Quantum Key Distribution with Trusted Relay using
an ETSI-compliant Software-Defined Controller

Riccardo Bassi, Qiaolun Zhang, Alberto Gatto, Massimo Tornatore, Giacomo Verticale
Politecnico di Milano
name.surname@polimi.it

Abstract—Quantum Key Distribution (QKD) is a mechanism
that allows two entities to agree on a secret key over a quan-
tum channel. Recently, commercially viable QKD technology
appeared on the market and the European Telecommunications
Standards Institute (ETSI) established a working group to stan-
dardize QKD for commercial applications. Several testbeds and
pre-commercial QKD networks are being deployed in the world,
all requiring sophisticated control mechanisms to enable key
exchanges between non-adjacent nodes for remote applications.
In this paper, we implement and evaluate a prototype that realizes
the architecture defined by ETSI and uses trusted relay nodes
to exchange keys between non-adjacent nodes. In particular,
we present the Software-Defined Network (SDN) Controller
and the Software-Defined QKD nodes designed to control the
QKD experimental testbed in Milan, named PoliQI. We test the
proposed prototype in an emulation environment, showing its
advantages in inter-datacenter communication scenarios in terms
of key delivery time and application acceptance ratio.

I. INTRODUCTION

Quantum-communication technologies are becoming com-
mercially viable and are spurring the interest of many compa-
nies and governments worldwide. More specifically, Quantum
Key Distribution (QKD) is a family of protocols designed
to use physical-layer technologies to securely exchange keys
that can be used to protect communications from eaves-
dropping. Since QKD is resistant to post-quantum attacks
(i.e., to attacks using a quantum computer), it can provide
quantum-resistant security to legacy applications relying on
non-quantum-resistant algorithms.

QKD has already been tested and verified in optical net-
works to exchange keys between adjacent nodes [1]. To enable
connections between non-adjacent nodes, QKD network is
currently being investigated and several testbeds have been
proposed [2]-[4]. Moreover, QKD is being standardized by
the European Telecommunications Standards Institute (ETSI).
Specifically, the ETSI QKD committee is currently releasing
a set of technical specifications outlining a control plane for
QKD network based on the principles of Software-Defined
Networking [5]. However, QKD-network testbeds require so-
phisticated control mechanisms to exchange keys for remote

This project was partially funded by the Italian project Quancom. This work
was also partially supported by the European Union under the Italian National
Recovery and Resilience Plan (NRRP) of NextGenerationEU, partnership on
“Telecommunications of the Future” (PEO0000001 - program “RESTART”).
Moreover, this work was also partly supported by the Italian Ministry of
University and Research (MUR) and the European Union (EU) under the
PON/REACT project.

978-1-6654-7598-3/23/$31.00 © 2023 IEEE

applications, and control technology to seamlessly facilitate
communications within QKD networks using ETSI standards
is at an initial stage.

To address these issues, this work aims to design an ETSI-
compliant QKD network control architecture on top of the
PoliQI network, a QKD testbed currently under development
in the metropolitan area of Milan, Italy. PoliQI will provide
high-speed, quantum-secure inter-datacenter communication
among five datacenters operated by government, military
agencies, telecommunication operators, financial companies
and universities [6]. The PoliQI network will support QKD
between adjacent nodes and will also provide two mechanisms
for key exchange between non-adjacent nodes, namely trusted
relays and optical bypass [7]. In this work, we focus on trusted
relays as they allow to achieve higher key rates compared to
optical bypass and they will be deployed earlier than optical
bypass due to their lower implementation complexity. The
challenge of the PoliQI project is to seamlessly integrate the
QKD nodes and procedures of optical bypass and trusted relay
into the operations of the datacenters, which must adhere to
strict safety and security standards and must operate at high
speed and low latency with high workloads. One key element
for seamless integration of such a disruptive technology into
datacenters is the adoption of standard interfaces.

The proposed QKD network prototype comprises QKD
links, Software Defined QKD (SD-QKD) Nodes, and an
SDN Controller. Each QKD link contains multiple quantum
channels (QCs), where qubits are transmitted. The SD-QKD
Node is internally composed of a Key Management Entity
(KME) and an SDN Agent. Each local node maintains a local
key database, namely, quantum key pool (QKP). The network
can also pre-distribute keys in QKP to reduce latency at the
cost of some network capacity. The KME is the one in charge
of handling the key material that comes from the QCs. The
SDN Agent is responsible for the interactions with the SDN
Controller. The SDN controller is designed to perform two
main tasks: ¢) to monitor the status of the QCs (e.g., to verify
the key generation rate and the amount of keys stored), and
it) to collect new application requests and decide whether
to serve the new application. The prototype implements the
ETSI standard interfaces between the SDN Controller and the
SD-QKD Nodes and between the SD-QKD Nodes and the
Applications.

The contributions of this paper can be summarized as
follows.

o« We propose a prototype implementation of an ETSI-
compliant SDN architecture for controlling a QKD net-
work, which seamlessly integrates QKD into confidential
communications.

o We extend the ETSI architecture to support QKD between
non-adjacent nodes using Trusted Nodes.

¢ We develop an efficient algorithm for deciding whether
to admit a new application without hampering the ability
of other applications to periodically renew their keys.

o We validate the performance of the proposed prototype
with extensive simulations and identify some criticalities
and directions for improvement.

The paper is organized as follows. Section II reviews some
related work on QKD network testbeds and their control
mechanisms. Section III overviews the network architecture.
Section IV discusses the proposed key management scheme
and key relay process. Finally, we analyse the performance of
the proposed prototype in Section V and conclude the paper
in Section VI

II. RELATED WORK

Research on quantum communication technology has
gained traction in the last few years. Various QKD network
architectures and testbeds are being implemented. Within the
existing QKD network architectures, two practical techniques
have been identified to distribute keys between non-adjacent
nodes: optical bypass and trusted relay. [7] The optical bypass
technique enables key distribution between intermediate nodes
by setting up a QC through any intermediate nodes. The trusted
relay technique uses uncompromised intermediate nodes to
relay the keys for non-adjacent nodes. The latter technique can
achieve a higher key rate compared to optical bypass since
the signal does not suffer from attenuation along the whole
path. Other techniques, such as untrusted relays and quantum
repeater [8] are not discussed in our work as they are not
mature enough for practical deployments.

QKD has been already investigated within various QKD
network testbed [2]-[4]. The authors of [4] demonstrate secure
connections between eight users in a metropolitan network
without trusted relays. The authors of [9] propose an architec-
ture for a Software-Defined QKD network and the authors
of [3], [4] implement key management schemes to utilize
trusted relays to scale the QKD distance. However, these works
do not consider building ETSI-compliant QKD controllers and
do not consider key management schemes to accommodate a
heavy load of key requests. In a preliminary work [10], we
implemented a prototype that allows two secure application
entities (SAEs) to establish a secure communication channel
through the keys delivered by the KMEs. However, this
implementation works only in the simplest use case in which
there are only two KMEs directly connected by a quantum
channel.

Different from previous works, our main goal is to de-
velop a control architecture that allows to seamlessly facilitate
communications within an ETSI-compliant QKD network. In
addition, we extend the ETSI architecture for exchanging keys

_A—
3]
SDN Géntraller
i AN
s \ N

VN ' Shared DB

a0 — ’!‘
SAEs Elk,/’ iy

SD QESNQae /
\

Fig. 1. The PoliQI infrastructure showing the SDN control entities. The red
arrows represent the QCs; the green ones represent the secured communication
channels established among SAEs; the solid black ones represent which
components can communicate through RESTApi interfaces; the dashed black
ones indicate the nodes that interact with the shared database.

between non-adjacent nodes, and we developed an efficient
algorithm for key request admission without jeopardizing the
rekeying process of existing services.

III. NETWORK ARCHITECTURE OVERVIEW

This section first introduces the different network elements
of the proposed QKD network, and then discusses its main
design principles.

The PoliQI testbed, depicted in Fig. 1 includes the following
elements.

a) SAEs: they are the application components that re-
quest and use the secure keys. The master SAE initiates
the request, while the slave SAE operates on the input of
the master SAE. Periodically, the SAEs perform rekeying
according to the application security needs.

b) SDN Controller: it controls all the SD-QKD nodes
in the network and has perfect knowledge of their states
including all the key requests coming from the SAEs and the
key generation rate of the QCs.

¢) QC: it is the channel over which the QKD protocol is
run. We assume that there is also a classical channel associated
with it over which the classical part of the QKD protocol
is run. Each QC automatically generates key material and
securely delivers it to the two KMEs at the sides of the QC.

d) SD-QKD Node: it manages the key material coming
from the QC and uses it to generate and distribute the keys
to the SAEs. It is internally divided into the four main sub-
components shown in Fig. 2: the KME, the SDN Agent, the
local database, and the quantum module. The KME gathers the
key material from the QC, generates the application keys and
delivers them to the SAEs. The SDN Agent is responsible for
communications with the SDN Controller. The local database
stores the key material together with information about the

SAEs

Shared DB KME SD;«J"Agent SDN Controller

- -
B»céi Other
o
ac ac

QKD Module

Fig. 2. The SD-QKD Node internal structure and its connections.

SAEs; it also stores any cached keys for usage in the QKP
mode described in Section IV. The quantum module executes
the QKD protocol with the adjacent nodes.

e) Shared database: it stores the instructions needed by
the KME to generate the correct application keys from the key
material exchanged over the QC.

The elements in the network architecture introduced above
are implemented as python modules as shown in Fig. 3. The
grey parts, namely, Load Generator Module and Quantum
Channel Simulation Module, are used in the testing and will be
substituted with the actual applications and quantum channel
in the PoliQI testbed. In this work, we implemented SAE
Module, SDN Controller Module, and QKD Node Module. The
SDN Controller Module interacts with SAE Module to get key
rate requests and assign keys to applications. In the meantime,
the SDN Controller Module also interacts with the QKD Node
Module to control the key generation and key distribution with
trusted relay.

SAE Module PN Load Generator
I 5G/6G services I Module
A
\ 4

SDN Controller Module
l Global Database I I

QKD Node Module
Local Database |
A

v
Quantum Channel Simulation Module

Fig. 3. Implemented modules and their relationships.

IV. KEY MANAGEMENT SCHEME

When a new application starts, it sets up a key session
and requests an initial key. If the controller grants this new
session, then the application will use the first key for securing

its communications. Depending on the security requirements,
this key can be used to encrypt an amount of data equal to
the key size or it can be expanded and used to encrypt a
larger amount of data, for example using it as a session key
in the Transport Layer Security (TLS) protocol. In the latter
case, the application relinquishes the perfect security model
but transmits at a higher rate. In either case, the application
will periodically ask for a new key by means of a rekeying
process. A failure in granting the initial key or a subsequent
key has a different impact on the application. In the former
case, the application cannot proceed and is forced to retry at
a later time. In the latter case, the application could continue
using the previous key, if this is allowed by the security rules,
or it must stop. In this paper, we assume that the security rules
make applications stop in case of a rekeying failure and that
this event is less desirable to the end users than failure to grant
an initial key.

A. Key Session Initialization

One of the most crucial steps in key management is the
application registration by which a pair of SAEs set up a new
identifier and reserve some resources (Fig. 4). The key request
initialization process is shown in Fig. 4. Let’s assume that we
want to exchange keys between a master SAE and a slave
SAE. Node A and node B are the local QKD nodes connected
to the master SAE and slave SAE, respectively. Each SAE
is characterized by a unique SAE ID, whose assignment of
SAE IDs is outside of the ETSI Standard [11]. In PoliQI each
SAE randomly generates a Universally Unique IDentifiers
according to RFC 4122 [12].

The master SAE initiates secure communications by sending
an ask_connection message to the slave SAE, which
includes the SAE ID of the master SAE. The slave SAE, in
turn, opens a session with the local QKD node (Node B in
the figure) using the open_key_session message. In turn,
the local QKD node B registers the session with the SDN
controller using the new_app message.

Upon success, the slave SAE answers the initial
ask_connection message from the master SAE providing
its own SAE ID. Then, the master SAE repeats the procedure
with its own local QKD node (Node A in Figure 4). When
both SAEs complete their registration, the Controller assigns
the Key Stream ID (KSID) to the applications.

We define the time of key request initialization as key
request initialization time, which contains the time that each
component (QC Nodes and Controller) requires to accept (or
reject) a new session. Specifically, the time of opening a
session between QKD node B and slave SAE and registering a
session between QKD node B and Controller is denoted with
t, and 5, respectively, as shown in Fig. 4. In addition, the time
of opening a session between QKD node A and master SAE
and registering a session between QKD node A and Controller
is denoted with ¢3 and %4, respectively.

MASTER SAE NODE A CTRL NODE B SLAVE SAE
| | | | |
| | ask_connection | |
! ! ! ! open_key_session >|
I I I € Y |
: : | new_app | :
| | ta] | _reeiseare | |
' ' ' '] mrre.2000x !
I I I “----- »i
| | SAE_ID | [
P g
I open_key_session 1 1 T 1
| >l I I I
| | new_app | | |
I I I

register_a
|]| 0 T PN
| g Bt APP_ 7 o _ssign ksid >
I

assign_ksid I

Fig. 4. Key request initialization, annotated with the times ¢1, t2, t3, and ¢4 measured in Section V-B

B. Session Admission Control

The SDN controller checks if the QKD nodes are directly
connected; if not, the controller chooses a path of trusted QKD
nodes and computes the amount of quantum key material
needed to relay the keys along the path. Then, it computes
the average amount of key material that is generated in the
Quantum Channels along the path and verifies that the new
request can be accommodated without jeopardizing existing
sessions.

Let ¢ be the size of the key requested by the new application.
We assume that time is divided into discrete time slots and
key requests are processed at the end of each slot. Each node
measures the amount of key material generated on each QC
in each slot and reports it to the controller. Let Kgc(n) be the
amount of key material generated on the j-th QC in the n-
th interval. If the key material generated in an interval is not
used to generate application keys, it is stored and used in the
following slots or discarded after TTL slots. Let A?(n) be the
size of the key requested by application ¢ in the n-th slot and
let 6(¢,7) = 1 if the application ¢ uses material from the QC j
or zero otherwise. Let QC’ be the set of QC used by the new
application and let Z be the set of all the active applications.

In our prototype, the SDN controller accepts a session if
the following equation is satisfied:

min Z (A?C(n) — Zé(z,g)[\f(n)) >0 (1)
e L ieT

where ng is the current slot.
The SDN controller locks the topology database during
these checks and, thus, can process one new session at a time.

C. Single-Hop Key Retrieval

When the Key Request Initialization is successfully com-
pleted, the Master SAE can request the first key starting the

protocol in Figure 5 The Master SAE sends the local node
a get—key message providing the pair of SAE identifiers
and the requested key size. The local node (Node A in
the Figure) allocates the requested number of bits from the
local pool and sends to the global database the necessary
information to repeat the same allocation at the remote node.
Such information consists of the starting and ending position
of the application key in the key stream generated from the
QC. Upon success, the Master SAE receives the key and a
key ID, which it sends to the remote SAE using an ask—key
message. The Slave SAE makes a request to the local node,
which retrieves the key information from the global database,
extracts the key from its key pool and gives it to the Slave
SAE. Periodically, the Master SAE performs the rekeying
procedure, which consists in requesting a new key with the
same protocol.

If the local key pool does not have enough bits to extract the
requested key, the protocol fails and we register a key error.
It is up to the SAEs to decide whether to continue using the
old key or to interrupt the communications.

D. Key Relay Process

Figure 6 shows the key relay process in the multi-hop case.
In the figure, the two SAEs are connected to node A and node
D, respectively. The path passes through node B and node C.

The first step is the generation of a local key on each
Quantum Channel with the protocol described in the previous
section. These are represented by the blue, green, and red keys
in Figure 6. Then, the key generated in the first link is relayed
along the following links in the path up to the final node.
At each hop, the key is encrypted with the local key using a
simple One-Time Pad (OTP).

Once the key is successfully shared between the first and
the last node, the first node generates a new key using the
QKD process on the first link, encrypts it with the shared

MASTER SAE NODE A NODE B SLAVE SAE
get_key(master_sae_id, slave_sae_id, size)		
) >		
oo oo Koy keydd i		
! ask_key(master_sae_id, -key_id) »:		
I T		
I I lo get_key(master_sae_id, slave_sae_id, key_id)		
	(Kk	

e
| | .= S —— >
I I

Fig. 5. The Key Retrieval Protocol

key using OTP and sends it to the last node over a classic
channel. This procedure is called basic mode and results in
a single key shared between the first and last node at the
end of the exchange. Since this process is expensive and
time-consuming, we also consider an alternative mode called
quantum key pooling (QKP) in which the first node generates
multiple keys in the first link and sends them to the last node in
a single message. The keys that are not immediately necessary
are locally stored in the nodes in case an SAE requests them,
for example when rekeying. If these keys are not used, after
TTL slots they are dropped. It is worth noting that in our
prototype we use a single key shared between the first and
last node to encrypt four new keys. This means that it is not
possible to use OTP to relay keys on a multi-hop path, but it is
necessary to use some semantically secure encryption scheme
such as AES-CCM. Consequently, QKP does not guarantee
perfect secrecy.

G

S 1] T I

g 2. Encrypted keys are exchanged N

| '
|Node Al —————— >NodeB K Node C
QCap : D

A B B B B
L fetebtet

i
b

’-fvof,,f;‘;;;z_\ | ©) % 5

S”c?rs,;\,\

Cg, i

i, —

" o N ?
o4, e .. s

E2

Fig. 6. Relaying process to have two non-adjacent nodes to share keys. In
BASIC mode just one key is relayed, while in QKP mode the keys are multiple.

V. ILLUSTRATIVE NUMERICAL RESULTS

A. Evaluation Setting

We tested the proposed prototype in an emulation environ-
ment to assess its suitability for PoliQi, which focuses on inter-
datacenter communication.The various components are run as
concurrent threads on a Macbook with Intel i5 CPU (2.6 GHz),
8 GB of memory. The considered QKD network topology
is the PoliQi topology as shown in Figure 1. QCs generate
a random number of bytes uniformly distributed between 33
byte/s and 47 byte/s, which is equivalent to, on average, 320
bit/s. Every application requests a key of 128 bits every 5
seconds. Requests are randomly selected among all the node
pairs and the SAEs are randomly distributed on the nodes,
making sure that every node has at least one SAE. The time-
to-live (TTL) is set to 15 s.

B. Key Request Initialization Time Breakdown

We first measure the required time of different compo-
nents for key request initialization, namely the interval ¢;
to t4 described in Section IV-A. These simulations consist
in performing 50 key request initializations with a very low
load in order to have negligible congestion. The average
measurements are reported in Table 1.

The key request initialization time can be split into two
parts, namely the Slave SAE part and Master SAE part. The
Slave SAE part takes only 60 ms, since it only informs
the Controller of a new application, without allocating any
resources. For the Master SAE part, on the contrary, the SDN
Controller becomes the bottleneck and takes 170 ms, of which
most of the time is consumed by the interaction between node
A and SDN Controller (140 ms), because it needs to check the
resource availability along the path and inform all the nodes
before the KSID is sent to the SAEs.

TABLE 1
BREAKDOWN OF KEY REQUEST INITIALIZATION TIMES

Key Request QC Node Controller
Slave SAE t1 = 60 ms to = 30 ms
Master SAE t3 =170ms t4 = 140 ms

C. Key Delivery Time

Now we evaluate the key delivery time, which is defined as
the time between the arrival of a new key request (performed
by a master SAE) at a node and the time it returns the key. We
tested BASIC mode and QKP mode without application rejec-
tion since no application is rejected at such low workloads.

M SH KEY TIME B MH KEY TIME H AVG TIME WEIGHTED

0,35
0,30
0,25
0,20
0,15
0,10
0,05 —&
0,00

Key delivery time (s)

-

BASIC QKP

Modes
Fig. 7. Key delivery time.

Figure 7 shows the key delivery time for single-hop con-
nection (SH KEY TIME), key delivery time for multi-hop
connection (MH KEY TIME), and average key delivery time
for all connections (AVG TIME WEIGHTED). QKP mode
increases the SH KEY TIME of BASIC mode from 50 ms to 80
ms since QKP mode generates more keys than requested for
future connections. However, since QKP relays multiple keys
at once instead of relaying every key singularly as BASIC,
QKP mode reduces the MH KEY TIME of BASIC mode from
240 ms to 140 ms. As QKP decreases the key delivery time of
multi-hop connection, the AVG TIME WEIGHTED of BASIC
is reduced from 160 ms to 110 ms.

In conclusion, the QKP mode has higher delivery times
than the BASIC mode in the single-hop key requests, but
lower times in the multi-hop requests, resulting in an improved
overall performance.

D. Errors and Application Rejection Rate

The last simulation aims to find out the impact of the
application admission control algorithm in proactively reject-
ing new applications if the QC rates are not sufficient, in
order to avoid key errors to existing applications that are
rekeying. The number of applications is set to 52, a relatively
large number, such that the network is under high load and
hence some applications must be rejected and key errors
occur. We compare four scenarios: a BASIC mode and QKP
mode without application rejection (named as BASIC and
OKP, respectively), and BASIC mode and QKP mode with
application rejection (named as BASIC+REJ and QKP+REJ,
respectively).

Fig. 8 shows the percentages of applications rejected
(REJECTION), percentages of applications with key errors
(CONN with ERR), and percentages of total key errors (KEY
ERR). As shown in Fig. 8, QKP reduces the CONN with ERR

B REJECTION CONN with ERR KEY ERR

%]

S 30%

©

2. 25%

_s 20%

8 15%

o

< 10%

©

S 5%

4

o 0%

i BASIC QKP BASIC + REJ QKP + REJ

Scenarios

Fig. 8. Errors and application rejection rates.

and KEY ERR from 25.4% to 4.4% and from 1.9% to 0.1%,
respectively. This is because in the BASIC mode the first node
in the path needs to generate two full keys, while in QKP mode
the relaying key is utilized to relay multiple keys, hence the
rate consumed by that key can be spread on those future keys.
When application rejection is enabled, BASIC+REJ decreases
the CONN with ERR and KEY ERR of BASIC from 25.4% to
16.6% and from 4.4% to 3.1%, respectively by rejecting 16.2%
requests. In addition, QKP+REJ has no KEY ERR and CONN
with ERR by rejecting 13.5% requests. We assume that this
situation is preferable since users prefer their communications
to be blocked at the beginning, rather than dropped because
of a key error later on.

From the simulations, we conclude that the QKP mode and
the application admission control algorithm can both reduce
key errors. Both the QKP mode and the application admission
control algorithm have parameters that can be changed, even
at run-time, to find an optimal trade-off between blocking and
dropping.

VI. CONCLUSION

We implemented a prototype of a control architecture for
QKD, that has been tested and evaluated by emulating the
PoliQI network, posing particular attention on the Key Man-
agement Entity, to gain insights on how to implement, and
possibly improve current QKD control solutions.

We developed a prototype of an SDN Controller and of a
basic SD-QKD module, which can support single and multi-
hop key distribution in any custom network topology. These
components have been designed according to ETSI Standards,
then some technical novelties have been introduced, such as
1) introducing an algorithm to decide at runtime whether to
reject a new connection and i¢) developing a new procedure
to establish end-to-end keys between non-adjacent nodes using
Trusted Relay nodes and an SDN controller. Our experimental
results demonstrate that these new functionalities allow to
efficiently manage and distribute the keys to connections,
compatibly with the limits imposed by the underlying QCs,
while trying to minimize the errors. We plan to further reduce

the key errors by designing efficient QKD resource allocation
algorithms.

(1]

(2]

(3]

(4]

(5]

(6]
(71

(8]

(9]

[10]

[11]

[12]

REFERENCES

A. Gatto, M. Brunero, M. Ferrari, et al., “A BB84 QKD
Field-Trial in the Turin Metropolitan Area,” in PSC,
2021, TulA-2.

A. Aguado, V. Lopez, D. Lopez, et al., “The engineering
of software-defined quantum key distribution networks,”
IEEE Communications Magazine, vol. 57, no. 7, pp. 20—
26, 2019.

T.-Y. Chen, X. Jiang, S.-B. Tang, et al., “Implementa-
tion of a 46-node quantum metropolitan area network,”
Npj Quantum Inf., vol. 7, no. 1, pp. 1-6, 2021.

S. K. Joshi, D. Aktas, S. Wengerowsky, et al.,
“A trusted node—free eight-user metropolitan quantum
communication network,” Science advances, vol. 6,
no. 36, pp. 73-81, 2020.

“Quantum key distribution (gkd); control interface for
software defined networks,” ETSI (European Telecom-
munications Standards Institute), Group Specification
GS QKD 015 V2.1.1, Apr. 2022.

M. Martinelli, P. Martelli, A. Gatto, et al., “POLIQI:
Milano quantum infrastructure,” in ICOP, 2022.

Q. Zhang, O. Ayoub, A. Gatto, et al., “Joint routing,
channel, and key-rate assignment for resource-efficient
gkd networking,” in IEEE Globecom, 2022.

Y. Cao, Y. Zhao, Q. Wang, J. Zhang, S. X. Ng, and
L. Hanzo, “The evolution of quantum key distribution
networks: On the road to the ginternet,” IEEE Commun.
Surv. Tutor., vol. 24, no. 2, pp. 839-894, 2022.

Y. Cao, Y. Zhao, C. Colman-Meixner, X. Yu, and J.
Zhang, “Key on demand (KoD) for software-defined
optical networks secured by quantum key distribution
(QKD),” Opt. Express, vol. 25, no. 22, pp. 26453—
26467, Oct. 2017.

N. Sala, “Implementation of a key management entity
for quantum key distribution,” M.S. thesis, Politecnico
di Milano, 2022.

“Quantum key distribution (qkd); protocol and data
format of rest-based key delivery api,” ETSI (European
Telecommunications Standards Institute), Group Speci-
fication GS QKD 014 V1.1.1, Apr. 2019.

P. J. Leach, R. Salz, and M. H. Mealling, A Universally
Unique IDentifier (UUID) URN Namespace, RFC 4122,
Jul. 2005.

