Enhanced P-Type Behavior in 2D WSe2 via Chemical Defect Engineering | IEEE Conference Publication | IEEE Xplore

Enhanced P-Type Behavior in 2D WSe2 via Chemical Defect Engineering


Abstract:

Defect engineering of2D semiconducting transition metal dichalcogenides (TMDCs) has been demonstrated to be a promising way to tune both their bandgaps and carrier concen...Show More

Abstract:

Defect engineering of2D semiconducting transition metal dichalcogenides (TMDCs) has been demonstrated to be a promising way to tune both their bandgaps and carrier concentrations. Moreover, controlled introduction of defects in the source/drain access regions of a TMDC FET can boost its performance by decreasing the contact resistance at the metallTMDC interface [1]. While chemical functionalization offers a facile route towards defect engineering in 2D TMDCs, several chemically-treated TMDCs have not been fully understood at the molecular level. In this study, chemical sulfur treatment (ST) utilizing ammonium sulfide [(NH4)2S] solution is shown to enhance the p-type behavior in 2D WSe2 via introduction of acceptor defect states near its valence band edge (VBE), with the results verified using detailed scanning tunneling microscopy (STM)/spectroscopy (STS) studies, field-effect transistor (FET) measurements and theoretical density-of-states (DOS) calculations.
Date of Conference: 24-27 June 2018
Date Added to IEEE Xplore: 23 August 2018
ISBN Information:
Conference Location: Santa Barbara, CA, USA

Contact IEEE to Subscribe

References

References is not available for this document.