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Phase change memory (PCM) is an emerging high speed, high density, high endurance, and scalable non-

volatile memory technology which utilizes the large resistivity contrast between the amorphous and crystalline phases 

of chalcogenide materials such as Ge2Sb2Te5 (GST). In addition to being used as a standalone memory, there has been 

a growing interest in integration of PCM devices on top of the CMOS layer for computation in memory and 

neuromorphic computing. The large CMOS overhead for memory controllers is a limiting factor for this purpose. 

Transferring functionality like routing, multiplexing, and logic to the memory layer can substantially reduce the 

CMOS overhead, making it possible to integrate 100s of GB of PCM storage on top of a conventional CPU [1], [2]. 

In this work, we present computational analysis of a phase change device concept that can perform toggle 

operations. The toggle functionality is achieved using two physical mechanisms: (i) isolation of different read contacts 

due to amorphization between different write contact pairs, and (ii) thermal cross-talk between a molten region and a 

previously amorphized region.  Phase-change devices with six contacts can be implemented as toggle flip-flops, 

multiplexer, or demultiplexer when interfaced with CMOS transistors. Here, we demonstrate the operation of the 

device as a toggle flip-flop with 5 transistors (Fig. 1a), requiring ~50% of the footprint compared to conventional 

CMOS alternatives, with the added advantage of non-volatility. The fabrication steps (Fig. 1b-h) for the proposed 

device are compatible with CMOS back-end-of-line integration.  

We have demonstrated the device concept using our finite element framework in COMSOL Multiphysics 

that can simultaneously capture amorphization-crystallization dynamics including nucleation and growth, and electro-

thermal phenomena [3]–[5]. Phase change is modeled by solving a rate equation to track the evolution of the vector 

field crystal density (𝐶𝐷⃗⃗⃗⃗  ⃗) with |CD| = CD1+CD2 = 1 or 0 representing the crystalline or amorphous phase, respectively, 

and individual components (CD1 and CD2) representing the 2D grain orientation. Current continuity and heat transfer 

equations are solved self-consistently. 

A write pulse (Vwrite high) is required to initialize the device to one of the two configurations. During the 

initialization pulse, one of the paths (W1-3 in Fig. 2b) draws a progressively larger proportion of the current and 

eventually melts due to thermal runaway. After the pulse is terminated, the path W1-3 is amorphized, blocking the read 

path R1-3 (Fig. 2c). This results in a low voltage (Vlow ~ 1 mV for RL=10 kΩ) at Q and a high voltage (Vhigh ~ 50 mV 

for RL=10 kΩ) at Qʹ during a read operation. Applying a subsequent write pulse, the alternative path (W1-2) draws 

most of the current and eventually melts because W1-3 is initially amorphous (Fig. 2d). As W1-2 melts, W1-3 heats above 

the crystallization temperature and the device cools to a toggled state (Fig. 2e). Fig. 3 shows the write currents and 

read voltages during the initialization pulse and two consecutive write pulses showing toggle operation. The voltages 

applied to the gates of the write and read FETs are 3 V and 0.5 V; power consumed during read and write operations 

are 585 µW and 0.25 µW for GST thickness of 20 nm. The node Q and Qʹ can be connected to a comparator or 

amplifier to achieve rail-to-rail voltage. Following the write pulse, the amorphous resistivity is low due to increased 

temperature, thus the ratio of output voltages is smaller for read pulses applied shortly after the write pulse and it 

increases with time (Fig. 4). Also, as the value of RL increases, the output voltages will increase, but the ratio of high 

to low output voltage will decrease (Fig. 4 inset). Therefore, the sensitivity of the comparator will guide the choice of 

resistors connected to the read nFETs. 

The speed of the device itself is determined by the distance between write contacts (shorter distance will 

result in faster re-crystallization, thus higher speed), placement of thermal anchor (the closer the thermal anchors, the 

less time it will take to cool down to room temperature at the cost of additional power), and the size of the write FETs 

(larger FET will provide more current at the cost of increased footprint). The proposed six contact device is slower 

than a conventional CMOS implementation (~.3 ns for CMOS vs. ~10 ns for proposed device) but reduces the footprint 

by ~50% and can reduce energy consumption significantly in applications with infrequent writes due to non-volatility.  
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Fig. 1. Schematic of the (a) six-contact toggle flip-flop device, (b)-(h) 

fabrication process: (b)-(c) growth of SiO2 on Si, (d)-(e) formation of metal 

contacts by etching, deposition, and planarization, (f)-(g) GST deposition 

and patterning, (h) deposition of Si3N4 for capping. 
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Fig. 2. Snapshots of electro-thermal simulation during initialization and first toggle operation. The CD1 map (Top 

row) shows crystallinity profile of the device at different time steps. The conductivity map (center row) shows the 

conductivity of GST, where conductivity is lowest for amorphous (dark blue) and highest for melt (dark red). The 

temperature map (bottom row) shows temperature throughout the device. 
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Fig. 3. Write currents and output voltages during 

initialization pulse followed by two write pulses. The 

output voltages (Q and Qʹ) toggle between Vlow and 

Vhigh after each write pulse. 
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Fig. 4. Ratio of output voltages for read pulses (5 ns) 

applied at different times after termination of write pulse. 

Inset: Vhigh, Vlow (Left axis, blue and red spheres) and 

their ratio (right axis, pink stars) for different RL values. 
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