Al-Powered Real-Time Channel Awareness and 5G
NR Radio Access Network Scheduling Optimization

Ying Wang
Commonwealth Cyber Initiative
Virginia Tech
Arlington, VA, USA
ywang06@vt.edu

Adam Gorski
Virginia Tech Applied Research Corporation
Commonwealth Cyber Initiative
Virginia Tech
Arlington, VA, USA

Luiz A. DaSilva
Commonwealth Cyber Initiative
Virginia Tech
Arlington, VA, USA
ldasilva@vt.edu

gorski@vt.edu

Abstract—As with any other wireless technology, 5G is not
immune to jamming. To achieve consistent performance, network
resource scheduling must be optimized in a way that reacts to
jamming in the NR channel environment. This paper presents
a cognitive system for real-time Channel Awareness and Radio
Access Network (RAN) Scheduling (CARS) optimization based on
multi-dimensional temporal machine learning models. Our sys-
tem automatically detects and classifies jamming in the channel
environment and optimizes scheduling based on classification re-
sults and collected link parameters. Based on over-the-air (OTA)
experiments, detection and classification time is less than 0.8
seconds, which enables real-time optimization. The system is eval-
uated and verified for OTA experimentation through integration
to our end-to-end NR system. An Automated Jamming Module
(AJM) is designed and implemented. Connecting the AJM to
our NR system enables a comprehensive evaluation environment
for our Jamming Detection and Classification Model (JDCM)
and Modulation and Coding Scheme optimization model. The
improvement in connection resiliency against Control Resource
Set jamming is proof of the CARS concept for real-time channel
awareness and scheduling optimization. Depending on channel
conditions, CARS achieves a 30% or higher improvement in NR
system throughput.

Index Terms—5G, NR, testbed, MCS, CORESET, RAN, Al,
ML, URLLC, jamming.

I. INTRODUCTION

With the introduction of 5G New Radio (NR) there is a
swell of new applications and services entering the cellular
communications ecosystem. Both NR and earlier wireless
cellular networks are vulnerable to jamming attacks, which
create deliberate interference to hinder the communication of
legitimate users [1]. Flexibility is key in NR [2], providing
performance enhancements and allowing vertical customiza-
tion; however, these advances also increase the complexity of
security in NR. With new 5G technology comes further need
to mitigate jamming aimed towards these often reliability-
and latency-centric applications and services. Traditional case-
by-case anti-jamming strategies and methodologies become
limited and powerless as communication link configuration
flexibility increases significantly. Thus, there is a strong need
to understand to what extent NR systems are vulnerable to
various types of jamming and consequently equip the networks
with an intelligent solution that can autonomously detect
jamming and continuously learn from the experience.

Jammers are malicious wireless nodes that cause intentional
interference to wireless cellular networks. Types of physical
and Radio Frequency (RF) layer jammers include: a regular
jammer that continuously injects RF signals and tends not to
follow any specific timing protocol [15]; a random jammer
that conserves its energy by alternating between active and
idle states; a responsive jammer that only injects RF when
its monitoring receiver determines (sometimes using a deep
learning model) that the victim transmitter is active [16]; a
go-next jammer that hops between different frequencies; and a
control-channel jammer that targets a control channel in order
to block information exchange between the victim transmitter
and receiver [15]. Control channel jamming can cause a denial
of service (DoS) or denial of node access [1]. In 5G, the
control channel most vulnerable to jamming is the Control
Resource Set (CORESET). CORESET jamming is the focus
of this paper.

In general, jamming effectiveness can be increased by
frequently changing the pattern and frequency of jamming.
Thus, a key to jamming mitigation is accelerating the system’s
detection of and reaction to jamming. Fast detection and
differentiation of control and non-control channel jamming are
two goals of our proposed jamming detection and classification
model (JDCM) for 5G. With the proper training models,
machine learning (ML) has proved to be an effective way to
detect jamming. Syed et al. [24] proposed an NR intrusion
detection system for jamming attacks based on Kullback
Leibler Divergence and Hamming Distance models. Imen et
al. [25] designed an intrusion detection mechanism to limit
DoS attacks in wireless sensor networks. They also imple-
mented five ML algorithms to detect and classify DoS attacks.
Yi et al. [26] presented an ML method for launching jamming
attacks in wireless communications and also introduced a
defense strategy. Dimitrios et al. [27] presented a method for
detecting and clustering RF jamming attacks based on the use
of unsupervised ML.

This paper proposes an innovative cognitive system for real-
time channel awareness and RAN scheduling (CARS) opti-
mization based on multi-dimensional temporal-based learning
models. The proposed method autonomously collects data
from the NR gNodeB (gNB) and user equipment (UE),



detects and classifies jamming in the channel environment,
optimizes RAN scheduling, and instantaneously implements
the optimized schedule at the gNB. Our main contributions
are summarized as follows:

o« We implement a domain knowledge translation (DKT)
and jamming scenario configuration (JSC) concept-based
Automated Jamming Module (AJM). The AJM generates
a jamming signal based on DKT and JSC input; it is
integrated into our end-to-end NR system and enables a
thorough assessment of NR jamming vulnerabilities.

o We design a real-time Data Collection Module that parses
data from multiple observation points and connects to
multiple ML models, enabling real-time decision support.

o We enable quantitative analysis of physical and media
access control layer NR vulnerabilities.

e We develop an innovative Al-based modulation and
coding scheme (MCS) optimization solution to counter
NR CORESET jamming. This solution enhances NR
system throughput by 30% in the presence of CORESET
jamming.

The attack generation, vulnerability detection, scheduling op-
timization, and real-time feedback cycle forms a self-learning
platform to address NR vulnerabilities. Continuously learn-
ing from different types of attacks improves NR system
robustness. Domain knowledge is integrated into a data-driven
approach for global optimization and fast convergence. The
remainder of the paper is organized as follows: we first present
our experiment-based NR CORESET jamming vulnerability
analysis, followed by a description of our proposed CARS op-
timization. Then, we present the results of testbed experiments
addressing CORESET jamming, and discuss conclusions and
future work. Given additional data, our proposed system can
be applied to other types of jamming and interference.

II. NR CORESET JAMMING VULNERABILITY

Jamming attacks pose serious risks to public communi-
cations systems, and particularly NR, which is expected to
provide connectivity for self-driving cars, smart cities, public
safety, and first responders, among others. Therefore, it is
essential to assess the risks of jamming attacks on NR under
various jamming conditions, including the jamming signal
power, the duty cycle, the frequency range, etc. Lichtman
et al. [6] note several reference signals in 5G NR that are
vulnerable to jamming. Uplink (UL) jamming on the Phys-
ical Uplink Control Channel (PUCCH) and Physical Uplink
Shared Channel (PUSCH) are both possible; however, the
PUSCH represents the bulk of the frequency frame, making
it inefficient to disrupt, and any control information on the
PUCCH can be replicated on the PUSCH, making the PUCCH
difficult to interfere with. Compared to the UL channels,
downlink (DL) control channels such as the Physical Downlink
Control Channel (PDCCH) and Primary Synchronization Sig-
nal/Secondary Synchronization Signal (PSS/SSS) prove more
vulnerable to jamming. The NR CORESET carries Downlink
Control Information (DCI), key to link quality management

[7].

The CORESET is a combination of PSS/SSS and PDCCH
channels; interfering with the CORESET is resource-efficient
due to its mapping onto 127 sub-carriers within the same
orthogonal frequency-division multiplexed (OFDM) symbol.
If an attacker knows the carrier frequency, sub-carrier spacing,
and physical resource block offset it is not difficult to find the
center frequency of the CORESET. Because of the control
channel information carried on the CORESET, the ease of
CORESET jamming is a vulnerability that can threaten the
link performance on the entire NR DL bandwidth.

Modulation and Control Scheme (MCS) selection is adopted
to maximize NR scheduling efficiency . To make a reasonable
MCS selection the NR system must have instantaneous and
historical channel quality information. Standard NR MCS se-
lection works well when no jamming or interference is present;
however, our experimentation reveals that it is vulnerable to
CORESET jamming. CORESET jamming can result in an
inaccurate channel quality indicator (CQI) estimation, which
in turn leads to an MCS selection that is sub optimal for
current channel conditions. Fig. 1 shows a comparison between
CORESET jamming (control channel jamming) and data chan-
nel jamming using the data collected on the Commonwealth
Cyber Initiative (CCI) end-to-end 5G testbed. The CORESET
is more vulnerable to jamming than the data channel, with
a decreased throughput average and an increased throughput
standard deviation as jamming power increases. With CORE-
SET jamming present, MCS selection is significantly affected
and becomes unstable at a jamming power higher than —12dB;
this instability is reflected in a severely decreased throughput
and increased re-transmission rate.

T T
%IE Eiea ;% = i-%

» | mm CORESET Jamming
. | == Data Channel Jamming
0

+ Outlier
A Average
— Median

Error Rate (%) Throughput (Mb/s)  MCS Index

R C——

4 e

Interference Level (dBm)

Fig. 1. MCS stability at various jamming signal power levels.

MCS selection in NR is an implementation-specific proce-
dure. CQI is reported by the UE and can be used for MCS
selection at the gNB. The MCS is periodically initialized
according to the CQI and adjusted according to the packet
error rate (PER). NR defines three tables of 4-bit CQIs (see
Tables 5.2.2.1-1 to 5.2.2.1-3 in [19]); each CQI table is
associated with one MCS table.

On the UE end, the measured CQI value becomes inaccurate
in the presence of a CORESET jamming signal; in this case,
the channel condition is not accurately reflected by the CQI.
On the gNB end, the MCS based on reported CQI and PER



varies dramatically. Inaccurate CQI and unstable MCS leads to
a lower average throughput and a higher throughput standard
deviation, as well as a higher PER. The causalities among
these parameters can be summarized as a chain relationship:
CORESET jamming leads to poor CQI estimation, which
leads to MCS changes, which in turn leads to a degradation
in system performance. CORESET jamming has an indirect
effect on the system performance through the intervening
variable MCS. Thus, by optimizing the MCS, it is possible
to eliminate performance degradation caused by CORESET
jamming.

In the NR system, physical layer resources are more abun-
dant but also more complex when compared to the 4G Long
Term Evolution (LTE) standard. Thus, flexible scheduling
algorithms and more accurate MCS values are of great signif-
icance in improving NR system performance. We propose a
temporal-based ML model to dynamically configure the gNB
and set the optimal MCS value when CORESET jamming
is detected. Like the JDCM, the MCS optimization model
requires a short input signal duration that allows for quick
response time when jamming is detected. The MCS optimiza-
tion model is trained on a non-real time basis and is stored in
the SQL database to be called in real-time.

ITI. SYSTEM DESCRIPTION

In this paper we propose a novel RAN scheduling model
(RSM) to improve overall performance of DL resource
scheduling in the NR system when CORESET jamming is
detected and channel quality estimation fails. The RSM is
illustrated in Fig. 2. The model includes three components:
jamming detection, MCS optimization, and scheduler imple-
mentation.
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Fig. 2. RAN Scheduling Model.

As with most data-driven models, it is challenging to collect
data and resource-intensive to label training data sets with
comprehensive information. This process directly determines
the accuracy and effectiveness of the RSM. The Automated
Jamming Module (AJM) configures and generates various
jamming signals. The NR signal and jamming signal data
collected by the NR system are used for Jamming Detection
and Classification Model (JDCM) training. The output of
the JDCM triggers and is an independent feature of the
MCS optimization model. Details of the AJM and JDCM are
described in the next section. The gNB Scheduler implements

the optimal scheduling based on the results of the MCS
optimization model and is informed by collected NR system
performance metrics. Optimized scheduling is implemented
in real-time and serves as feedback to subsequent cycles of
detection, analysis, optimization, and implementation.

A. Channel Awareness and RAN Scheduling System

The architecture of the CARS system detailed in Fig. 3.
The first component of the CARS system is the AJM, which
contains two input interfaces and one output interface. The
first input interface, Domain Knowledge Translation (DKT),
translates 3GPP standards information and integrates it into
the jamming configuration and labeling process. For instance,
if the targeted jamming channel is the CORESET, DKT will
provide the domain knowledge corresponding to CORESET
sub-carrier and frame location. The second input interface,
Jamming Scenario Configuration (JSC), reflects user require-
ments or a test scenario description. Set preferences include
frequency band, channel bandwidth, jamming power, and
dynamic pattern of jamming in time and frequency domains.
These preferences can be saved and reused as jamming scenar-
i0s. One jamming scenario example is an urban NR cell with
a coexisting LTE signal and a high noise floor. The output
interface is used for hardware configuration. Configuration
information from the JSC is used in Device Interface and
Configuration (DIC) to configure and subsequently run the
signal generator device. The DIC process allows for abstrac-
tion of signal generator configuration away from the AJM.
This abstraction removes the limitation of the system needing
a specific signal generator, enabling replacement, upgrade, or
coexistence of multiple signal generators within the system.
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Fig. 3. NR Channel Awareness and RAN Scheduling System.

The second component of the CARS system is the CCI 5G
testbed, a stable end-to-end NR network that supports real-
time configuration and remote data access.

The third component of the CARS system is the Temporal-
Based Learning Module, which uses various ML algorithms
as well as domain and policy knowledge to analyze collected
system data and execute a gNB scheduler response that
optimizes NR system throughput. Both control data absent



interference and data exposed to various types of jamming
are collected, parsed, and stored in an SQL-based database.

The fourth component of the CARS system is the Data
Collection Module. This module includes local storage as well
as a local and cloud-based SQL database that stores parsed
data samples. The data collection process is detailed in the
next section.

B. Data Collection Process

Fig. 4 shows the data collection process. The gNB captures
control messages and user plane statistical data associated with
an E-UTRAN NR Dual Connectivity (ENDC) session, storing
it in JavaScript notation (json) format. The raw .json files
captured by the gNB detailing the NR connection are sent
to local storage where the current instance of collected data
is then labeled according to jamming scenario settings. This
instance of labeled data is copied to a cloud server where all
historical records reside. Back in local storage, the labeled
data instance is parsed, extracting key performance indicators
(KPI) relevant to experimentation. Important KPI include DL
channel throughput, PER, MCS, signal-to-noise ratio (SNR),
CQI, and power headroom report. Using these KPI we can
measure a baseline for the NR system and compare it with KPI
behavior in the presence of a jamming signal. The pattern of
signal degradation informs the effectiveness of jamming on the
DL channel throughput distribution, which can then be used to
train the JDCM. During experimentation, parsed data can be
visualized in real-time. The parsed data is stored in an SQL
database in the cloud server. The SQL database allows the
components of CARS to be distributed in different computers
or Local Area Networks (LANs). The SQL database is used
in the JDCM, whereas the historical labeled raw data is used
as a backup. The structure of one SQL database is shown in
Fig. 5.
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Fig. 4. Data collection process.

C. ML-Based Jamming Detection and Classification

The labeled data flowing into the JDCM acts as the founda-
tion and accelerator for ML-based jamming classification. In
current research, ML in NR systems presents some limitations
due to the high volume of data (equivalent to real-world
commercial network loading) needed to build effective mod-
els for optimal over-the-air (OTA) performance. The CARS
system and intelligent SQL database meet these demands
and continuously boost the accuracy and effectiveness of the
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Fig. 5. SQL database structure.

JDCM. In a jammed environment, channel variations can be
unpredictable. A model that is able to quickly assess the
channel environment and immediately take action can signif-
icantly improve network performance. For this purpose we
propose a temporal-based learning model. Similar to sequential
learning algorithms like Long Short Term Memory (LSTM),
the temporal-based learning model can not only process single
data points, but also data sequences. Moreover, compared to
LSTM, a temporal-based learning model requires less data and
shorter data sequences to reach the same level of accuracy.

Data is taken from a period of time nT" where n is an
integer and 7' is the sampling time period. This data is fed
into a temporal-based ML model. The labeled data where a
targeted type of jamming is detected is marked as positive
and the labeled data where it is not detected is marked as
negative. Throughout the detection process we experimented
with several ML techniques, including logistic learning, ran-
dom forest, decision tree, adaptive boosting, support vector
machine, and expectation-maximization. A logistic learning
model was selected based on performance accuracy and the
amount of data required. The model involves less computa-
tional complexity and is more effective compared to LSTM
and others. The experimentation section provides a comparison
of the performance of each ML technique in the context of
jamming detection and classification.

D. MCS Optimization Model

Total NR system throughput can be calculated as the
throughput sum of all connected User Equipments (UEs). The
throughput of each UE is dependent on the MCS and PER
as well as packet size and distribution, control overhead, and
upper layer configuration. The gNB-controlled MCS index is
a value between 0 and 28 that determines modulation order,
target code rate, and spectral efficiency. An overestimation
of the MCS for the current channel condition can cause
a dramatic increase in PER. Bonafé et al. [14] calculated
expected PER at different MCS levels; results show that at
any given channel condition, an increase in MCS results in an
increase in PER. For example, for a channel with a SNR of
10dB and MCS 6, PER is 0.1%. However, if we choose MCS
10 the PER increases by a factor of 10, and if we choose MCS
16 the PER increases by a factor of 100.

Collection of training data for the MCS optimization model
requires sweeping through relevant jamming frequency, jam-
ming power, jamming bandwidth, and MCS index values.



Various NR system KPI are logged and labeled automatically.
All collected data is injected into a temporal-based learning
model for MCS optimization. KPI used in the JDCM are
the same as those used in the MCS optimization model.
We are able to accomplish three things with the collected
data: first, we get a clear picture of the effect that the MCS
index has on NR system throughput under various jamming
conditions. Second, we can determine the ideal MCS index
for different jamming levels and categories. Finally, we can
compare the performance of the model’s ideal MCS index
with the performance of the system’s auto-set MCS index; in
this way we are able to improve upon the MCS index setting
in the presence of jamming.

The MCS optimization ML model is shown in Fig. 6. The
value of n is empirically determined and must be large enough
to detect the patterns needed to differentiate between different
MCS settings. Observation time is represented as n7'.
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Fig. 6. Temporal-based learning module.

The description of the model is as follows. Given a series
of observations X (1), X(2), X(3), ..., X(t), ..., X(A), we
train regression models to predict the value labels y; and ys.
Here, ¢ indexes sequence steps and A represents the length of
the sequence.

« Independent variables (observations), X (¢) include fea-
tures Dy, D;_7, ..., Di_,,7 and an MCS value. Each
set of D, includes the parameters in (1). The value
of n is empirically determined as the value needed for
differentiating patterns of signals in physical layer.

o The dependent variables y;, y2, are respectively the
average and standard deviation (SD) of throughput for
the given MCS value in X (¢). Two separate regression
models are trained for predicting the value of y; and ys.

e« MCS indexes 0 to 28, as well as jamming signal fre-
quency and power, are traversed to train the models.

o The MCS index predicted to yield the maximum through-
put with minimal standard deviation is selected as the
optimal MCS at time t.

o Gradient descent is used as the change in each weight
to ensure that the weights quickly converge to a result
without oscillations.

o Multiple models are compared to select the one that fits
the data most closely.

At time ¢, the parameters of the NR communication link
feeding into features D;_,, include throughput th,, signal-to-
noise ratio snr, CQI cqi¢, PER per;, power headroom phry,
energy per resource element epre;, and UL path loss pl,.

Dy = [thy, snry, cqiy, pery, phry, epreg, ply] (D

Dependent variables (labels) of the model are shown in (2)
and (3). We separately train two regression models to predict
the average of the throughput y; and standard deviation of the
throughput y at a given MCS index k. to and to + §7" are the
start and end times of data collection, respectively. th; is the
measured throughput value at time ¢ when MCS is set to k.

to+oT

1
m=< > th )
t=to
ST (thy — yy)2
Yo = = 3)

When CORESET jamming is detected we can predict
the expected throughput average and standard deviation at
different MCS levels. Prioritization of maximizing average
throughput or minimizing throughput standard deviation is
dependent on use-case scenario and can factor into optimal
MCS selection. An example is: max(pi1y1 — (1 — p1)y=2) in
which case if maximizing the value of average throughput is
preferred, then p; is set closer to 1; if minimizing the value
of throughput standard deviation is preferred, then, p; is set
closer to 0.

IV. RESULTS

The results in this section are based on the data collected in
the CCI 5G testbed integrated with the CARS system. The CCI
5G testbed is equipped with a commercially available Amari
Callbox Pro which provides NR core network capability and
software-configurable eNB and gNB RAN capabilities. We
connect a 5G-capable Android UE Samsung S20 to this RAN.
Considering current commercially available UE frequency
band support, we selected the E-UTRAN New Radio — Dual
Connectivity (ENDC) Non-Standalone mode setting of LTE
b2 (1960 MHz DL) and NR n71 (634.5 MHz DL) for all
experiments reported in this paper.

A. Jamming Detection and Classification Modeling

We test the efficacy of several ML models in jamming
detection and classification. These models include: Logistic
Regression, Ada Boost, Quadratic Discriminant Analysis, Ran-
dom Forest, and Decision Tree. Fig. 7 plots the Receiver
Operating Characteristic (ROC) curve for each model and a
comparison of Area Under Curve (AUC) values. Table I shows
a direct comparison of the resulting precision, recall, and F1
parameters. A deep learning model is not selected due to the
volume of data it requires and its computation complexity.
With the amount of data collected for this experiment, the
deep learning model exhibits instability and performs less
accurately compared to Ada Boost and Logistic Regression.
Both Ada Boost and Logistic Regression show high AUC
and model robustness. When comparing optimal recall and
precision the Logistic Regression model demonstrates the
highest performance. Thus, the Logistic Regression model is
selected and used in the JDCM.
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TABLE I

JAMMING CLASSIFICATION MODEL ACCURACY ANALYSIS

Classification Model Precision | Recall FI
Logistic Regression 0.87 0.99 0.93
Random Forest 0.83 1.00 0.91
Decision Tree 0.86 0.97 0.91
Ada Boost 0.86 0.97 0.91
Quadratic Discriminant Analysis 0.94 0.50 0.65

B. MCS Optimization Modeling

The first step of MCS optimization is to traverse all MCS
values in the range [0, 28], then predict the throughput average
and standard deviation at each MCS. Different from the
classification model used for the JDCM, MCS prediction uses
a regression model. Regression results are generated based on
a decision tree regression algorithm. Based on the predicted
value of throughput average and standard deviation, the second
step of MCS optimization is to apply the predicted values to
a specific use case to select the optimal MCS. This section
contains two sets of results: the regression model and the
accuracy of MCS selection.

Decision tree regression is selected for optimal MCS de-
termination. Linear regression and LSTM were evaluated as
well; however, both yield lower performance. Decision tree
regression builds the model in the form of a tree structure. It
breaks the dataset down into smaller subsets while simulta-
neously and incrementally developing an associated decision
tree. The result is a decision tree with decision nodes and leaf
nodes. This model performs the best due to its recognition of
the jamming pattern and relationship between selected MCS
and predicted throughput.

Fig. 8 shows average and standard deviation of throughput
when a randomly changing jamming frequency and a ran-
domly traversed MCS input are used. The blue line indicates
the predicted throughput value, and the orange line shows the
actual throughput value. Overall, the R? value of the average
throughput regression model is 0.94 and the R? value of the
standard deviation of throughput regression model is 0.86.
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Fig. 8. Average and standard deviation of throughput regression at mixed
MCS levels.

Fig. 9 illustrates the impact of the weight of the throughput
average on accuracy of MCS optimization in the presence of
CORESET jamming. A correct prediction is defined as the
selected MCS resulting in a throughput greater than 90% of the
optimal throughput performance. A throughput average weight
approaching 1 signifies a greater importance in maximizing
average throughput. A throughput average weight approaching
0 signifies a greater importance of minimizing throughput
standard deviation. As illustrated in Fig. 8, the MCS prediction
for throughput standard deviation is less accurate than the
MCS prediction for throughput average, leading to the decline
in the prediction result when the throughput average weight
is less than the standard deviation weight. The solid blue line
represents the estimated accuracy of the MCS optimization
process with no CORESET jamming. The dashed orange line
represents the estimated accuracy of MCS optimization with
CORESET jamming given the assumption that CORESET
jamming is correctly detected. Throughput performance may
vary as the criteria of correct prediction of MCS optimization
changes or throughput average weight changes.

C. System Performance

Fig. 10 compares the overall NR system throughput im-
provement with CARS, in which the JDCM and MCS opti-
mization model are integrated. When the MCS is automatically
set by the NR system, the data connection is vulnerable
to a significant decrease in throughput in the presence of
CORESET jamming. When the data connection drops due to
jamming, throughput approaches 0. The application of CARS
leads to increased throughput and increased resilience to a
CORESET jamming signal.

V. CONCLUSION

In this paper we have proposed a cognitive system for real-
time channel awareness and RAN scheduling optimization
based on multi-dimensional temporal-based learning models.



1000 ———
0975
0.950
0925
0.900
0.875

0850

0525 =*=  Without CORESET Jamming

CORESET Jamming Given Correct Detection

MCS Selection Correct Prediction Rate

0.800

0z 0.3 0.4 0.5 0.6 o7 0.8 09 10
Weight of Throughput Average

Fig. 9. Decision accuracy for MCS optimization.

P —— Without CARS

EN] With CARS
25
20

15

Throughput (Mb/'s)

10

-12.0 -11.5 -11.0 -10.5

Jamming Level (dBm)

-13.0 -12.5

Fig. 10. System performance comparison with and without CARS.

Jamming generation, jamming detection, system optimiza-
tion, and real-time implementation form a closed-loop self-
learning platform that addresses NR jamming vulnerabilities
and improves NR robustness. Further configuration and data
collection with the CARS system can enable classification
of a larger set of malicious and non-malicious interference
signals. Future work includes outdoor experimentation with
traffic from many users in distributed geographic areas which
can improve the robustness and applicability of the JDCM
and MCS optimization model through collection of higher-
variability data. The future work includes deploying the CARS
in outdoor environments with a large-scale number of devices
and users.
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