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Abstract—Spatially-close network fibers have a significant
chance of failing simultaneously in the event of man-made or
natural disasters within their geographic area. Network operators
are interested in the proper detection and grouping of any
existing spatially-close fiber segments, to avoid service disruptions
due to simultaneous fiber failures. Moreover, spatially-close fibers
can further be differentiated by computing the intervals over
which they are spatially close. In this paper, we propose (1)
polynomial-time algorithms for detecting all the spatially-close
fiber segments of different fibers, (2) a polynomial-time algorithm
for finding the spatially-close intervals of a fiber to a set of other
fibers, and (3) a fast exact algorithm for grouping spatially-close
fibers using the minimum number of distinct risk groups. All
of our algorithms have a fast running time when simulated on
three real-world network topologies.

I. INTRODUCTION

Network services rely upon network fibers to communi-
cate between network points-of-presence (PoPs). These fibers
carry Terabits of data over long distances. Hence, various
measures have been taken to ensure the fibers’ robustness,
e.g., coating against lateral forces, moisture and mechanical
stress. However, fibers can and do still fail due to man-made
disasters (e.g., construction backhoes, ships’ anchor drops and
terrorist attacks) or natural disasters (e.g., earthquakes, floods
and volcanic eruptions). Fiber failures degrade and interrupt
network services in the absence of proper service compen-
sating measures, possibly leading to monetary penalties to
network operators due to breached service level agreements.

Spatially-close fibers typically have a higher chance of
failing simultaneously, due to a disaster, than fibers that are
more distant. For instance, in 2006, an earthquake off southern
Taiwan had cut eight undersea fibers in sixteen places, dis-
abling offshore connectivity for China and Southeast Asia [1].
The repair time took months. In 2009, an earthquake off East
Taiwan and Typhoon Morakot had cut eight undersea fibers
[2]. Taiwan is known to be geographically positioned in the
circum-Pacific seismic belt. Proper risk analyses on spatially-
close fibers are thus crucial for providing survivable network
services across similar risky geographical areas.

Fibers can be spatially close due to a variety of reasons.
Fiber segments of different fibers may have been deployed in
a single duct (a physical pipe for placing fibers between two
locations) due to the high cost of digging ducts. Duct sharing
between network operators is also beginning to become a norm
[3], [4]. Duct sharing leads to overlapping fiber segments,
as shown in Fig. 1. If the duct is cut, all the fibers within
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Fig. 1. Example of spatially-close fiber segments.

it will fail simultaneously. Fibers originating or terminating
from/to a PoP may have spatially-close endpoints due to
existing infrastructures or landscapes. For instance, if the PoP
is next to a river, the fiber segments may have been placed
closely alongside a bridge. Fibers in different ducts may also
be spatially close due to the close proximity of their ducts.

Confining to detecting only whether different fibers are
spatially close can be misleading in terms of their risk of
simultaneous failures. Fibers with longer spatially-close inter-
vals have a higher chance of failing simultaneously compared
to fibers with shorter spatially-close intervals, as shown by
Fig. 2. For instance, there is a bottleneck of more than eight
spatially-close fibers along the intervals of the Gulf of Suez
[5]. Any disaster occurring along these intervals has a high
chance of cutting all the fibers simultaneously, possibly leading
to connectivity interruptions in many countries.

Our key contributions are organized as follows: (1) We
propose fast polynomial-time algorithms in Section II for
detecting all the spatially-close fiber segments of different
fibers. (2) We propose a fast polynomial-time algorithm in
Section III for detecting the intervals of a fiber that are
spatially close to another fiber, and extend it for detecting
the intervals of a fiber that are spatially close to a set of
fibers. (3) We propose a fast exact algorithm in Section IV
for grouping spatially-close fibers using a minimum number
of risk groups. We simulate our algorithms on three real-world
network topologies. We discuss related work in Section V and
conclude the paper in Section VI.
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Fig. 3. Example of two fibers represented by our fiber structure.

II. DETECTION OF SPATIALLY-CLOSE FIBER SEGMENTS

A. Fiber Structure

Fibers are commonly deployed in a non-straight manner,
since deploying fibers in a straight line between PoPs can
be cumbersome and impractical due to various reasons, e.g.,
terrain, existing infrastructure and government rules. Hence,
we approximate fibers as non-straight concatenations of mul-
tiple fiber segments of irregular lengths, as shown in Fig. 3.
The accuracy of the approximation increases with more fine-
grained fiber segments. Each fiber segment is a straight line
connecting two fiber points of known geodetic coordinates
(latitude and longitude). For easier geospatial calculations, we
assume that the geodetic coordinates of all fiber points can be
projected into corresponding two-dimensional Cartesian coor-
dinates. Two consecutive fiber segments may not necessarily
have collinear fiber points (three or more points are collinear
if they lie on a single straight line).

B. Problem Definition

Detection of Spatially-Close Fiber Segments (DSCFS) Prob-
lem: Given a set L of L fibers and a distance α. Each fiber
l ∈ L is associated with a set Tl of Tl fiber segments. Each
fiber segment t ∈ Tl is associated with two fiber points
(ut1 , vt1) and (ut2 , vt2) of known geodetic locations. Find all
the fiber segment pairs of different fibers that have a minimum
separation distance of at most α.

fiber segment midpoint

(a) k-d tree partitioning

minimum bounding rectangle

(b) R tree partitioning

Fig. 4. Example of fiber partitioning for tree representations.

The DSCFS problem is polynomially solvable (in the num-
ber of fiber segments) when the fiber structure of Section
II-A is considered. One naive approach of solving the DSCFS
problem is by computing the minimum separation distance
between all fiber segment pairs of different fibers. If the
minimum separation distance between any two fiber segments
is at most α, they are spatially close. The worst-case time
complexity of this naive approach is O(L2T 2), where T is
the maximum number of fiber segments per fiber.

C. Our Approach

To achieve a faster practical running time, we propose
Algorithm 1 that uses a k-d tree [6] to preprocess the fiber
segments, and Algorithm 2 that uses an R tree [7] to preprocess
the fiber segments for solving the DSCFS problem. A k-
d tree is a space-partitioning data structure for organizing
points in a k-dimensional space. An R tree is a depth-
balanced data structure for organizing objects using bounded
rectangles. The trees eliminate the need for computing the
minimum separation distance between all fiber segment pairs,
thus reducing the running time significantly.

Lines 1-3 of Algorithm 1 find the midpoint of all fiber
segments and insert them into the k-d tree, since a k-d tree
works with points instead of segments. Line 3 of Algorithm
2 computes the minimum bounding rectangle (MBR) of all
fiber segments, and inserts them into the R tree. The MBR of
a fiber segment is the smallest rectangle that encloses the fiber
segment in the two-dimensional Cartesian plane. For instance,
the partitioning of fibers of Fig. 3 by the k-d tree is shown in
Fig. 4a, or by the R tree is shown in Fig. 4b. For each fiber
segment t, lines 4-5 in Algorithm 1 find the set Z of fiber
segments in Q with midpoints of a distance of at most α+ β
from the midpoint of fiber segment t, where β is the maximum
fiber segment length. Similarly, for each fiber segment t, lines



Algorithm 1 DSCFS with k-d Tree Preprocessing
1: for each fiber l ∈ L
2: for each fiber segment t ∈ Tl
3: compute the segment midpoint mt, and insert it into the k-d tree Q
4: for each fiber segment midpoint mt ∈ Q (mt is the midpoint of fiber segment t)
5: find the set Z of the entries of Q at a distance of at most α+ β from mt

6: for each fiber segment midpoint zy ∈ Z (zy is the midpoint of fiber segment y)
7: if the minimum separation distance between fiber segments t and y is at most α
8: fiber segments t and y are spatially close

Algorithm 2 DSCFS with R Tree Preprocessing
1: for each fiber l ∈ L
2: for each fiber segment t ∈ Tl
3: compute the segment MBR bt, and insert it into the R tree Q
4: for each fiber segment MBR bt ∈ Q (bt is the MBR of fiber segment t)
5: find the set Z of the entries of Q at a distance of at most α from bt
6: for each fiber segment MBR wk ∈ Z (wk is the MBR of fiber segment k)
7: if the minimum separation distance between fiber segments t and k is at most α
8: fiber segments t and k are spatially close

4-5 in Algorithm 2 find the set Z of fiber segment MBRs in
Q with distance of at most α from the MBR of fiber segment
t. Finally, lines 6-8 of Algorithm 1 and Algorithm 2 detect
all the fiber segments of set Z that are spatially close (with
minimum separation distance of at most α) to fiber segment
t. Two scenarios need to be considered when computing the
minimum separation distance between any two fiber segments:

Case 1: For intersecting fiber segments, their minimum sepa-
ration distance is zero.

Case 2: Else, their minimum separation distance is the mini-
mum distance between any points of the two fiber segments.

The ball tree [8] or newer variants of the R tree [9] can also
be used instead with Algorithms 1 and 2. Although the worst-
case time complexity of Algorithms 1 and 2 is similar to the
naive approach (in the worst-case, all the fiber segments could
be spatially close), significant time-savings can be expected in
practice in solving the DSCFS problem.

D. Proof-of-Concept

We generate three real-world network topologies, namely
the Angola Telecom network, the Ethiopia Telecom network
and the Telkom South Africa network, from the Keyhole
Markup Language (KML) datasets provided in [10]. We
assume each placemark in the KML datasets as a distinct fiber.
KML is a language schema of the Open Geospatial Consor-
tium (OGC) for representing geographical information. We use
this format in our proof-of-concept since KML datasets can be
directly translated to our fiber structure. We use the projection
wizard of [11] to generate an equidistant map projection
for each network, such that all the two-dimensional plane
coordinates (projected using [12]) have proportionally correct
distances from the center point of the network geographic
bounds. Of all the studied networks, the Telkom South Africa

network has the highest number of fibers and fiber segments,
the Angola Telecom network has the highest average length of
fibers and fiber segments, while the Ethiopia Telecom network
has the highest average number of fiber segments per fiber.
Detailed properties of the networks are shown in Table I.

Algorithm 1 and Algorithm 2 are coded in Python and
simulations were conducted on an Intel(R) Core i7-4600U
2.1GHz machine of 16GB RAM memory. Parsing the datasets
and generating the network took less than a second for all the
networks. As shown in Table II, the running time of the naive
approach is quite high, even when the minimum separation
distance α is low. Significant time-savings can be achieved
by Algorithm 1 and Algorithm 2, particularly when α is low.
Algorithm 2 outperforms Algorithm 1 since the performance
of Algorithm 1 also relies on β. Although the running times of
Algorithm 1 and 2 increase with α, α is often a small value.
The running time of the algorithms is highest on the Telkom
South Africa network, due to its high number of fibers and
fiber segments.

III. INTERVALS OF SPATIALLY-CLOSE FIBERS

In the previous section, we discussed how to detect
spatially-close fibers, and pinpoint spatially-close fiber seg-
ments. However, viewing spatially-close fibers as a Boolean
relation can be misleading in terms of the risk of simultaneous
failures. In this section, we find the intervals of spatially-close
fibers, to give a better measure of the fibers’ spatial proximity.
For instance, the fiber pair in Fig. 2a has longer intervals that
are spatially close than the fiber pair in Fig. 2b.

A. Intervals of A Pair of Spatially-Close Fiber Segments

We first explain our approach of finding the intervals of a
pair of spatially-close fiber segments, before proceeding with
the intervals of spatially-close fibers in subsequent sections.



TABLE I
PROPERTIES OF THE STUDIED NETWORKS.

Property Angola Telecom Ethiopia Telecom Telkom South Africa
Number of fibers 16 21 343

Total length of fibers 10943.86 km 8162.47 km 27849.70 km
Average length of fibers 683.99 km 388.69 km 81.19 km

Maximum length of fibers 1745.93 km 2105.52 km 479.08 km
Minimum length of fibers 261.53 km 67.35 km 4.01 km
Number of fiber segments 979 2917 4901

Average number of fiber segments per fiber 61.19 138.90 14.29
Maximum number of fiber segments per fiber 238 492 80
Minimum number of fiber segments per fiber 17 10 1

Average length of fiber segments 11.18 km 2.80 km 5.68 km
Maximum length of fiber segments 59.49 km 54.30 km 97.75 km

TABLE II
THE EFFECT OF α ON THE TIME TAKEN FOR SOLVING THE DSCFS PROBLEM.

Network Algorithm
Minimum separation distance (α)

5 m 50 m 500 m 5 km 50 km 500 km 5000 km

Angola Telecom
Naive approach 20.16 s 20.16 s 20.16 s 20.16 s 20.16 s 20.16 s 20.16 s

Algorithm 1 1.12 s 1.13 s 1.15 s 1.15 s 1.66 s 11.90 s 19.81 s
Algorithm 2 0.21 s 0.22 s 0.23 s 0.23 s 0.34 s 9.17 s 21.20 s

Ethiopia Telecom
Naive approach 2.98 min 2.98 min 2.98 min 2.98 min 2.98 min 2.98 min 2.98 min

Algorithm 1 7.12 s 7.37 s 7.55 s 7.80 s 14.79 s 2.12 min 3.05 min
Algorithm 2 0.75 s 0.75 s 0.75 s 0.76 s 2.50 s 2.01 min 3.22 min

Telkom South Africa
Naive approach 8.60 min 8.60 min 8.60 min 8.60 min 8.60 min 8.60 min 8.60 min

Algorithm 1 30.89 s 31.17 s 31.90 s 31.97 s 50.51 s 5.20 min 8.97 min
Algorithm 2 1.28 s 1.30 s 1.31 s 1.45 s 8.23 s 4.53 min 9.00 min
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Fig. 5. Intervals of a pair of spatially-close fiber segments

Suppose we have two fiber segments y1 = k1x1 +
n1 of x1 ∈ [a, b] and y2 = k2x2+n2 of x2 ∈ [c, d]. Let us fix
a point (x∗, y∗ = k2x

∗+n2) on fiber segment 2, as shown in
Fig. 5. The y-intercept m of a line 3 through (x∗, y∗) that is
perpendicular to fiber segment 1 is m = (k2+

1
k1
)x∗+n2. The

intersection of line 3 and the line projection of fiber segment
1 defines point (x′, y′)

− 1

k1
x′ +m = k1x

′ + n1

x′ =
1

1 + k21

[
(k1k2 + 1)x∗ + k1(n2 − n1)

]
(1)

For simplicity, consider A = k1k2+1
1+k2

1
and B = k1(n2−n1)

1+k2
1

.
For the distance from all possible (x∗, y∗) to the projected line

of fiber segment 1 to be at most α, the condition is

α2 ≥ (x′ − x∗)2 + (y′ − y∗)2

= ((A− 1)x∗ +B)2 + ((k1A− k2)x∗

+ k1B + n1 − n2)2 (2)

From Eq. 2, we have a quadratic inequality, whose solution is
an interval x∗ ∈ [i1, i2]. The intersection of this interval and
the interval [c, d] gives a necessary condition for x∗

x∗ ∈ [z1, z2] = [i1, i2] ∩ [c, d] (3)

When (x′, y′) is on fiber segment 1, i.e. x′ ∈ [a, b]

a ≤ Ax∗ +B ≤ b (4)

By solving Eq. 4 for x∗, we obtain an interval x∗ ∈ [j1, j2].
The solution is then

x∗ ∈ [z1, z2] ∩ [j1, j2] (5)

On the other hand, when (x′, y′) is not on fiber segment 1, i.e.
x′ /∈ [a, b], it is sufficient that the minimum of the distances
from (x∗, y∗) to the two endpoints of fiber segment 1 is not
bigger than α. In this case, x∗ /∈ [j1, j2].

(x∗ − a)2 + (k2x
∗ + n2 − k1a− n1)2 ≤ α2, or (6)

(x∗ − b)2 + (k2x
∗ + n2 − k1b− n1)2 ≤ α2 (7)



These two inequalities give two intervals [p1, p2] and [q1, q2].
The solution is then

x∗ ∈ [[z1, z2] \ [j1, j2]] ∩ [[p1, p2] ∪ [q1, q2]] (8)

The solution gives the intervals of fiber segment 2 that are
spatially close to fiber segment 1.

B. Problem Definition

Intervals of a Pair of Spatially-Close Fibers (IPSCF) Prob-
lem: Given two fibers li and lj , and a distance α. Each fiber
li/lj is associated with a set Ti/Tj of Ti/Tj fiber segments,
respectively. Each fiber segment t ∈ Ti/Tj is associated with
two fiber points (ut1 , vt1) and (ut2 , vt2) of known geodetic
locations. Find the intervals of fiber li that have a minimum
separation distance of at most α to fiber lj .

The IPSCF problem is an extension of the DSCFS problem.
If two fibers are spatially close, detecting their spatially-close
intervals is useful for recognizing to which extent they are
vulnerable to simultaneous failures. The IPSCF problem is
unidirectional, since the intervals of fiber li that are spatially
close to fiber lj are not necessarily equal to the intervals of
fiber lj that are spatially close to fiber li. When the network
operator needs to find the spatially-close intervals of a fiber
to a set of other fibers, the following problem is more useful.

Intervals to a Set of Spatially-Close Fibers (ISSCF) Prob-
lem: Given a fiber li, a set Y of Y fibers and a distance α.
Each fiber li or lj ∈ Y is associated with a set Ti/Tj of Ti/Tj
fiber segments, respectively. Each fiber segment t ∈ Ti/Tj is
associated with two fiber points (ut1 , vt1) and (ut2 , vt2) of
known geodetic locations. Find the intervals of fiber li that
have a minimum separation distance of at most α to any fiber
lj ∈ Y .

The IPSCF problem is a subset of the ISSCF problem,
where Y is a single fiber lj . The IPSCF and ISSCF problems
are polynomially solvable in the number of fiber segments.

C. Our Approach

We propose Algorithm 3 for solving the IPSCF and ISSCF
problems. Lines 1-3 insert all the fiber segment MBR of each
fiber lj ∈ Y into an R tree Q. For each fiber segment t of fiber
li, line 7 finds the set Z of fiber segment MBRs in Q with
distance of at most α from the MBR of fiber segment t. Line
9 then uses the equations of Section III-A to find the spatially-
close intervals of fiber segment t to each fiber segment k ∈ Z.
Line 10 returns the intervals of fiber li that have a minimum
separation distance of at most α from any fiber lj ∈ Y by
uniting all the intervals acquired by line 9. The worst-case time
complexity of Algorithm 3 is Y T 2, where T is the maximum
number of fiber segments per fiber.

D. Proof-of-Concept

Algorithm 3 is coded in Python and simulations were
conducted on an Intel(R) Core i7-4600U 2.1GHz machine of
16GB RAM memory. All simulation results are averaged over
five thousand runs, and we randomly chose the fibers for li
and Y in each simulation run. Fig. 6 shows the running time

5 10 15 20 25 30 35 40 45 50

Minimum separation distance (km)

0

20

40

60

80

100

120

140

160

R
u
n
n
in

g
 t

im
e
 (

m
s)

Angola Telecom

Ethiopia Telecom

Telkom South Africa

Fig. 6. Effect of α on the time taken to solve the ISSCF problem (Y = 5).
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Fig. 8. Effect of limiting the length of fiber segment on the time taken to
solve the ISSCF problem (α = 25 km, Y = 5).
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Algorithm 3 IPSCF with R Tree Preprocessing
1: for each fiber lj ∈ Y
2: for each fiber segment k ∈ Tj
3: compute the fiber segment MBR bk, and insert it into the R tree Q
4: set I as an empty interval
5: for each fiber segment t ∈ Ti
6: compute the fiber segment MBR bt
7: find the set Z of the entries of Q at distance at most α from bt
8: for each fiber segment MBR wk ∈ Z (wk is the MBR of fiber segment k)
9: J ← the intervals of fiber segment t that have a minimum separation distance of at most α to fiber segment k

10: I ← I ∪ J
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Risk Group 1

Risk Group 2

Risk Group 3

Fig. 10. An example of risk groups.

of Algorithm 3 as a function of α when Y is 5, while Fig.
7 shows the running time of Algorithm 3 as a function of Y
when α is 25 km. Higher α or Y implies potentially longer
intervals, such that the running time increases. The case when
Y = 1 corresponds to the IPSCF problem.

To reduce the running time, fiber segments with collinear
fiber points can be combined safely without affecting the
results. Unfortunately, the number of collinear fiber segments
in the studied datasets are too few for the effect to become
apparent. It is also tempting to combine shorter fiber segments
by imposing a lower bound on the fiber segment length, which
reduces the number of fiber segments and the running time as
shown in Fig. 8. However, by doing so, the network changes
unpredictably, affecting the intervals as shown in Fig. 9.

IV. GROUPING OF SPATIALLY-CLOSE FIBERS

This section builds upon Section II by grouping spatially-
close fibers in the same risk group. A risk group is often
defined as a set of fibers sharing an adjacent node or duct, e.g.,
[13], [14], [15]. We propose a broader definition of risk groups,
such that a risk group is a set of fibers that are spatially close
to every other fiber in the same set. Each risk group implies
a set of fibers with a high chance of simultaneous failures. A
risk group contains multiple fibers, and a fiber may belong to
multiple risk groups. For instance, the fibers in Fig. 1 can be
placed into three risk groups, as shown in Fig. 10.

A. Problem Definition

Grouping of Spatially-Close Fibers (GSCF) Problem: Given
a set F of F spatially-close fiber pairs (each fiber pair has a
minimum separation distance of at most α). Group all the

ℓ12

ℓ14

ℓ35

ℓ34

ℓ42

ℓ45

Fig. 11. Transformation between problems.

fibers that are spatially close to each other, such that the
number of distinct risk groups used is minimized.

The GSCF problem is NP-hard due to the complexity of
assigning the maximal risk groups. A maximal risk group is a
set of fibers that are spatially close to every other fiber in the
set, and which is not a subset of any other larger risk group.
To prove that the GSCF problem is NP-hard, we show that any
instance of the NP-hard Maximal Clique Enumeration (MCE)
problem [16] can be transformed in polynomial time to an
instance of the GSCF problem.

Maximal Clique Enumeration (MCE) Problem: Given a
graph H = (M, E) of a set M of M nodes and a set E
of E links. Each link (u, v) ∈ E connects nodes u ∈ M and
v ∈M. Find all the maximal cliques in H . A maximal clique
is a set of nodes that have a link to every other node in the
set, and it is not a subset of any other larger clique.

We start our proof by adjusting the interpretation of H such
that each node m ∈ M represents a distinct fiber ` ∈ F . H
then consist of F nodes. If any two nodes u ∈M and v ∈M
are connected by a link (u, v) ∈ E in H , the two fibers `u ∈ F
and `v ∈ F are spatially close. For instance, the corresponding
H for the fibers in Fig. 10 is shown in Fig. 11. By solving
the GSCF problem in H , the MCE problem is solved as well,
since each maximal risk group is equivalent to a maximal
clique. Since the MCE problem (and thus the GSCF problem
as well) is hard to approximate [17], we focus on a practically
efficient exact approach to solve the GSCF problem.



Algorithm 4 GSCF
1: create an empty graph H = (M, E)
2: for each fiber li ∈ F
3: for each fiber lj ∈ F \li
4: if fibers li and lj are spatially close
5: add node li and lj in H
6: connect node li and lj by a link in H
7: find all the maximal cliques in H

B. Our Approach

We propose Algorithm 4, which is based on a graph trans-
formation approach to solve the GSCF problem. An empty
graph H = (M, E) is created in line 1. For each fiber pair in
F , a node is created for each of them in H in line 5, if a node
representing them does not yet exist in H . Both nodes in H
are connected by a link in line 6. The maximal risk groups can
then be acquired by finding all the maximal cliques of graph H
in line 7. Each resultant maximal clique represents a distinct
maximal risk group. The maximal cliques can be acquired by
the Bron-Kerbosch algorithm [18]. The variant of the Bron-
Kerbosch algorithm by [19] has the best worst-case time
complexity of O(3

M
3 ), since any graph with M nodes can have

at most 3
M
3 maximal cliques [20]. Using the implementation

of [19], the worst-case complexity of Algorithm 4 is O(3
F
3 )

since there are at most F nodes in H .

C. Proof-of-Concept

Algorithm 4 is coded in Python and simulations were
conducted on an Intel(R) Core i7-4600U 2.1GHz machine
of 16GB RAM memory. We vary the minimum separation
distance α (thus varying F via the DSCFS problem) while
finding the maximal risk groups. The maximal risk group
assignment takes a very short amount of time, less than a
second in most of the tested cases as shown in Table III, with
at most ten seconds for the Telkom South Africa network.

The maximum and minimum numbers of fibers per maximal
risk group increase with the increase of α. Higher α increases
the possibility of more fibers being identified as being spatially
close to each other, and which consequently are assigned into
the same maximal risk group. On the other hand, the total
number of maximal risk groups can either increase or decrease
with the increase of α. Higher α increases the possibility of
more fibers being identified as being spatially close to each
other, thus creating more risk groups, in which some of them
are maximal. However, by having more fibers within each risk
group, the possibility of a maximal risk group being a superset
of another smaller risk group also increases, possibly reducing
the number of maximal risk groups.

V. RELATED WORK

The survivability of network services in the event of disas-
ters has received increasing interest in recent years, e.g., [21],
[22], [23], [24], [25], [26], [27]. The effect of disasters on
network services can be studied from an attacker perspective,

e.g., disconnecting two nodes under a disaster [22], how many
disasters are needed to cut connectivity between different
nodes [21] or the geographic area that brings the worse effect
to the network connectivity when confronted by a disaster
[23]. From an attacker perspective, the knowledge of the
vulnerable network geographic areas (often modeled as a
circular disk [21], an ellipse or a general polygon [23] or a
half-plane [22]) is highly appealing. However, from a network
operator perspective, knowing the vulnerable geographic areas
without enough information on resolving the problem can be
frustrating. There are endless possibilities of disaster shapes,
and protecting against all of them is hard. In this paper, more
attention is given to the fiber geodetic locations instead of the
disaster shape. Spatially-close fibers have a high chance of
failing simultaneously, regardless of the disaster shape.

We have proposed fast approaches on finding spatially-close
fiber segments for any arbitrary positioning or length of fiber
segments. While the work of [21], [23] may also be used out
of context to solve a similar problem, their time complexity
is much higher than ours, even without our practical time-
saving preprocessing routines. [21] limits the fiber segments
to be non-intersecting and two adjacent fiber segments are not
collinear, while we do not impose such limitations. [23] is
more suited for wireless networks instead of fiber networks,
since they consider that only links adjacent to nodes inside
a disaster area fail, while links merely passing through the
area remain intact. Consider two perpendicular fibers with
minimum separation distance from one of the fiber endpoints
to the middle of the other (much longer) fiber. [23] would have
not considered the fiber pair to be spatially close.

[26], [28] focus on a greenfield planning of placing new
fibers in a geographic area. Our approach on solving the ISSCF
problem is useful in complementing their work by verifying
that the new fibers are not spatially close to any existing fibers.

[24] groups fibers by matching their locations to specific
disaster maps. On the other hand, we focus on grouping fibers
based on their spatial proximity. We also find the maximal
risk groups, such that the number of risk groups needed are
greatly reduced, which is favorable since many applications,
e.g., risk-group-based routing, are NP-hard, thus the running
time can grow exponentially with the number of risk groups.

VI. CONCLUSION AND FUTURE WORK

We have proposed fast polynomial-time approaches for
detecting spatially-close fiber segments. Network operators
can adapt their existing network physical maps to our fiber
structure for detecting spatially-close fiber segments in their
network. We also showed that the algorithm based on R tree
preprocessing far outperforms the algorithm with k-d tree
preprocessing and the intuitive naive approach.

We have also proposed a polynomial-time approach for
finding the intervals of a fiber that are spatially close to another
fiber, i.e., the span of a fiber that is unsafe from the other
fiber. These intervals can be used to differentiate spatially-
close fibers according to their proximity. We also extended
the problem to find the intervals of a fiber that are spatially



TABLE III
THE EFFECT OF α ON THE SIZES OF MAXIMAL RISK GROUPS.

Network Property
Minimum separation distance (α)

5 m 50 m 500 m 5 km 50 km 500 km 5000 km

Angola Telecom

Total number of maximal risk groups 9 13 16 15 12 9 1
Average number of fibers per maximal risk groups 2.22 2.15 2.25 2.60 3.00 8.11 16

Maximum number of fibers per maximal risk groups 3 3 3 3 4 9 16
Minimum number of fibers per maximal risk groups 2 2 2 2 2 7 16

Ethiopia Telecom

Total number of maximal risk groups 12 16 17 17 15 11 1
Average number of fibers per maximal risk groups 2.08 2.25 2.41 2.41 2.67 11 21

Maximum number of fibers per maximal risk groups 3 3 3 3 4 14 21
Minimum number of fibers per maximal risk groups 2 2 2 2 2 10 21

Telkom South Africa

Total number of maximal risk groups 210 230 311 271 281 3659 1
Average number of fibers per maximal risk groups 2.03 2.05 2.47 2.82 4.97 80.31 343

Maximum number of fibers per maximal risk groups 3 3 5 8 9 108 343
Minimum number of fibers per maximal risk groups 2 2 2 2 2 19 343

close to at least one fiber in a set of fibers. We also showed
that maintaining the granularity of fiber segments is important,
since combining non-collinear fiber segments changes the
intervals unpredictably, albeit with significant time savings.

We have also proposed a fast exact approach for grouping
spatially-close fibers using the minimum number of distinct
risk groups. Our risk group classification enables ample knowl-
edge of existing risk-group-disjoint-paths algorithms to be
used in finding disaster disjoint-paths, and leads to a unified
risk group classification when combined with existing risk
group classification approaches. We showed that the number of
maximal risk groups can increase or decrease with the increase
of the minimum separation distance between fibers.

Examples of possible future work that can be derived from
this paper are, 1) finding two paths P1 and P2 between two
network nodes such that the minimum separation distance of
the two paths is maximized, and 2) finding two paths P1 and
P2 between two network nodes such that the total interval
length of P1 that is spatially-close to P2 is minimized.
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