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ABSTRACT

We introduce PyParSVD1, a Python library that implements a streaming, distributed and randomized
algorithm for the singular value decomposition. To demonstrate its effectiveness, we extract coherent
structures from scientific data. Futhermore, we show weak scaling assessments on up to 256 nodes of
the Theta machine at Argonne Leadership Computing Facility, demonstrating potential for large-scale
data analyses of practical data sets.

1 Introduction

The singular value decomposition (SVD) is a matrix factorization technique that decomposes a general complex M ×N
matrix A ∈ CM×N into three matrices, U ∈ CM×M , Σ ∈ CM×N , and V ∈ CN×N , that is

A = UΣV∗ (1)

where the symbol ∗ denotes a matrix’s complex conjugate transpose, U and V are complex unitary matrices, Σ is a
rectangular diagonal matrix, and C denotes the space of complex numbers. The diagonal entries of Σ are known as the
singular values of A, while the columns of U and V are known as the left and right singular vectors of A. For many
problems, the SVD is applied to real matrices, that is A ∈ RM×N , thereby yielding A = UΣVT, where T represents a
matrix’s transpose, and R is the space of real numbers.

The SVD was introduced with a series of original contributions by Eugenio Beltrami, Camille Jordan, James Joseph
Sylvester, Ernhard Schmidt, and Hermann Weyl in the 19th and early 20th century – the interested reader can refer
to Stewart [1] for the early history of SVD – and it is today at the hearth of virtually any data analysis and matrix
computation framework. It can be used to identifying patterns in high-dimensional datasets, for solving least-square
problems, and calculating a matrix pseudoinverse, to cite just a few. It is therefore not surprising that several algorithms
to compute the SVD efficiently have been presented in the literature, from the pioneering contribution of Golub et
al., [2, 3], to its generalizations and improvements [4, 5, 6, 7, 8, 9]. For a review of existing algorithms to compute the
SVD and their pros and cons, the interested reader is referred to Menon and Elkan [10], and to Dongarra et al. [11].
More recently, extensions of the SVD to multidimensional tensors have been proposed [12, 13].

The SVD has gained its tremendous popularity thanks to the relative simplicity, and to its connections to n-dimensional
geometry. The latter allows for a visual interpretation of the SVD decomposition, that is particularly useful when
making sense of complex multidimensional data. However, the enormous amount of data that has become available
in recent years have created the critical need for ever-than-before fast SVD algorithms. Within this drive are the
efforts towards efficient parallel SVD [14], randomized SVD [15], and quantum SVD [16]. In this paper, we leverage
streaming algorithms, novel approximate partitioned methods, and randomization, to construct an efficient streaming,
parallel, randomized algorithm for the SVD. The algorithm is conveniently implemented in Python and provides a

1https://github.com/Romit-Maulik/PyParSVD
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novel framework that can be used for the analysis of large datasets. It can also be ported in existing codes, where fast
SVD computations are required, thereby providing an acceleration of the SVD computation step. The code has been
extensively tested in several machines and can additionally serve as a starting point for novel fast SVD implementations
in different programming languages, that may be required by users.

The rest of the paper is organized as follows. Section 2 highlights the needs for efficient and fast SVD algorithms.
Section 3 introduces the algorithm underlying PyParSVD. Section 4 outlines the implementation of PyParSVD, along
with parallel scaling results on reanalysis weather data. Finally, section 5 draws the main conclusions and future work.

2 Why do we need the SVD?

In recent years, the SVD has become a central tool in many practical applications involving matrix computation and
data analysis, due to its simplicity and interpretability. Examples include modal decomposition and reduced order
modeling, data compression, recommender and facial recognition systems [17, 18], matrix inversion [2], least square
fitting, and numerical calculation of matrix properties. The common underlying factors shared by these applications are

1. the need for low rank (or reduced) representation of a matrix,
2. the need for a set of (orthogonal) bases for the row and column spaces of a matrix, and
3. the need for information about the rank of a matrix.

In terms of data analysis for example, it is possible to reduce the dimension of a data matrix A of rank N , by noting
that it is possible to approximate it with another matrix Ã of lower rank r � N . This is particularly useful for data
compression, in the context of e.g. compressive sensing. A low-rank representation of the matrix A is also adopted
in the context of reduced order modeling. In this case, one seeks to reduce the number of degrees of freedom of the
original system described by matrix A, and construct a lower-dimensional manifold for the problem. This is typically
achieved by constructing suitable orthogonal bases via SVD and eigendecomposition, that can optimally represent
the information content of the system, in a significantly more compact way. This, in turn, can reveal hidden coherent
patterns in high-dimensional data. The proper orthogonal decomposition (POD) [19], along with its variants, including
the spectral proper orthogonal decomposition (SPOD) [20, 21], are SVD-based techniques that allow identifying a
reduced order representation of the original system by truncating the number of singular values (and consequently
limiting the dimension of the singular vectors). The reduced representation is typically achieved in an orthogonal
coordinate systems constituted by the POD (or SPOD) modes, calculated as the eigendecomposition of the covariance
data matrix (or the cross-spectral density matrix in the case of the SPOD). These techniques have been widely used in
fluid dynamics [19], as well as in weather and climate research (under the name empirical orthogonal function [22] and
spectral empirical orthogonal functions analyses [23]) for data analysis and reduced order modeling. Similarly, the
principal component analysis (PCA) [24, 25], also known as Karhunen–Loève transform (KLT) or Hotelling transform,
seeks to perform a change of coordinates or basis of the underlying matrix data representation. PCA is commonly used in
machine learning for feature selection and data engineering. The terms PCA, POD, KLT and Hotelling transformations
are frequently used interchangeably in the literature, and in many cases are synonyms. SVD-based techniques are also
at the foundation of complementary and more recently developed data-driven analysis methods, such as the dynamic
mode decomposition [26], data-driven Koopman operator theory [27], and sparse system identification [28].

The SVD also serves as a platform for matrix theory and computation, and it has been used for several applications. In
terms of matrix approximation, it can be used to calculate the pseudoinverse of a matrix A, that is A† = U∗Σ†V, where
† denotes pseudoinverse. The pseudoinverse of Σ is simply obtained by taking the reciprocal of the non-zero values
on the diagonal, leaving zeros in place and transposing the matrix (that is in general rectangular). The pseudoinverse
and its calculation via the SVD is used for linear least squares, such as the ordinary, weighted, and generalized least
squares [29, 30]. Linear least squares are the basis for data fitting, and find applications in virtually every quantitative
field, from engineering and applied science to economics and social science.

Finally, but not least important, SVD is used in the context of matrix computation. In fact, SVD can be used to provide
an explicit representation of range, null space, and rank of a generic matrix A, with obvious implications in linear
algebra.

While there are several applications that use SVD algorithms in an effective and scalable way (see for example Google,
Facebook, Netflix and Amazon, that use large-scale SVD computations for their recommender and image recognition
systems), there is a pressing need to produce novel SVD algorithms that are lightweight, and highly scalable. This is
useful for online SVD computations and in situations where there are limited computational resources. The streaming,
randomized and parallel SVD presented here helps filling this gap, as it provides an efficient platform for lightweight
SVD. This can be used for applications, where there is the need to compute the SVD on the fly or online.
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3 A streaming, distributed and randomized SVD algorithm

The streaming, distributed, and randomized algorithm underlying the PyParSVD library, is constituted of three building
blocks, (i) a streaming SVD in-situ [31], a parallel distribution strategy based on approximate partitioned method
of snapshots [14], and (iii) randomized linear algebra. These three building blocks are described in the next three
subsections, and their implementation in PyParSVD can be found in section 4.

3.1 Streaming SVD

The first building block of our framework relies on Levy and Lindenbaums’ method for performing a streaming SVD
[31] in-situ. One of our target applications is to use this SVD for analyzing the presence of coherent structures in data.
Usually, this analysis is performed by constructing a data matrix A ∈ RM×N . N refers to the number of ‘snapshots’ of
data collected for the analysis and M is the number of degrees of freedom in each snapshot. For the purpose of this
analysis, M >> N and the regular SVD gives us

A = UΣVT (2)

where U ∈ RM×N ,Σ ∈ RN×N ,V ∈ RN×N . The classical SVD computation scales as O(MN2) and requires
O(MN) memory. This analysis becomes intractable for computational physics applications such as computational
fluid dynamics or numerical weather prediction, where the degrees of freedom may grow very large. In their seminal
paper, Levy and Lindenbaum proposed a streaming variant of the SVD that reduces the computational and memory
complexity significantly. It performs this by extracting solely the first K left singular vectors, which correspond to the
K largest coherent structures. Consequently, we are able to reduce the cost of the SVD to O(MNK) operations and
the memory footprint also reduces to O(MK). The streaming component of this technique consists of updating the left
singular eigenvectors in a batch-like manner. We summarize the procedure in Algorithm 1. The scalar forget factor ff,
set between 0 and 1, controls the effect of older data batches on the final result for Ui. Setting this value to 1.0 implies
that the online-SVD converges to the regular SVD utilizing all the snapshots in one-shot. Setting values of ff less than
one reduces the impact of the snapshots observed in previous batches of the past. We utilize an ff= 0.95 for this study.
A Python and NumPy implementation for this algorithm is shown in Listing 1.

Algorithm 1: Streaming singular value decomposition [31].
Result: Truncated left singular vector Ui after i batch iterations.
Parameters: Forget factor ff;
Initialization:
Initial data matrix A0 ∈ RM×B ,
where B is the number of snapshots per batch;
I1. Perform QR-decomposition : A0 = QR ;
I2. Perform SVD of R = U′D0V

T
0 and obtain U0 = QU′ ;

while New data Ai available do
1. Compute QR decomposition after column-wise concatenation of new data:
[ff ·Ui−1Di−1 | Ai] = U′i−1D

′
i−1;

2. Compute SVD of D′i−1 = Ũi−1D̃i−1Ṽ
T ;

3. Preserve the first K columns of Ũi−1 and denote Ûi−1 ;
4. Obtain the updated left singular vectors: Ui = U′i−1Ûi−1 ;
5. Truncate to retain K values of D̃i−1 to obtain Di ;

end

3.2 Approximate partitioned method of snapshots

The second building block consists of distributing the computation. This is achieved via the approximate partitioned
method of snapshots (APMOS), that allows computing distributed left singular vectors. Note that the primary difference
of a standard implementation of APMOS is that it does not provide for a batch-wise update of the singular vectors.
Instead, each batch has its respective basis vector calculation which may be stored to disk. While this algorithm does
not possess the ability to construct a set of bases for the entire duration of the simulation, its distributed nature allows
for the construction of a global basis even in the presence of a domain decomposition. This parallelized computation of
the SVD was introduced in [14] and we recall its main algorithm below. First, APMOS relies on the local calculation of
the left singular vectors for the data matrix on each rank of the simulation. To construct this data matrix, snapshots of
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the local data may be collected over multiple timesteps. Each row of this matrix corresponds to a particular grid point
and each column corresponds to a snapshot of data at one time instant. The first stage of local operations is thus

Ai = UiΣiV∗i (3)

where i refers to the index of the rank ranging from 1 to Nr (the total number of ranks), Ui ∈ RMi×N , Σi ∈ RN×N ,
and Vi ∈ RN×N . Here, Mi refers to the number of grid points in rank i of the distributed simulation. Note that instead
of an SVD, one may also perform a method of snapshots approach for computing Vi at each rank provided Mi >> N .
A column-truncated subset of the right singular vectors, Ṽi, and the singular values, Σ̃

i
, may then be sent to one rank

to perform the exchange of global information for computing the POD basis vectors. This is obtained by collecting the
following matrix at rank 0 using the MPI gather command

W =
[
Ṽ1(Σ̃

1
)T, ..., ṼNr (Σ̃

Nr
)T
]
. (4)

In this study, we utilize a truncation factor r1 =50 columns of Vi and Σi for broadcasting. Subsequently a singular
value decomposition of W is performed to obtain

W = XΛY∗. (5)

Given another threshold factor r2 corresponding to the number of columns retained for X, a reduced matrix X̃ and
reduced singular values Λ̃ is broadcast to all ranks. The distributed global left singular vectors may then be assembled
at each rank as follows for each basis vector j

Ũi
j =

1

Λ̃j

AiX̃j (6)

where Ũi
j is the jth singular vector in the ith rank, Λ̃j is the jth singular value and X̃j is the jth column of the reduced

matrix X̃. A default value of r2 = 5 columns is chosen for our threshold factor for this last stage. We note that the
choices for r1 and r2 may be used to balance communication costs and accuracy for this algorithm. Pseudocode 2
summarizes this procedure, while listing 2 details the Python implementation in PyParSVD. In this study, we utilize
APMOS to allow for streaming updates of singular vectors and values within the online-SVD algorithm. We achieve
this by implementing a parallelized variant of the QR decomposition [32] (step I1 in Algorithm 1) and the APMOS
variant of the SVD (step I2 in Algorithm 1).

Algorithm 2: Distributed singular value decomposition [14]

Result: The truncated left singular vector matrix Ũi in each rank i of a distributed computation
Parameters:
Threshold factors r1 and r2;
Algorithm:
Local data matrix Ai at each rank i of distributed simulation;
1. Perform local SVD calculation of local right singular vectors : Ai = UiΣiV∗i. ;

2. Truncate Vi, Σi by retaining only r1 columns to obtain Ṽi and Σ̃
i

respectively. ;

3. Obtain W =
[
Ṽ1(Σ̃

1
)T, ..., ṼNr (Σ̃

Nr
)T
]

at rank 0 using MPI Gather.;

4. Perform SVD, W = XΛY∗ at rank 0.;
5. Truncate X,Λ by retaining only r2 columns to obtain X̃, Λ̃ respectively.;
6. Send X̃, Λ̃ to each rank using MPI Broadcast.;
7. Obtain local partition of jth global left singular vector Ũi

j =
1
Λ̃j

AiX̃j where j corresponds to the column of the
respective matrices.

.

3.3 Randomized linear algebra

The final building block is the randomized linear algebra. To this end, we first define the full SVD of A as UΣV∗.
However, this SVD is expensive to evaluate thus we desire a low-rank factorization of A. To evaluate the low rank
factorization, we compute an approximate basis for the range of the matrix that is to be factorized. set

Ar ≈ QQ∗A, (7)

4
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where Ar is the r−rank approximation and the matrix Q facilitates this approximation. Note if A ∈ RN×M(i)

,
Q ∈ RN×r with r << N , this low-rank factorization of A may be expressed as

Ar ≈ QÃ, (8)

where Ã = Q∗A. We may now perform the SVD of the smaller matrix Ã, given by

Ã = ŨrΣrVr, (9)

where Σr and Vr are the approximate singular values and the right singular vectors. The left singular vectors of Ar

can be recovered by setting
Ur = QŨr. (10)

Finally, we will write the r−rank SVD of A as

Ar = UrΣrVr (11)

Q is generally randomly sampled from a zero-mean unit-variance Gaussian distribution every time a randomized
SVD is required. In our implementation, any SVD requirement, for instance in local or global computations may be
randomized using the aforementioned process.

4 Implementation in Python

The implementation in Python has been performed using a factory design pattern. In particular, we define a base
class, namely Parsvd_Base that implements functions shared across the two derived classes Parsvd_Serial and
Parsvd_Parallel. We also provide a convenient post-processing module that implements the visualization of singular
values and SVD modes, namely postprocessing. The routines within this module are linked with the base class
Parsvd_Base. Hence, they can be called directly from the class object, if required. Yet, the functions implemented
in the postprocessing module can be also called separately. In the next two subsections, we highlight the key
implementation blocks for both the serial and parallel algorithms that are part of the library PyParSVD.

4.1 Serial implementation

The two steps of the serial implementation framework consist of data initialization and streaming SVD computation.
These are depicted in Listing 1. The initialize function initializes the problem with the first data segment, while the
incorporate_data function ingests new data in a streaming manner. The initialization step performs a serial SVD,
while the streaming step concatenates the data (using the forget factor ff).

Listing 1: Initialization and streaming steps for the serial algorithm.

def initialize(self, A):
q, r = np.linalg.qr(A)

ui, self._singular_values, self.vit = np.linalg.svd(r)
self._modes = np.matmul(q, ui)[:,:self._K]
self._singular_values = \

self._singular_values[:self._K]
return self

def incorporate_data(self, A):
m_ap = self._ff * np.matmul(self._modes, \

np.diag(self._singular_values))
m_ap = np.concatenate((m_ap, A), axis=-1)
udashi, ddashi = np.linalg.qr(m_ap)
utildei, dtildei, vtildeti = np.linalg.svd(ddashi)
max_idx = np.argsort(dtildei)[::-1][:self._K]
self._singular_values = dtildei[max_idx]
utildei = utildei[:,max_idx]
self._modes = np.matmul(udashi, utildei)
return self
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4.2 Parallel implementation

The two key steps of the parallel implementation consists of data initialization and streaming, similarly to the serial
algorithm, and are depicted in Listing 2. We note that the initialize function initializes the problem with the first
data segment, while the incorporate_data function ingests new data in a streaming manner. The initialization step
performs a parallel SVD, while the streaming step concatenates the data (using the forget factor ff), and performs a
parallel QR decomposition, as described in section 2.

Listing 2: Streaming randomized parallel SVD top-level routines.

def initialize(self, A):
self.ulocal, self._singular_values = self.parallel_svd(A)
self._gather_modes()
return self

def incorporate_data(self, A):
self._iteration += 1
ll = self._ff *

np.matmul(self.ulocal, np.diag(self._singular_values))
ll = np.concatenate((ll, A), axis=-1)
qlocal, utemp, self._singular_values = self.parallel_qr(ll)
self.ulocal = np.matmul(qlocal, utemp)
self._gather_modes()
return self

The parallel SVD is depicted in Listing 3, where we perform an SVD (or a low-rank SVD, if required), and we broadcast
the solution, before using the APMOS method at each local MPI rank.

Listing 3: Parallel SVD.

def parallel_svd(self, A):
vlocal, slocal = generate_right_vectors(A,self._K)

# Find Wr
wlocal = np.matmul(vlocal, np.diag(slocal).T)

# Gather data at rank 0:
wglobal = self.comm.gather(wlocal, root=0)

# perform SVD at rank 0:
if self.rank == 0:

temp = wglobal[0]
for i in range(self.nprocs-1):

temp = np.concatenate((temp, wglobal[i+1]), axis=-1)
wglobal = temp

if self._low_rank:
x, s = low_rank_svd(wglobal, self._K)

else:
x, s, y = np.linalg.svd(wglobal)

else:
x = None
s = None

x = self.comm.bcast(x, root=0)
s = self.comm.bcast(s, root=0)

# perform APMOS at each local rank
phi_local = []
for mode in range(self._K):

phi_temp = 1.0 / s[mode] * \
np.matmul(A, x[:,mode:mode+1])

phi_local.append(phi_temp)
temp = phi_local[0]
for i in range(self._K - 1):

temp = np.concatenate((temp, phi_local[i+1]), axis=-1)

6
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return temp, s[:self._K]

The parallel QR decomposition is depicted in Listing 4, where we perform an SVD (or a low-rank SVD, if required),
and we broadcast the solution, before using the APMOS method at each local MPI rank.

Listing 4: Parallel QR decomposition.

def parallel_qr(self, A):

# Perform local QR
q, r = np.linalg.qr(A)
rlocal_shape_0 = r.shape[0]
rlocal_shape_1 = r.shape[1]

# Gather data at rank 0:
r_global = self.comm.gather(r, root=0)

# perform SVD at rank 0:
if self.rank == 0:

temp = r_global[0]
for i in range(self.nprocs-1):

temp = np.concatenate(
(temp, r_global[i+1]), axis=0)

r_global = temp
qglobal, rfinal = np.linalg.qr(r_global)
qglobal = -qglobal # Trick for consistency
rfinal = -rfinal

# For this rank
qlocal = np.matmul(q, qglobal[:rlocal_shape_0])

# send to other ranks
for rank in range(1, self.nprocs):

self.comm.send(qglobal[rank*rlocal_shape_0:\
(rank+1)*rlocal_shape_0],

dest=rank, tag=rank+10)

# Step b of Levy-Lindenbaum - small operation
if self._low_rank:

# Low rank SVD
unew, snew = low_rank_svd(rfinal, self._K)

else:
unew, snew, _ = np.linalg.svd(rfinal)

else:
# Receive qglobal slices from other ranks
qglobal = self.comm.recv(source=0, tag=self.rank+10)

# For this rank
qlocal = np.matmul(q, qglobal)

# To receive new singular vectors
unew = None
snew = None

unew = self.comm.bcast(unew, root=0)
snew = self.comm.bcast(snew, root=0)
return qlocal, unew, snew

4.3 Experiments

In this section, we outline some experiments to test the accuracy of our proposed algorithm for canonical modal
decomposition test cases. Our first test case is given by the viscous Burgers equation, i.e.,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(12)
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with initial conditions given by u(x, 0) = x

1+
√

1
t0

exp (Re x2

4 )
and boundary conditions given by u(0, t) = 0, u(L, t) = 0.

The system is defined on a domain x ∈ [0, L] ⊂ R1 and t ∈ [0, tf ] ⊂ R1. The domain length L is set to 1 and the final
time of the system is given by 2. A grid-resolution of 16384 points is used for all the assessments on this system. Here,
t0 = exp(Re/8), and Re = 1/ν is the Reynolds number for the system kept fixed at 1000. This system possesses an
analytical solution given by

u(x, t) =
x

t+1

1 +
√

t+1
t0

expRe x2

4t+4

(13)

and is directly used to generate snapshots for constructing our data matrix. For our first experiment we generate 800
snapshots of data and are therefore tasked with performing the SVD of a data matrix spanning 800 columns and 16384
rows. Figures 1(a) and 1(b) show the validation for a parallel singular vector computation using 4 ranks compared with
a serial evaluation for the first and second singular vectors respectively. It is observed that accurate results are obtained
with a low error magnitude demonstrating the validity of our algorithm. Preliminary weak scaling results are shown in
Figure 1(c) for the same problem explained above with 1024 grid-points per rank of Theta, a leadership class computing
resource with Intel Knights-Landing nodes. We assess scaling for upto 256 nodes of Theta, where it is observed that,
as the numbers of ranks increase, scaling is seen to follow the ideal trend appropriately. We note that this experiment
solely assessed the parallelized and randomized SVD without the utilization of the streaming operation.

Finally, as a science application, we demonstrate the utilization of our library, with parallel-IO using NetCDF4, to
compute the coherent structures in the ERA5 pressure data set for snapshots obtained from a time-period of January
1, 2013 to December 31 2020 at 6-hourly intervals. Extracting coherent structures in the global pressure is of key
importance for predictive modeling and analyses in the context of weather and climate research. Here we demonstrate
how the proposed library may effectively extract scientific insight for domain specialists at scale on large compute
resources. Coherent structure extraction is displayed for the first two modes in Figure 2 .

5 Conclusions & Future work

In this study, we have introduced a new Python package for parallelized SVDs of large data matrices. Our algorithm
extends the approximate partitioned method of snapshots method for distributed SVD computation with the use of the
randomized algorithms and online updates of singular vectors and values for streaming data. Our library is parallelized
using MPI and randomized variants of the SVD and QR algorithms are used to accelerate linear algebra. We test our
framework for coherent structure extraction on canonical problems for a nonlinear dynamical system, given by the
viscous Burgers equation, and a real-world data set given by the global pressure obtained from the ERA5 data set. We
validate the fidelity of the proposed package with a serial comparison and also demonstrate weak scaling upto 256
nodes of Theta, a leadership class computing resource with Intel Knights-Landing nodes. Our next steps include the
deployment of the devised library on other resources with heterogeneous hardware such as Graphical Processing (GPU)
units. Identified steps for accomplishing this include the use of PyCUDA for accelerating linear algebra which may be
used to deploy the Randomized SVD and QR algorithms on GPUs. PyCUDA is compatible with MPI4PY and can
therefore be used to perform parallelized computations across multiple GPUs.

(a) Mode 1 (b) Mode 2 (c) Weak scaling on Theta

Figure 1: (a),(b) - Comparison of serial and randomized+parallel deployments of the singular value decomposition for
computing coherent structures in the evolution of a viscous Burgers equation. (c) - Weak scaling upto 256 nodes on
Theta.
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(a) Mode 1

(b) Mode 2

Figure 2: Modes for the ECMWF surface pressure data set (ERA5) obtained between for the time-period: January 1,
2013 to December 31 2020, at midnight.
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