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Abstract

In this work we define and test a new framework obtained 
as the integration of two recently developed middlewares 
defined to support the parallel and distributed simulation
of large scale, complex and dynamically interacting 
system models (like wireless and mobile network 
systems). In a distributed simulation of highly interacting 
system models, the main bottleneck may become the 
communication and synchronization required to maintain 
the causality constrains between distributed model 
components. We designed and implemented the ARTÌS 
middleware as a new framework incorporating a set of 
features that allow an adaptive optimization of the 
communication layer management in a distributed 
simulation scenario. ARTÌS has been integrated with 
GAIA, a dynamic mechanism for the runtime management 
and adaptive allocation of model entities in a distributed 
simulation. By adopting a runtime evaluation of causal 
bindings between model entities GAIA adapts the 
dynamic and time-persistent causal effects of model 
interactions to dynamic migration of model entities. 
Preliminary results demonstrate that the combined effect 
of ARTÌS management and GAIA heuristics leads to a 
significant reduction in the communication and 
synchronization overheads between the physical 
execution units. Simulation performance enhancements 
have been obtained also in worst-case modelling 
assumptions and simulation scenarios. 

1. Introduction 

      In recent years, the research for tools and 
methodologies for modeling and simulation of large-scale 
and complex systems has obtained a great interest. 
Examples of models challenging currently available 
simulation systems and tools range from large-scale 
wireless systems, like cellular, mobile ad hoc and sensor 
networks, up to biology-inspired models and molecular 
systems, elementary particles physics and cosmology 
systems [17, 19, 20, 24, 26, 31, 35, 36, 37, 39]. The 
simulation-based investigation of complex systems is 
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widely adopted and it is often preferred, in practice, to the 
mathematical intractability and critical model-complexity 
of alternative numerical and analytical resolution methods 
[17, 25, 30, 31, 35]. Simulation models currently 
considered interesting for the analysis may include a 
potentially huge number of simulated objects. The 
simulation of many objects may require a relevant 
computation time (e.g. due to the implementation of 
complex behaviors, with dense state changes). Detailed 
and complex simulated objects (i.e. model components) 
may require complex and large data structures 
implementing the model state. Large scale and complex 
simulation models may be unpractical to simulate on a 
single-processor execution unit, because of huge memory 
requirements and large amount of time required to 
complete the simulation runs [25, 30, 31]. 
     Many practical experiences have demonstrated that the 
memory bottleneck reduction, and the speed-up in the 
simulation of complex systems, can be achieved by using 
parallel and distributed models and execution 
architectures, i.e. a Parallel Discrete Event Simulation 
(PDES) approach [1, 6, 12, 13, 18, 19, 20, 28, 29, 31, 36, 
39]. More recently, the distributed simulation community 
contributed in the definition of a new standard, named 
IEEE 1516 “Standard for parallel and distributed 
modeling and simulation” [16]. The new standard defines 
rules and interfaces allowing for heterogeneous 
components’ interoperability in parallel and distributed 
simulations. Model components (formally known as 
federates) are executed as Logical Processes (LPs). 
Federates’ execution is supported by standard 
management APIs for the communication and 
synchronization tasks, implemented by a runtime 
middleware (RTI). The High Level Architecture (HLA) 
has currently become a synonymous for the standard rules 
and services to be considered as the basis for the 
implementation of distributed simulations and the 
RunTime (RTI) simulation kernel [7, 11, 16]. In order to 
exploit the maximum level of computation parallelism, 
many research activities dealt with dynamic balancing of 
logical processes’ executions (both cpu-loads and virtual 
time-advancing speeds) by trading-off communication, 
synchronization and speedup, both in optimistic and 
conservative approaches [5, 8, 10, 14, 32, 38]. 
The distributed federates interact and synchronize via 
event-message notifications (i.e. basically message 
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passing communication). Unfortunately, the need for 
distributed model-components communication and 
synchronization services may require massive 
interprocess communication to make the distributed 
simulation evolving like in the sequential counterpart. 
Complex systems with detailed and fine-grained 
simulation models can be considered communication-
intensive under the distributed simulation approach. As a 
result, interprocess communication may become the 
bottleneck of the distributed simulation paradigm, and 
solutions to reduce the cost of communication must be 
addressed by the research in this field.
Many approaches have been investigated in order to 
reduce the overhead effects of distributed synchronization 
and communication in both optimistic and conservative 
distributed simulations. Solutions have been proposed, 
based on both model aggregation and on communication 
filtering, and also by trading off model accuracy and 
computation load balancing issues, respectively [15, 27]. 
Basically, the approaches defined in [2, 6, 10, 11, 21, 32] 
rely on the reduction of communication obtained when 
the update of an event- or state-information (e.g. event 
and/or anti-message) is not flooded to the whole system, 
but it is only propagated to the subset of causally 
dependent components. This is the basis of 
publishing/subscribing mechanisms for sharing state-
information and event-notifications between causally 
dependent components [7, 11, 28]. In spite of the 
previously mentioned approaches for communication 
reduction, the efficient implementation of interprocess 
communication remains a primary background issue, to 
contrast the possible communication bottleneck of 
parallel and distributed simulations. The way interprocess 
communication can be sustained in distributed systems 
would depend mainly on the execution units and 
communication support, that is, on the simulation system 
resources, architectures and characteristics. 
Recently proposed and implemented middleware 
solutions based on the IEEE 1516 Standard for distributed
simulation and the High Level Architecture (HLA) [7, 16] 
have shown that the parallel and distributed simulation of 
massive and complex systems can result in relevant 
overheads. Overheads are due to the complex and full 
management of a wide set of runtime services and to the 
latency due to distributed communication bottlenecks. 
Specifically, the implementation of the interprocess 
communication services has been implemented in sub-
optimal way, without considering the heterogeneity of the 
simulation execution platforms [3, 9]. 
To this end, we designed a new, parallel and distributed 
simulation middleware named Advanced RTI System 
(ARTÌS). The aim of the ARTÌS middleware is to support 
parallel and distributed simulations of complex systems, 
based on a minimum set of middleware services. The 
ARTÌS design is oriented to support the model 
components’ heterogeneity, distribution and reuse, and to 
increase the simulation performances, scalability and 

speedup, in parallel and distributed simulation scenarios 
[4]. Another design issue of the ARTÌS framework is the 
dynamic adaptation of the interprocess communication 
layer to the heterogeneous communication support 
offered by possibly different simulation-execution units 
[4]. Specifically, we oriented the ARTÌS design towards 
the adaptive evaluation of the communication bottlenecks 
and support for multiple communication infrastructures 
and services, from shared memory to Internet-based 
communication [4]. 
In addition, in this work the ARTÌS middleware has been 
composed with another distributed mechanism, named 
Generic Adaptive Interaction Architecture (GAIA). 
GAIA implements a simple model components’ migration 
mechanism that can be adapted on the top of HLA-based 
distributed simulations [3]. The HLA standard and 
existing Runtime Infrastructures (RTI) do not define 
component migration facilities, even if preliminary 
research activity is made on this topic [22, 23]. For this 
reason we realized a prototype migration framework, and 
a heuristic migration policy, whose aim is to dynamically 
partition and allocate the interacting model components 
over many LPs, respectively executed over a set of 
multiple, distributed execution units. The composition of 
ARTÌS and GAIA would realize a complete prototype 
framework for parallel and distributed simulation, 
characterized by an adaptive, tuneable mechanism able to 
adapt and react to dynamic systems’ behavior under the 
communication-reduction viewpoint. In this work the 
prototype implementation of the ARTÌS and GAIA 
mechanisms is outlined and preliminary results of a set of 
simulation tests for dynamically interacting model 
components are presented. 
     The paper structure is the following: in section 2 we 
outline some concepts about the distributed simulation of 
dynamic models, specifically, the wireless ad hoc 
networks; in section 3 the key issues for the ARTÌS and 
GAIA framework implementation and the proposed 
migration heuristics are defined; in section 4 a prototype 
wireless system’s model and a preliminary set of 
simulation results are presented; in section 5 we 
summarize our conclusions and future work. 

2. Distributed simulation of dynamic models 

   We define a dynamic system as a system where the 
interactions (i.e. the causal effects of events) are 
dynamically subject to fast changes driven by the system 
(and model) evolution over the simulated time. Given this 
general definition, a wireless network can be an example 
of a highly dynamic system.  
To realize a correct evolution under the event-causality 
viewpoint, every model components’ interaction should 
be notified as an event-message to all the causally 
dependent model components, by a runtime event-
message distribution mechanism.  Complex systems with 
detailed and fine-grained simulation models can be 
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considered communication-intensive under the distributed 
simulation approach. As a result, interprocess 
communication may become the bottleneck of the 
distributed simulation paradigm. The way interprocess 
communication can be sustained in distributed systems 
would depend mainly on the execution units and on the 
communication support, that is, on the simulation system 
resources, architectures and characteristics. As an 
example, message passing communication can be 
performed efficiently over shared memory architectures, 
while it would require medium and high communication 
latencies over local and wide area network 
communication services. It is self evident how the 
physical clustering of interacting model components on a 
shared memory architecture could result in the advantage 
to exploit the most efficient message passing 
implementation. Unfortunately, in highly dynamic 
systems any optimal static clustering and allocation, 
based on the current component-interaction scheme, will 
become immediately suboptimal, due to the dynamics of 
the model interactions. The approach used in currently 
available implementations is to consider the model 
component interactions, by adapting the event message 
distribution accordingly. No background optimization is 
based on the heterogeneity of available communication 
infrastructure characteristics. 
In presence of a dynamic system, the event-message 
distribution of a distributed simulation requires a dynamic 
definition of publishing/subscribing lists, or the 
implementation of a complete state-sharing information 
system. On the other hand, a dynamic approach for the 
event-distribution and state-information-updates (e.g. 
dynamic lists and subscription groups) would lead to 
additional communication and management overheads. In 
some scenarios, the communication cost of list-updates or 
fine-grained events’ communication between a 
dynamically variable set of components, could make 
attractive a complementary approach. As an example, 
when the system communication infrastructure is 
characterized by significant performance asymmetry (e.g. 
shared memory vs. LAN communication), like in 
networked clusters of PCs, the migration cost needed to 
dynamically cluster the set of interacting components 
over a single Physical Execution Unit (PEU) could 
become attractive. This would be even more attractive if 
the following three assumptions could be satisfied: i) 
components’ migration could be implemented 
incrementally as a simple data-structure (i.e. state) 
transfer, ii) the component state would be comparable 
with the amount of data exchanged for interactions, and 
iii) the object interaction scheme would be maintained for 
a significant time (i.e. time-locality).  

2.1 A case study of a dynamic model 

In the following, as an example of a dynamically variable 
system, we focus on a wireless multi-hop Mobile Ad Hoc 

Network (MANET) [17, 35]. Simulation models for 
wireless systems incarnate the assumptions that motivated 
our design. The number of simulated hosts in our 
expectations can reach high values, requiring the 
simulation of massively populated scenarios. Topology 
changes due to simulated hosts’ mobility map on 
causality effects in the “areas of influence” of each 
mobile device, resulting in dynamically shaped causality-
domains and component interaction schemes. Given two 
or more neighbor-hosts sharing the wireless medium, the 
causal effect of signal interference could result in a chain 
of local-state events up to the high protocols’ layers [35]. 
In our approach, we define a model entity as the data 
structure defined to model a Simulated Mobile Host 
(SMH). A certain degree of time-locality of local 
communication can be considered an acceptable 
assumption in many wireless system models, depending 
on the communication load and the mobility model 
assumptions. 

A high degree of causality in the simulation of the 
wireless hosts’ communication is driven by the local-
topology interaction (i.e. transmissions) between neighbor 
hosts [17, 35]. Under the modeling and simulation 
viewpoint, wireless systems can be considered highly 
dynamic systems: if a SMH changes its position, it will 
eventually interact with a new community of neighbor 
hosts. The system dynamics can be influenced by motion 
model and speed, and also by the SMHs density. 

Our testbed consists of a distributed discrete event 
simulation of model components (i.e. logical processes) 
executed over a set of physical execution units (PEUs), 
connected by a physical LAN network. Our design 
approach is mainly focused on the adaptive 
communication reduction between the PEUs where 
Logical Processes  (LP) are executed. Every LP is 
statically allocated and executed on a single PEU. 
Specifically, one single LP cannot be split over two or 
more PEUs, more LPs can be executed over a single PEU, 
and LPs cannot be migrated between PEUs. 

Every LP is managed by a runtime simulation core 
(RTI) as a single simulation component. On the other 
hand, a single LP is implicitly formed by a set of threads, 
each one managing and updating the state (i.e. local data 
structures) of a set of Simulated Mobile Hosts (SMHs). A 
communication between wireless hosts can be modeled as 
a set of interactions (i.e. message-events) between any 
couple of adjacent SMHs. Since a wireless 
communication must be always modeled as a broadcast 
within a limited local transmission range, this requires 
that each SMH within a variable range would be notified 
with the transmission-related event-messages. Each event 
would result in a multiple set of one-to-one interactions 
(i.e. event messages) among local SMHs. If the sender 
SMH and its neighbors belong to the same LP (i.e. they 
are executed on the same PEU), or if they belong to 
different LPs implemented over the same PEU, then their 
interactions can be considered local (e.g. shared memory 
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communication) and do not involve any physical network 
communication. On the other hand, every interaction 
involving participants implemented over foreign LPs (e.g. 
LPs implemented over different PEUs) may require time-
expensive physical network communication. By reducing 
the physical network communication we can reduce the 
synchronization delays. By clustering neighbor SMHs 
within the same LP, or within the LPs executed over the 
same PEU, we obtain the advantage of closing the 
causality effect of modeled communication within the 
PEU where the interacting LPs (and respective SMHs) 
are executed. In addition, clustered interacting SMHs 
would limit interactions with the management layers of 
the RTI, by further reducing the computation and 
communication overheads. To sum up, by limiting the 
network communication in favour of the local (shared 
memory) communication, the wall clock time required by 
the simulation runtime to achieve full synchronization 
would be reduced. This would make it possible to obtain 
a fast simulation. 

A static approach could be adopted to optimally 
distribute the SMHs within the LPs in the simulation 
initialization phase. The optimal solution for allocation is 
hard to find and could be defined in many ways, 
depending on the targeted overheads' reduction. 
Typically, the optimality is defined with respect to latency 
(to reduce the physical network communication cost) or 
computation (to obtain an optimally balanced execution 
parallelism). Anyway, this should be explicitly performed 
offline by the modeler, on the basis of the modeling 
assumptions. Moreover, as it will be demonstrated in the 
final results, the model dynamics (e.g. the SMH mobility) 
would make the optimal distribution ineffective after few 
simulation steps. This result may translate in a 
performance degradation for the simulation speedup, 
mainly due to the increasing cost of communication and 
synchronization required between distributed model 
components (logical processes). In our approach the 
optimization is dynamically performed at runtime, by the 
proposed simulation middleware migrating the SMHs 
between LPs. In this way, the modeler is alleviated by the 
optimization task, and the system converges towards a 
balanced, tuneable and pseudo-optimal model 
components’ distribution driven by the model interaction 
scheme.  If we assume a time-locality in the interaction 
between neighbor hosts, it could be convenient to migrate 
the foreign SMH to the  LP (and to the PEU) where its 
new neighbors are located, by reducing in this way the 
cost of successive interactions. This assumption is 
typically verified in MANETs, e.g. most routing protocols 
are based on “proximity” concept to decide the routing 
path of communications, and such communications 
usually last for a significant time, following a 
bidirectional session-based scheme. The effect of the 
time-locality of the causality effect inside each logical 
process will be investigated in the final section, by 
varying the SMH mobility speed. 

3. The distributed simulation framework 

The HLA implementation criticisms [38, 3, 4, 9]  and the 
lack of Open Source RTIs are the main motivations 
behind the design and implementation of ARTÌS 
(Advanced RTI System). The main purpose of ARTÌS is 
the efficient support of complex simulations in a parallel 
and distributed environment.  
The ARTÌS implementation [4] follows a component-
based design, that results in easily extendable 
middleware. The solutions proposed for time management 
and  synchronization in distributed simulations have been 
widely analyzed and discussed in the design phase. 
Currently, ARTÌS supports the conservative time 
management based on both the time-stepped approach, 
and the Chandy-Misra-Bryant algorithm. We are working 
on the extension of ARTÌS to support optimistic time 
management algorithms. The initial choice to support the 
conservative approach was a speculation on the highly 
unpredictable characteristics of our target models of 
interest [3], which may result in frequent rollbacks. In 
ARTÌS, many design optimizations have been applied to 
obtain adequate protocols for synchronization and 
communication in Local Area Network (LAN) or Shared 
Memory (SHM) multiprocessor architectures. In our 
vision the communication and synchronization 
middleware should be adaptive and user-transparent 
about all the optimizations required to improve 
performances. The current scheme adopts an incremental 
straightforward policy: given a set of LPs on the same 
physical host, such processes always communicate and 
synchronize via read and write operations, performed 
within the address space of LPs, in the shared memory. 
To implement these services we have designed, 
implemented and tested many different solutions, based 
on Inter Process Communication (IPC) semaphores and 
locks, busy-waiting, and "wait on signals" with a limited 
set of temporized spin-locks. The latter solution has 
demonstrated very low latency and limited CPU 
overhead, good performances obtained in multi-CPU 
systems, good scalability, and no need to reconfigure the 
operating system kernel level. 
Two or more LPs located on different hosts (i.e. no 
shared memory available), on the same local area network 
segment, communicate by using a light Reliable-UDP (R-
UDP) transport protocol over the IP protocol. Ongoing 
activity is evaluating the use of raw sockets for R-UDP 
data segments directly encapsulated in MAC Ethernet 
frames (i.e. bypassing the IP layer). Two or more LPs 
located on Internet hosts rely on standard TCP/IP 
connections.

3.1. The Generic Adaptive Interaction 
Architecture (GAIA) 

The PDES simulator built to obtain an experimental 
evidence of our proposal is based on a distributed 

Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’04) 

1550-6525/04 $20.00 © 2004 IEEE 



architecture made by a set of logical processes glued 
together by  the ARTÌS middleware. In [3] we adopted 
the High Level Architecture (HLA) DMSO (Department 
of Military Simulation Office, US Department of 
Defense) implementation RTI-1.3NGv3.2 as the basis for 
our work.  On top of the HLA RTI we built a middleware 
extension called Generic Adaptive Interaction 
Architecture (GAIA). GAIA provides the interaction to 
the simulation core, the location and distribution data 
management, the random number generator, tracefile-
logging and other simulation facilities. 
     The target of GAIA is to provide migration and 
service APIs to the simulation developer. Because of the 
unavailability of DMSO RTI source-code in our previous 
work, the GAIA facilities were initially provided as an 
external middleware on top of the DMSO RTI [3]. The 
development of ARTÌS middleware has permitted to 
merge the GAIA framework within the runtime core, still 
reducing the runtime overheads. 
We implement SMH models as code with data structures 
to define and maintain the SMH state information. GAIA 
migrates the “data structure”, i.e. the state information of 
SMHs between LPs. This required to design and to 
implement a migration layer  for the “state” of the SMH 
model entities between LPs. The ARTÌS runtime has been 
extended to execute static models and to exploit migration 
by means of a small set of Application Programming 
Interfaces (APIs) providing migration services for 
migration-enabled models.  
    To test our framework we implemented a time-stepped, 
conservative, parallel and distributed discrete-event 
simulation of a mobile wireless system.  

3.1.1 The heuristic migration-policy definition 

     The dynamic migration of simulated hosts is not free 
of costs: some analytical or heuristic metrics are required, 
to be evaluated at runtime, to define “if and where” it 
would be profitable to migrate a SMH. The state size of a 
SMH and the amount of “time-locality” of the causal 
dependency between neighbor hosts, are the most 
relevant parameters influencing the migration policy. 
Specifically, the policy depends on the motion models, 
the interaction rate between SMHs, and the overall load 
balancing between the PEUs. By focusing on the network 
communication-reduction viewpoint, it would be optimal 
to allocate every object on a single PEU, by running the 
distributed simulation over a single PEU. Obviously, this 
is not the intended purpose of the GAIA mechanism: the 
external communication-reduction needs a trade-off with 
effective load-balancing of the parallel executions. The 
optimal policy would require to dynamically partition the 
sets of the most frequently interacting SMHs model 
components, by allocating them over the PEUs in a 
perfect load-balanced way. This problem could be NP-
hard because, depending on the model assumptions, it 
may be defined as a variation of the multiple knapsack 

problem. Anyway, we implemented a combination of two 
low-cost heuristic schemes, that adaptively converge to a 
near-to-optimal solution, under the system assumptions 
considered in the implementation. The heuristic migration 
rules are quite simple and have been improved with 
respect to the early design of our previous work [3].  
Let a tagged SMH(j) be executed on the i-th PEU. Let us 
define Rj_e=Me/Mi as the ratio of  the Me “external” 
messages sent to the e-th PEU, with respect to the number 
(Mi) of “local” messages sent within the local (i-th) PEU. 
Every SMH(j) evaluates the defined ratio Rj_e for every 
foreign e-th PEU. If the maximum ratio obtained is 
greater than a global threshold-value K, then the 
corresponding PEU is chosen as the candidate destination 
for the SMH(j) migration in the next timestep. No 
migration is performed, otherwise. Upon arrival on a new 
PEU, every SMH resets its message counters (Mx). The 
value of K is a simple tuning parameter that can be used 
to control the rate of migrations and the threshold of 
external communication required in order to balance the 
migration overhead. The proposed algorithm leads to 
good performances, but the information collected by 
every SMH during the whole simulation run must be 
upper bounded. The inclusion of old aged events 
information can bias the migration heuristic estimates.  
Current implementation is based on periodic resets of the 
SMH estimates (every fixed amount of time-steps). A 
reset is performed also after every SMH migration. A 
Sliding Window scheme for recent event messages will 
be investigated as future work. 

3.2. The heuristic load-balancing policy definition 

      The steady state behavior of the migration heuristic in 
isolation would lead to the asymptotic clustering of all the 
SMHs over a restricted set of the available execution 
units. This is because the adaptive effect of migrations  is 
focused on the reduction of “external” communication 
overheads. The migration heuristic must be composed 
with a load balancing policy, and the heuristics’ tradeoffs 
should be optimized in orthogonal way. The load 
balancing strategy implemented by the GAIA middleware 
defined in [3] has been redesigned in a straight-forward 
and approximate way: SMHs migration towards/from a 
tagged PEU is possible whenever a perfect load balancing 
can be achieved. The simplifying assumptions supporting 
the load balancing scheme are: only one LP is 
implemented over a PEU, and every PEU must execute 
the same number of SMHs instances. This translates on 
the assumption that every PEU implements a uniform 
fraction of the total number of SMHs in the system. 
Previous experience with GAIA shown that dynamic 
fluctuations in the balancing strategy could lead to 
computational asymmetry for PEUs, affecting the 
simulation speedup. A crowded LP can become a 
synchronization bottleneck for the system. More 
specifically, the load balancing mechanism governs the 
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migration heuristic, by allowing only balanced migrations 
between every pair of LPs. A three-phases migration 
procedure is the result of our implementation: in the first 
round every LP must claim the number of candidate 
migrations and their destinations. In the second round the 
balancing condition is evaluated, and in the third step all 
the migrations that match the load balancing rules are 
performed. 

4. Model definition and experimental results 

4.1. Wireless system’s model definition 

      Now we illustrate the key concepts of our target 
wireless system and model definition. We assume a high 
number of simulated mobile hosts (SMHs), each one 
following a Random Mobility Motion model (RMM). 
This motion model is far from being real, but the choice 
was driven by the unpredictable and uncorrelated 
mobility pattern of SMHs. This is the worst case analysis 
for our mechanism, because any heuristic definition 
cannot rely on any assumption about the motion 
correlation and predictability of SMHs. The only 
correlation effect we would exploit in our mechanism is 
given by the “time-locality” of communication sessions 
between neighbor-hosts. Given the mechanism definition, 
our feeling is that any other widely used motion model, 
like any restricted, correlated or Group Mobility model,  
would result better than the adopted RMM model, for any 
migration heuristic. In the following, the RMM model is 
defined. SMHs swings between mobile and static epochs. 
At the beginning of each epoch, every SMH  decides to 
stay or to change its mobile or static state, by following a 
geometric distribution with parameter p=1/2. When 
entering a mobile state, new, uncorrelated and uniformly-
distributed direction and speed  are randomly selected and 
maintained up to a static epoch. The cycle is repeated for 
the whole simulation by every SMH. Sometimes we 
considered two motion sub-models related to the motion 
speed: (slow-mobility) S-RMM and (fast-mobility) F-
RMM. The F-RMM model is characterized by high 
speeds (25 spaceunits/timestep), and S-RMM is based on 
lower speeds (10 spaceunits/timestep). To stress the 
migration scheme, we have also used an extreme sub-
model with very high speed (100 spaceunits/timestep). 
     Space is modeled as a torus-shaped 2-D grid-topology, 
10.000x10.000 spaceunits, populated by a constant 
number of SMHs. The torus space topology, indeed 
unrealistic, is commonly used by modelers to prevent 
non-uniform SMHs’ concentration in any area. This 
allows to evaluate the mechanism behavior in a worst 
case scenario, where the clustering of SMHs is not 
trivially determined by high concentration in small areas. 
We believe that these are stressing examples for our 
mechanisms, because they will lead to a high migration 
overhead, given the motion model defined. The simulated 

space is wide and open, without obstacles. The modeled 
communication between SMHs is a constant flow of ping 
messages (i.e. constant bit rate), transmitted by every 
SMH to all neighbors within a wireless communication 
range of 250 spaceunits. Again, this choice is stressing 
the migration mechanism under the mobility effects of 
continuously transmitting SMHs. In our proposal, since 
the SMH migration policy is evaluated on the basis of the 
local and remote interaction (i.e. communication), no 
communication translates in no migration needs, hence no 
additional communication, synchronization and migration 
overheads. The rate of ping messages is constant because 
it is the control parameter for communication: 
increasing/reducing the ping rate would be equivalent to 
change the interaction rate. In our analysis we have 
investigated the impact of different ping-message sizes on 
the migration mechanism effect. We plan to extend this 
model with the real implementation of message flows, 
routing protocols and applications as a future work. 

4.2. Experimental results 

    The set of experiments and the analysis shown in this 
section is similar to the analysis reported in [3] for the 
GAIA over HLA RTI system.   Anyway, in this work, 
both the GAIA and the ARTÌS frameworks realized a 
completely different tool for simulation than the 
preliminary tool analyzed in [3]. The GAIA middleware 
has been completely reimplemented, and both the 
migration and the load-balancing heuristics have been 
completely redesigned. Moreover, the composition of 
GAIA with ARTÌS results in lower management 
overheads and greater speedup than the framework 
architecture described in [3].
     The experiments were executed over a variable set of 
M PEUs each one equipped by Dual Xeon Pentium IV 
2800 Mhz, 3 GB RAM, connected by a Fast Ethernet 
(100 Mb/s) LAN.  We performed multiple runs, and the 
confidence intervals obtained with a 95% confidence 
level are lower than 5% the average value of the 
performance index shown.  
    In the following we define as “static” or “dynamic” a 
distributed simulation with the migration heuristic turned 
OFF or ON, respectively. All the performed experiments 
were started with a pseudo-random, uniform distribution 
of a variable number of SMHs (3.000 up to 9.000) over a 
grid topology (10.000 x 10.000 spaceunits). Initially, the 
set of SMHs is randomly allocated over the set of PEUs, 
without any optimal allocation. The choice of the initial 
random distribution allows to analyze the transient 
dynamic effect of our migration mechanism. Moreover,
the random distribution would be asymptotically obtained  
in a “static” simulation, starting from any initial (and 
optimal) allocation scheme, due to the SMHs’ mobility. 
Most of the figures presented show transient behavior of 
the performance indices, because this describes the 
dynamics and fast convergence effect of the proposed 
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mechanisms. Steady-state results have been also 
discussed to define the asymptotical behavior of the 
proposed mechanisms. 

4.2.1 Initial and runtime distribution. A graphical 
representation of the dynamic SMH allocation between 
PEUs is shown in figure 1 and figure 2.

Figure 2. 3000 SMHs, steady state SMH distribution in 
“dynamic” simulation, over PEU1 (black), PEU2 (white) 
and PEU3 (red or gray)

Both figures show a snapshot of the random distribution 
of 3000 SMHs distributed on the 2D grid space. Every 
dot in the figures represents the current position of a 

SMH in the simulated area. Dot colors illustrate which 
PEU is executing the SMH. Three PEUs have been 
considered in this phase. Black dots refer to approx. 1000 
SMHs allocated on PEU1, white dots refer to approx. 
1000 SMHs initially allocated on PEU2 and red (gray) 
dots refers to remaining 1000 SMHs allocated over 
PEU3. Every SMH  transmits a sequence of broadcast 
messages to all other SMHs located within its 
transmission range. A sample of the initial (and runtime) 
random SMH allocation over three PEUs in a static 
distributed simulation (that is, no migration) will appear 
as in figure 1. Under the system model assumptions, 
every SMH interacting with a subset of neighbor SMHs 
would have on the average 33% of its neighbors 
belonging to every available PEUs. After few time-steps 
from the initial random allocation of SMHs, the steady-
state allocation obtained by the migration mechanism in a 
dynamic simulation appears like in figure 2. It results 
clear the clustering of highly interacting SMHs, obtained 
and maintained at the steady state, independently from the 
initial node allocation and despite the high SMHs' 
mobility. 

4.2.2. The local communication ratio (LCR). The
simulations performed mainly focused on the evaluation 
of the communication cost needed to implement the 
model interactions (i.e. event-messages) between SMHs. 
We define as a “local communication” (LC) a shared 
memory communication between SMHs clustered on the 
same PEU. On the other hand, an “external” 
communication (EC) is a message involving a physical 
network communication between different PEUs. For 
every PEU, we collected results regarding the local
communication ratio LCR=LC/(LC+EC). LCR results 
have been collected and analyzed with the heuristic 
migration policy respectively ON and OFF (i.e. with a 
static allocation), with respect to the SMH density and 
with respect to the value of the migration control 
parameter K. The LCR index is not related to the size of 
messages and describes how much the causality effects 
are closed inside each LP by adopting the migration 
mechanism. This index is not relevant about the amount 
of speedup obtained, because it does not describe the 
communication overhead for the objects’ migration and 
data distribution management. Despite the mobility model 
and the model dynamics, the LCR demonstrates that a 
given percentage of messages required to perform the 
simulation runs can be transformed from ECs to LCs. In 
figure 3 we show the transient percentage of local 
communication (LCR) as a function of the modeled SMH 
density and the SMH speed, in static and dynamic 
simulations. SMHs are initially distributed randomly over 
the set of PEUs, like in figure 1. When the migration is on 
(K=3), the adaptive runtime re-allocation of SMHs 
increases the percentage of local communication, almost 
independently by the SMH density (3000 up to 9000 

Figure 1. 3000 SMHs, initial random SMHs distribution, 
and steady state random distribution in “static” simulation, 
over PEU1 (black), PEU2 (white) and PEU3 (red or gray) 
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SMH in the area) and by the average SMH speed (Fast-
RMM and Slow-RMM).
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Figure 3. Transient LCR vs. SMH density (S-RWP, F-
RWP)

A static simulation (migration off) always maintains the 
system on a flat level of local communication ratio (about 
33%) as expected for this scenario. The steady state LCR 
for the dynamic simulation gives higher percentage of 
local communication than the static one (up to 88% for 
Fast-RMM, in figure 3). The higher the SMH speed, the 
higher the LCR convergence to the steady state value. 
The obtained values outperforms the results obtained in 
[3]: as an example, 61% vs. 88% LCR for the same 
scenario.
Figure 4 shows the transient LCR results by varying the 
K value defined to control the migration heuristic. As 
expected, low K values make the initial (and transient) re-
allocation faster than high K values, and marginally affect 
the steady state LCR. These results show that the K 
parameter can control the convergence speed to the steady 
state, and high K values limit the number of migrations 
performed. The dynamic system converges to a steady-
state LCR around 88% for Fast-RMM, and around 84% 
for Slow-RMM motion models (see figure 4).  

 0

 20

 40

 60

 80

 100

 0  500  1000  1500  2000

P
er

ce
nt

ag
e 

of
 lo

ca
l c

om
m

un
ic

at
io

n 
(L

C
R

)

Timesteps

S-RMM vs F-RMM, 3 LPs, 2000 objects/LP (total 6000)

F-RMM, Migration on, K = 3
S-RMM, Migration on, K = 3
F-RMM, Migration on, K = 5
S-RMM, Migration on, K = 5
F-RMM, Migration on, K = 7
S-RMM, Migration on, K = 7

S-RMM, Migration off

Figure 4. Transient LCR vs. Average K value (slow and 
fast RMM mobility) 

The effect of the underlying load-balancing mechanism is 
transparent in these results. The differences between F-
RMM and S-RMM is a clear indication of the different 
“time-locality” effect and persistence of interactions 
which is captured by the migration heuristics. 
Figure 5 shows what happens if the migration mechanism 
is switched off at runtime (i.e. timestep 1000 on figure 5). 
The LCR ratio converges to the average value of a 
random, static allocation scheme. This convergence ratio 
is influenced by the motion model speed: a high SMH 
speed translates to fast convergence. This demonstrates 
the “time-locality” effect which is captured by the 
migration heuristic, and the fact that any initial, optimal, 
static allocation policy would not be adequate for this 
kind of dynamic models. 
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4.2.3. Execution-time analysis. In table 1 we show the 
wall-clock time required for simulating the initial 1000 
timestep of simulated-time interval, by adopting different 
execution configurations. We are not describing the 
speedup index obtained by parallel and distributed 
simulations with respect to a monolithic sequential 
simulation. This choice is made since we defined our 
model as a worst case scenario with respect to the 
sequential/parallel speedup analysis (e.g.  low local 
computation, frequent communications, low persistence 
of interactions due to random uncorrelated mobility). The 
asymptotic speedup of the proposed implementations, and 
scalability beyond 3 PEUs will be evaluated as a future 
work. What we are interested in, is the evaluation of the 
static and dynamic approaches for parallel and distributed 
simulation, to demonstrate that our migration-based 
mechanism could outperform a static approach, even in 
the worst-case scenario. As a worst-case scenario we 
mean a scenario where a high degree of uncorrelated 
mobility combined with frequent communication is 
performed. Both static SMHs scenarios, and limited-
communications, would reduce the need for migrations, 
returning the static (migration-off) performance.  
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Before commenting the wall-clock time data shown in 
table 1, it is worth noting the simulated time of a 
simulation run is limited to only 1000 timesteps. This is a 
really short simulation run. Significant run-length for 
simulations would be of many thousands timesteps, 
depending on the convergence time and variance of 
simulation indices.  

Table 1. Preliminary execution-time results (single run 
execution, 1000 timesteps) 

M PEUs, N federates, 
5000 SMHs (constant) 

Migration 
Wall Clock 

Time (s) 
1000 ts 

M = N = 1 Off 23 min, 38 sec 
M = 1, N = 3 Off 20 min, 40 sec 
M = 1, N = 3 On, K=3 18 min, 42 sec 

M = N = 2 Off 18 min, 01 sec 
M = N = 2 On, K=3 16 min, 03 sec 
M = N = 3 Off 14 min, 30 sec 
M = N = 3 On, K=3 12 min, 36 sec 
M = N = 3 On, K=7 14 min, 17 sec 

The wall-clock time indicated in Table 1 includes the 
initial re-allocation, and object distribution management 
overhead, which is characteristic of the migration 
mechanism, in the dynamic approach. Despite the initial 
migration overheads, the results show that a simulated 
time of only 1000 timeslots is sufficient for our 
implementation to recover all the initial and runtime 
migration overheads. Overheads are almost immediately 
balanced by the external messages’ reduction. This is 
even more relevant given all the worst-case assumptions 
about the light local computation for each SMH. The 
results presented in Table 1 shows that the parallel and 
distributed simulation of the referenced model always 
outperforms both a monolithic simulation, and the static 
distributed simulation. By increasing the number of PEUs 
involved in the simulation we always obtain a reduction 
of the wall-clock time required for the initial timesteps. 
By simply activating the migration framework the wall 
clock time required by a dynamic distributed simulation 
reduces of 10%, 12% and 13% for 3 LPs on 1 PEU, 2 LPs 
on 2 PEUs, and 3 LPs on 3 PEUs, respectively. The gain 
indicated is relative to the static distributed simulation. 
Results presented in Table 1 have been obtained with the 
worst case modeling assumption that a ping message 
contains no payload (i.e. header only). We expect that the 
increase of the ping message would result in the 
amplification of the communication overheads, and in 
additional advantages of the dynamic simulation, which 
increases the LCR. Figure 6 illustrates the wall clock 
times obtained by increasing the payload size of the 
modeled ping messages in the simulations. Small payload 
sizes (up to 64 bits) result in a 10-15% speedup of the 
dynamic vs. static distributed simulation. By increasing 

the payload up to 1024 bits the speedup gain is greater 
than 120%. 
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5. Conclusions and future work 

In this work we defined and tested a new framework 
obtained as the integration of two recently developed 
middlewares defined to support the parallel and 
distributed simulation of large scale, complex and 
dynamically interacting system models. The ARTÌS 
middleware is a new framework incorporating a set of 
features that allow an adaptive optimization of the 
communication layer management in a distributed 
simulation scenario supported by heterogeneous systems 
and communication services. ARTÌS has been integrated 
with GAIA, a dynamic mechanism for the runtime 
management and adaptive allocation of model entities in a 
distributed simulation. By adopting a runtime evaluation 
of causal bindings between model entities GAIA adapts 
the dynamic and time-persistent causal effects of model 
interactions to dynamic migration of model entities. We 
tested our adaptive framework and the migration and 
load-balancing heuristics in the testbed simulation of a 
prototype mobile wireless system, characterized by 
Simulated Mobile Hosts (SMHs). The  results obtained 
demonstrate that the combined effect of ARTÌS 
management and GAIA heuristics leads to a significant 
reduction in the communication and synchronization 
overheads between the physical execution units. 
Simulation performance enhancements have been 
obtained also in worst-case modeling assumptions and 
simulation system scenarios.      
     Our future work will include the ARTÌS extension 
with optimistic management and the definition of new 
models for dynamically interacting systems like multi-
agent systems, P2P models, wireless ad hoc and sensor 
networks, biology-inspired models and molecular 
systems, elementary particles physics and cosmology 
systems. 
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