4 5 5 6 6 7 7 

Figure 7 Average strategy formulation delay, AAN=x] ’ Figure 7 Average strategy formulation delay, AAN=x] ’ 

II 1 12 I3 I4 15 I6 I7 
At[:=x] I] 24.981 23.111 21.991 22.971 26.171 33.951 43.92 

At[N=x] 
(seconds) 

45.00 - l 

40.00’. 
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20.00 l 1 
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Figure 8 Average query response time (in seconds), At[N=t] 

At&l = yi; ( A‘[N=x]. x = 1, 2, . . . . 7 ) 
X 

For this application, 

A&l = At[N=3] = 21.99 sec. 

Using N = 3 results in the minimum query response time 
from all At[N=x], x = 1,2, . . . . 7. On the average about 4 
percent of the query response time is spent in the formulation of 
strategies while 96 percent is spent in their execution. This 
average response time is only 1.08 times higher than the 
minimum execution delay of strategies which is Ae[N=7] = 
20.36 seconds. 

BEST ACHIEVABLE RESPONSE TIME 

It has been assumed thus far that the algorithm HEURISTIC 
is used with the same value for its parameter N for all of the 
queries. This does not lead to the minimum query response time 
as different values of N may be best for different queries. Let 

tt[i] . . . denote the minimal query response time fbr the query qj, 
which can be achieved using the algorithm HEUFUSTIC. It 
is the minimal delay which can be achieved for the query 
when both the strategy formulation and execution delays are 
under consideration: 

%t[i] = min ( Tt[i, N=x], x = 1, 2, .,., 7 ) ; 
(xl 

%f[i], ?e[i] . . . denote the respective formulation and execution 
components of the total delay ?&I: 

Lf;[i] = +di] + ?,[i] 

?t[N*] . . . denote the average query response time such that each 
query ql is processed by a strategy formulated with that 
value of N which leads to tt[i], i.e., 

/t;[N*, = 2 ?t[i] /m and 
i=l 

?f[N*], ‘ke[N*] . . . denote the average delays spent in 
formulating and executing such strategies, respectively: 

4;[N*] = ‘&N*] + +e[N*] , where 

?tfN*l = i!l +t#] / m and ‘&~*I = itl ?&l/m 

For the modeled application the above delays in seconds are: 

$[N*] = 21.52 ; +f[N*] = 0.53 ; and ‘k’e[N*] = 20.99 

The above average query response time, /t;[N* I = 2 1 S2 
seconds, is the best that can be achieved with the algorithm 
HEURISTIC for the modeled application of the DDB. On the 
average, 2.5 percent of the query response time is spent in 
formulating strategies while the remaining 97.5 percent is spent 
in their execution. It should be noted, however, that to achieve 
this response time the optimal value of N must be .known for a 
given query before the algorithm struts formulating its strategy. 
Although in reality the optimal value of N is not known, it was 
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already shown that when used with the specific value of N = 3, 
the averagequeryresponse time of the modeledqueriesis At[h k I] 2 I 3 1 4 1 5 1 6 1 7 
= AJN=31= 21.99 seconds. This is only 1.02 times higher Df[N=k] I] 0.141 0.411 1.791 11.871 24.16p24.22 
than-the best possible response time which can be achieved 
using the algorithm HEURISTIC, which is qt[N*] = 21.52 
seconds. Consequently, when the algorithm is used with N = 3 
for all queries, the average query response tie, A& = 
At[N=3] = 21.99 seconds, is not only close to the best 
achievable response time, ?‘t[N’], but also to the minimum 
execution delay of strategies which is Ae[N=7] = 20.36 
seconds. 

GREEDY HEURISTlC 

When the algorithm HEURISTIC is used with the parameter 
N = 1, it becomes a simple hill climbing heuristic which is 
similar in approach to those proposed in the scientific literature 
to optimize processing of distributed queries. Its average delay 
(i) due to the formulation of strategies can be found in Figure 6 
and (ii) due to the execution of strategies it formulates in Figure 
7. Its average query response time can be found in Figure 8. 
Although its query response time is marginally higher than that 
of the algorithm when used with N = 2,3 or 4, it is doubtful that 
the higher complexities arising due to a search through a more 
complete space of strategies are worth the effort This is even 
more apparent when it is realized that the space of strategies is 
developed using estimation techniques to predict (i) delays due 
to transfer of data over the network, (ii) delays due to access to 
the secondary storage devices and, in particular, (iii) sizes of 
results of relational operations. 

DELAYS, OPERATIONS AND SIZE OF RESULTS 

This section concludes with examining the relationship 
between the number of multi-operand relational operations (joins 
and unions) which are required to execute a query and its 
formulation and execution delays. The dependance of execution 
delays on the total size of partial results is also examined. The 
total size of partial results includes the size (ii bytes) of all 
relations accessed and produced by the strategy used to derive 
the query result. That is, it includes the size of relations referred 
to by the query, any intermediate results/relations of executing 
joins/unions, and also the relation which is the query result. Let 

& .,. denote the set of indices for those queries which require k 
operations for their execution and 

mk . . . denote the number of queries which require k operations 
(joins and unions) for their execution. In other words, mk is 
the cardinality of the set &: mk = l&l. 

Recall that there are m = 21 queries such that 

3 require 2 operations (m2 = 3); 
6 require 3 operations (m3 = 6); 
5 require 4 operations (m4 = 5); 
3 require 5 operations (ms = 3); 
2 require 6 operations (mg = 2); and 
2 require 7 operations (m7 = 2), 

for their execution, where operations are assumed to be joins 
and/or unions. Let 

Df[N=k] . . . denote the average delay, of the heuristic algorithm 
HEURISTIC using the parameter N = k. to formulate 
strategies for the mk queries which require k operations for 
their processing: 

(a) DdN=k] -- table form 
Df[N=k] 

140.00- 

120.00-' f 

100.00-~ 
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(b) DflN=k] -- regular scale 
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(c) Df[N=k] -- semi-log scale 

Figure 9 Average formulation delay (in seconds), Df[N=kl 

Dt[N=k] = C TfIi, N=k] / mk , where 
i 6 Qk 

TBi, N=kl is the delay incurred by HEURISTIC using N = 
k in formulating the strategy for the query qi, i E &; 

D,[N=k] . . . denote the average execution delay of strategies, 
formulated by HEURISTIC using the parameter N = k, for 
queries which require k operations for their processing: 

DJN=k] = C Te[i. N=k] / mk , where 
iE Qk 

Tc[i, N=k] is the execution delay of the strategy, formulated 
by HEURISTIC using the N = k. for the query qi, i E &. 

Note that since queries qi, where i e &, require k operations 
for their processing the algorithm HEURISTIC with N = k 
formulates the minimum delay (optimal) strategies for their 
execution. DfEN=k] and DJN=k] are the formulation and 
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execution delays of those strategies. The average formulation 
delay, DfIN=k], is shown in Figure 9(a) as a function of the 
number of operations, k. It is also shown using the semi-log 
scale in Figure 9(b). It appears to have an exponential shape and 
thus empirically supports the theorem that the problem under the 
consideration is NP-hard [Bodorik, 19871 and that the search for 
optimal strategies is not desirab1e.l 

D.$=kI II II 21.041 2 13 31.461 14 7.461 15 6.461 16 27.271 I7 32.20 

De[N=k] 
(seconds) 

0.00 4 I 
2 3 4 5 6 7 

Figure 10 Execution delay De[N=k] 
k 

The average execution delay, De[N=k], is shown in Figure 
10. The strategy execution delay does not appear to be a 
function of the number of operations which are required to 
process a query. This is somewhat surprising in that one would 
expect that queries which require a higher number of joins 
and/or unions would also have a higher strategy execution delay. 
A brief reflection on this observation suggests a likely and also 
obvious explanation that the execution delay depends not only 
on the number of operations but also on the size of relations, 
which include intermediate partial results, accessed in processing 
the query. An examination of execution delays of optimal 
strategies and the total size of partial results they create supports 
this conclusion. Let 

WI . . . denote the total size of partial results for the query qi 
when it is processed by the minimum delay strategy and 
also recall that 

‘?e[i]. . .denotes the delay of the minimum execution delay 
strategy for the query qi. 

Figure 11 shows execution delays &[i]) and also the total 
size of partial results (S[i]) for each query which is assumed to 
be processed by the minimum delay strategy. It also shows the 
execution delay versus the total size of partial results using a 
scatter diagram in a log-log scale. A least-squares line, 
calculated using the standard equations 

: te[i] =ma+ b 5 S[i] and 5 ( ?&I S[i] > = bifl S[i] , 
i=l i=l i=l 

lRecall that the search for optimal strategies is through a complete and non- 
redundant space of strategies. That is, the space of strategies represents only 
w strategies/sub-strategies. 

. . . index of query qi, i = 1,2,.. ., 21 
&[i] +, .~;~&~f;;~ds) of the minimum execution delay 

Sri]. . .the total size o/partial results produced by the minimum 
execution delay strategy for Ihe query 6 
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Figure 11 ?e[i] versus the total size of partial :results 

has a slope of b = 0.00075 and the “axis S[i]” intercept of a = - 
0.33. The correlation coefficient of the least square fit is r = 
0.82. Whereas the execution delay did not appear to have been 
dependent on the number of operations required I:O process the 
query, it seems to be dependent on the size of partial results. 
This is rather obvious in that the total size of partial results not 
only affects the volume of data accessed in the secondary storage 
devices, but it is also likely to affect the volume of data 
transferred over the network. Consequently, the strategy’s 
execution delay is likely to depend on the total size of partial 
results regardless of the information processor and network 
parameters. 

The two results discussed in the for-going discussion 
provide support for a two-phased approach to formulating 
strategies to process distributed queries [Bodorik, 1987, 1988al. 
The first phase finds that sequence or relational operations which 
minimizes the size of partial results. The second phase 
determines the network locations for their execution using an 
objective, such as minimization of the network data transfer 
delay, which is deemed to be appropriate for the intended 
environment. 

It should be stressed that the results presented herein are 
claimed to be applicable only to the environment of the modeled 
application and only for the described algorithms and their 
assumptions. Obviously, to generalize these results further 
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work is necessary. It should also be pointed out, however, that 
evaluating heuristic algorithms is exuemely difficult. Optimally, 
evaluation should be analytical and show that a heuristic 
algorithm is guaranteed to produce solutions which are within 
certain bounds of an optimal solution. Failing that, the 
evaluation should be probabilistic and show that generated 
solutions fall with a high nrobabilitv within certain bounds of 
optimal solutions. To&d best of the authors’ knowledge none 
of these two approaches were used in evaluating heuristic query 
optimizers proposed in the scientific literature. The next 
approach to consider may be statistical, either through modeling 
or, if at all possible, through implementing the algorithm and 
observing its performance within an environment of a real 
system. As is the case with modeling reported herein, however, 
to generalize such results is difficult because of the high number 
of parameters describing the distributed environment. 

6. SUMMARY AND CONCLUSIONS 

This paper examined use of heuristic algorithms which are 
used to formulate strategies to process distributed queries by 
joins. A heuristic algorithm with a special property in that its 
overhead can be “controlled” was presented. Modeling on a 
test-bed of queries was used to examine whether or not there 
exists a trade-off between the strategy’s performance and the 
overhead expended in its formulation. The results indicate that 
although there is a trade-off between the strategy formulation 
and execution delays, a simple greedy heuristic leads to near- 
optimal strategies and increasing overhead in forming a strategy 
appears to be only marginally beneficial. It thus confums an 
often made assumption that a simple heuristic algorithm is 
sufficient in optimizing distributed queries. 

Both the strategy formulation and execution delays were 
examined in relation to the number of operations and the total 
size of partial results. The formulation delay appears to be an 
exponential function of the number of joins and/or unions 
required to process the query and it confirms the fact that the 
problem of optimizing distributed queries is NP-hard. The 
strategy execution delay, at least for the modeled application, 
surprisingly does not appear to depend on the number of multi- 
operand relational operations used to process the query. It was 
shown, however, to be directly proportional to the total size of 
partial results, These results support the previously described 
two-phased formulation of strategies in which the first phase 
minimizes the total size of partial results. 
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APPENDIX 

The appendix outlines the modeled application in terms of 
relations, queries and parameters describing information 
processors and the network. The modeled application of the 
DDB is claimed to be realistic and one for which available 
networking and processing resources are assumed to be modest. 
The data base is of a type needed to support an information 
management system for a medium size company having five 
geographically separated offices. The company utilizes services 
of a public network to which it is connected through rather slow 
connections ranging data transfer rates from 1200 to 9600 
bits&c. Information processors are minicomputers in the VAX 
750 to 785 range. It is assumed that a CPU processing delay 
depends primarily on the delay caused by access to the 
secondary storage devices. Disks are assumed to be comparable 
to RA8 1 disk packs. 

The queries are of a type which might be utilized in a 
management information system. They range from simple , 
queries referencing only one or two relations to queries which 
are processed through a significant number of joins and/or 
unions. The number of modeled queries is 21. They reference 
relations, some of which are horizontally partitioned, with 
cardinalities ranging from a few tuples to tens of thousands of 
tuples. Relations, information processor parameters and some 
sample queries are shown below. 

NETWORK- 

The delay in seconds and dollar cost of transferring a unit of 
data (byte) between any two information processors is shown 
below. The dollar cost is comparable to that of the DATAPAC 
network. Delays are based on the assumption that information 
processors are connected to the network using modems with 
rates of either 1200 or 2400 bits/second. Only the connection 
between MONAXW and MONAXC! is a connection with a rate 
of 9600 bits/second. 

DOLLAR COST TO TRANSFER A UNIT OF DATA 
($ / 1000 bytes) 

r 1 I MONWI MONC I MONR 1 HOHFX I HOEDM 
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INFORMATION PROCESSOR PARAMETERS 

Information processors are assumed to be of capacities 
comparabfe to those of the VAX family of computers. The 
secondary storage devices attached to the processors are of 
storage capacities and delays comparable to those of RA81 disk 
pack with 28 msec average seek time, 8.3 msec average latency 
and 17 megabits/set data transfer rate. Data is stored in pages of 
1024 bytes each. It is assumed that each 512 bytes of retrieved 
data incurs one disc access with one track seek (28 msec) and 
8.3 msec latency, This is prorated over one byte, giving a delay 
of approximately O.OCKKl35 set/byte due to access to secondary 
storage devices. Further slow down by a factor of 1.5 is 
assumed to be due to processing of data by other applications 
coexisting within the time-sharing environment. The dollar cost 
ranges between $0.9 to $1.2 per 100,000 bytes of data 
transferred to/from the secondary storage devices. 

RELATIONS 

Relations are listed using the following format. The relation 
name is followed by its cardinality enclosed in parentheses and 
then by a list of attribute names. Note that “-C” at the end of an 
attribute name stands for a “-CODE”. 

OFFICE (5): OFF#, OFF-NAME, LOCATION 
DEPT (30): DEPI’#, DEPT-NAME 
OFFICE-DEPT (30): OFF#, DEPT# 
DEPT-POSITION (120): DEPT#, POSITION-C, POSITION 

_NUM, POSNLIM-FILL 
EMP (240): EMP#, POSITION-C, PAY-RATE. 

START-DATE, END-DATE, TERMINATE-C, 
EXPERIENCE-C 

DEPT-EMp (240): DEl’T#, EMP# 
JOB-CUSTOMER (10): JOB#. CUST#, JOB-NAME. 

JOB-LOCATION 
JOB-OFFICE (10): JOB#, OFF#, HQ# 
EMP-JOB (650): EMP#, JOB#, JOB-POS-C, 

PERCENT-TIME. START-DATE. END-DATE 
JOB-PHASE( 100): JOB& l%ASE;C, PROPOSE-DATE, 

START-DATE, END-DATE 
JO&-pWIEC;AL (2500): JOB#, ITEM#, QTY, PHASE-C, 

JOB-MANPOWER (300): JOB#, PHASE-C, POSITION-C, 
RATE-CHARGED, HOURS 

ITEMS (7000): ITEM#, ITEM-NAME, WEIGHT, 
ITEM-DESCRIPTION 

SUPPLY-ORDER (1000): JOB#, PG# 
PO-SUPPLIER (1000): PO!+, SUPPLIER#, PO-STATUS-C 
PO (1000): Po#, ITEM#, Ql-Y, ORDER-DATE. 

DELIVERY-DATE, PRICE 

PO-RCVD (7000): Po#, lTEM#, QTY, DATE 
QUOTES (10000): ITEM#. SUPPLIER#. QTY, 

QUOTE_PRICE, DATE 
SUPPLY (10000): ITEM#,SUPPLIER# 
SUPPLIER (50): SUPPLIER++. SUP-NAME. ADDRESS, 

STATUS-C . 
CUSTOMER (10): CUSTOMER#, CUST-NAME, 

ADDRESS, STATUS-C 

OUERIES 

Three out of the 21 modeled queries are shown in English 
and also in their conjunctive normal for&. 

“List all currently employed programmers in offices Ouerv I: 
MONAXW and MONREAL. List employee, department and 
office numbers and also the department name,” 

(EMP.POSITION-C = “p(-jM” 
(OFFICE-DEPT.DEPT# = DEPT-EMP.DEm# ; i% 
(DEPT-EMP.EMP# = EMP-EMP# 
(DEPT-EMP.DEPF# = DEff+DEPT# 1% 
(OFFICEDEPT.DEPT# = DEPT.DEPT# > 

Target attributes: EMP.EMP#, DEPT.DEPT#, 
OFFICE-DEPT.OFF#, DEPT.NAME 

Query 2: “Find employees who work on a job with a job 
number “JOB02”. List employee, department and office 
numbers and also the department name.” 

(EMP.EMP# = EMP_JOB.EMP# ) AND 
(DEPT-EMP.EMP# = EMP,EMP# 
@EPT.DEPT# = DEPT-EMP.DEPT+?)%% 
(EMP_JOB.JOB# = “JOB,,“) 

Target attributes: DEPT_EMP.EMP#, DEPT.DEPT#, 
DEPT.NAME, OFFICE-DEPT.OFF# 

-3: “Find jobs worked on by employees for a given 
department with the number “DEPT2”. For each employee list 
the job numbers currently worked on, job phases. job position 
code, percent time and start and end dates. Also list the office 
number for the office managing the job. employee numbers and 
the department name.” 

(EMP-JOB.EMP# = DEPT.-EMP.EMP# 
(DEPT-EMP.DEPT# = DEPT.DEPT# 
(EMP-JOB.JOB# = JOB-OFFICE.JOB# 
(DEPT-EMP.DEPT# = “DEPT2”) 

Target attributes: DEPT.DEPT-NAME, DEPT-EMP.EMP#, 
JOB-OFFICE.JOB#, EMP-JOB.JOB-POS-C, 
EMP-JOB.PERCENT_TIME, EMP-JOB.START-DATE, 
EMP-JOB.END-DATE 
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