
A New Adaptive Middleware for Parallel and Distributed Simulation of
Dynamically Interacting Systems

Luciano Bononi, Michele Bracuto, Gabriele D’Angelo and Lorenzo Donatiello
Dipartimento di Scienze dell’Informazione, Università degli Studi di Bologna,

Mura Anteo Zamboni 7, 40126, Bologna, Italy
{bononi, bracuto, gdangelo, donat}@cs.unibo.it

Abstract

In this work we define and test a new framework obtained
as the integration of two recently developed middlewares
defined to support the parallel and distributed simulation
of large scale, complex and dynamically interacting
system models (like wireless and mobile network
systems). In a distributed simulation of highly interacting
system models, the main bottleneck may become the
communication and synchronization required to maintain
the causality constrains between distributed model
components. We designed and implemented the ARTÌS
middleware as a new framework incorporating a set of
features that allow an adaptive optimization of the
communication layer management in a distributed
simulation scenario. ARTÌS has been integrated with
GAIA, a dynamic mechanism for the runtime management
and adaptive allocation of model entities in a distributed
simulation. By adopting a runtime evaluation of causal
bindings between model entities GAIA adapts the
dynamic and time-persistent causal effects of model
interactions to dynamic migration of model entities.
Preliminary results demonstrate that the combined effect
of ARTÌS management and GAIA heuristics leads to a
significant reduction in the communication and
synchronization overheads between the physical
execution units. Simulation performance enhancements
have been obtained also in worst-case modelling
assumptions and simulation scenarios.

1. Introduction

 In recent years, the research for tools and
methodologies for modeling and simulation of large-scale
and complex systems has obtained a great interest.
Examples of models challenging currently available
simulation systems and tools range from large-scale
wireless systems, like cellular, mobile ad hoc and sensor
networks, up to biology-inspired models and molecular
systems, elementary particles physics and cosmology
systems [17, 19, 20, 24, 26, 31, 35, 36, 37, 39]. The
simulation-based investigation of complex systems is

 This work is supported by MIUR FIRB funds, under the project:
“Performance Evaluation of Complex Systems: Techniques,
Methodologies and Tools”

widely adopted and it is often preferred, in practice, to the
mathematical intractability and critical model-complexity
of alternative numerical and analytical resolution methods
[17, 25, 30, 31, 35]. Simulation models currently
considered interesting for the analysis may include a
potentially huge number of simulated objects. The
simulation of many objects may require a relevant
computation time (e.g. due to the implementation of
complex behaviors, with dense state changes). Detailed
and complex simulated objects (i.e. model components)
may require complex and large data structures
implementing the model state. Large scale and complex
simulation models may be unpractical to simulate on a
single-processor execution unit, because of huge memory
requirements and large amount of time required to
complete the simulation runs [25, 30, 31].
 Many practical experiences have demonstrated that the
memory bottleneck reduction, and the speed-up in the
simulation of complex systems, can be achieved by using
parallel and distributed models and execution
architectures, i.e. a Parallel Discrete Event Simulation
(PDES) approach [1, 6, 12, 13, 18, 19, 20, 28, 29, 31, 36,
39]. More recently, the distributed simulation community
contributed in the definition of a new standard, named
IEEE 1516 “Standard for parallel and distributed
modeling and simulation” [16]. The new standard defines
rules and interfaces allowing for heterogeneous
components’ interoperability in parallel and distributed
simulations. Model components (formally known as
federates) are executed as Logical Processes (LPs).
Federates’ execution is supported by standard
management APIs for the communication and
synchronization tasks, implemented by a runtime
middleware (RTI). The High Level Architecture (HLA)
has currently become a synonymous for the standard rules
and services to be considered as the basis for the
implementation of distributed simulations and the
RunTime (RTI) simulation kernel [7, 11, 16]. In order to
exploit the maximum level of computation parallelism,
many research activities dealt with dynamic balancing of
logical processes’ executions (both cpu-loads and virtual
time-advancing speeds) by trading-off communication,
synchronization and speedup, both in optimistic and
conservative approaches [5, 8, 10, 14, 32, 38].
The distributed federates interact and synchronize via
event-message notifications (i.e. basically message

Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’04)

1550-6525/04 $20.00 © 2004 IEEE

passing communication). Unfortunately, the need for
distributed model-components communication and
synchronization services may require massive
interprocess communication to make the distributed
simulation evolving like in the sequential counterpart.
Complex systems with detailed and fine-grained
simulation models can be considered communication-
intensive under the distributed simulation approach. As a
result, interprocess communication may become the
bottleneck of the distributed simulation paradigm, and
solutions to reduce the cost of communication must be
addressed by the research in this field.
Many approaches have been investigated in order to
reduce the overhead effects of distributed synchronization
and communication in both optimistic and conservative
distributed simulations. Solutions have been proposed,
based on both model aggregation and on communication
filtering, and also by trading off model accuracy and
computation load balancing issues, respectively [15, 27].
Basically, the approaches defined in [2, 6, 10, 11, 21, 32]
rely on the reduction of communication obtained when
the update of an event- or state-information (e.g. event
and/or anti-message) is not flooded to the whole system,
but it is only propagated to the subset of causally
dependent components. This is the basis of
publishing/subscribing mechanisms for sharing state-
information and event-notifications between causally
dependent components [7, 11, 28]. In spite of the
previously mentioned approaches for communication
reduction, the efficient implementation of interprocess
communication remains a primary background issue, to
contrast the possible communication bottleneck of
parallel and distributed simulations. The way interprocess
communication can be sustained in distributed systems
would depend mainly on the execution units and
communication support, that is, on the simulation system
resources, architectures and characteristics.
Recently proposed and implemented middleware
solutions based on the IEEE 1516 Standard for distributed
simulation and the High Level Architecture (HLA) [7, 16]
have shown that the parallel and distributed simulation of
massive and complex systems can result in relevant
overheads. Overheads are due to the complex and full
management of a wide set of runtime services and to the
latency due to distributed communication bottlenecks.
Specifically, the implementation of the interprocess
communication services has been implemented in sub-
optimal way, without considering the heterogeneity of the
simulation execution platforms [3, 9].
To this end, we designed a new, parallel and distributed
simulation middleware named Advanced RTI System
(ARTÌS). The aim of the ARTÌS middleware is to support
parallel and distributed simulations of complex systems,
based on a minimum set of middleware services. The
ARTÌS design is oriented to support the model
components’ heterogeneity, distribution and reuse, and to
increase the simulation performances, scalability and

speedup, in parallel and distributed simulation scenarios
[4]. Another design issue of the ARTÌS framework is the
dynamic adaptation of the interprocess communication
layer to the heterogeneous communication support
offered by possibly different simulation-execution units
[4]. Specifically, we oriented the ARTÌS design towards
the adaptive evaluation of the communication bottlenecks
and support for multiple communication infrastructures
and services, from shared memory to Internet-based
communication [4].
In addition, in this work the ARTÌS middleware has been
composed with another distributed mechanism, named
Generic Adaptive Interaction Architecture (GAIA).
GAIA implements a simple model components’ migration
mechanism that can be adapted on the top of HLA-based
distributed simulations [3]. The HLA standard and
existing Runtime Infrastructures (RTI) do not define
component migration facilities, even if preliminary
research activity is made on this topic [22, 23]. For this
reason we realized a prototype migration framework, and
a heuristic migration policy, whose aim is to dynamically
partition and allocate the interacting model components
over many LPs, respectively executed over a set of
multiple, distributed execution units. The composition of
ARTÌS and GAIA would realize a complete prototype
framework for parallel and distributed simulation,
characterized by an adaptive, tuneable mechanism able to
adapt and react to dynamic systems’ behavior under the
communication-reduction viewpoint. In this work the
prototype implementation of the ARTÌS and GAIA
mechanisms is outlined and preliminary results of a set of
simulation tests for dynamically interacting model
components are presented.
 The paper structure is the following: in section 2 we
outline some concepts about the distributed simulation of
dynamic models, specifically, the wireless ad hoc
networks; in section 3 the key issues for the ARTÌS and
GAIA framework implementation and the proposed
migration heuristics are defined; in section 4 a prototype
wireless system’s model and a preliminary set of
simulation results are presented; in section 5 we
summarize our conclusions and future work.

2. Distributed simulation of dynamic models

 We define a dynamic system as a system where the
interactions (i.e. the causal effects of events) are
dynamically subject to fast changes driven by the system
(and model) evolution over the simulated time. Given this
general definition, a wireless network can be an example
of a highly dynamic system.
To realize a correct evolution under the event-causality
viewpoint, every model components’ interaction should
be notified as an event-message to all the causally
dependent model components, by a runtime event-
message distribution mechanism. Complex systems with
detailed and fine-grained simulation models can be

Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’04)

1550-6525/04 $20.00 © 2004 IEEE

considered communication-intensive under the distributed
simulation approach. As a result, interprocess
communication may become the bottleneck of the
distributed simulation paradigm. The way interprocess
communication can be sustained in distributed systems
would depend mainly on the execution units and on the
communication support, that is, on the simulation system
resources, architectures and characteristics. As an
example, message passing communication can be
performed efficiently over shared memory architectures,
while it would require medium and high communication
latencies over local and wide area network
communication services. It is self evident how the
physical clustering of interacting model components on a
shared memory architecture could result in the advantage
to exploit the most efficient message passing
implementation. Unfortunately, in highly dynamic
systems any optimal static clustering and allocation,
based on the current component-interaction scheme, will
become immediately suboptimal, due to the dynamics of
the model interactions. The approach used in currently
available implementations is to consider the model
component interactions, by adapting the event message
distribution accordingly. No background optimization is
based on the heterogeneity of available communication
infrastructure characteristics.
In presence of a dynamic system, the event-message
distribution of a distributed simulation requires a dynamic
definition of publishing/subscribing lists, or the
implementation of a complete state-sharing information
system. On the other hand, a dynamic approach for the
event-distribution and state-information-updates (e.g.
dynamic lists and subscription groups) would lead to
additional communication and management overheads. In
some scenarios, the communication cost of list-updates or
fine-grained events’ communication between a
dynamically variable set of components, could make
attractive a complementary approach. As an example,
when the system communication infrastructure is
characterized by significant performance asymmetry (e.g.
shared memory vs. LAN communication), like in
networked clusters of PCs, the migration cost needed to
dynamically cluster the set of interacting components
over a single Physical Execution Unit (PEU) could
become attractive. This would be even more attractive if
the following three assumptions could be satisfied: i)
components’ migration could be implemented
incrementally as a simple data-structure (i.e. state)
transfer, ii) the component state would be comparable
with the amount of data exchanged for interactions, and
iii) the object interaction scheme would be maintained for
a significant time (i.e. time-locality).

2.1 A case study of a dynamic model

In the following, as an example of a dynamically variable
system, we focus on a wireless multi-hop Mobile Ad Hoc

Network (MANET) [17, 35]. Simulation models for
wireless systems incarnate the assumptions that motivated
our design. The number of simulated hosts in our
expectations can reach high values, requiring the
simulation of massively populated scenarios. Topology
changes due to simulated hosts’ mobility map on
causality effects in the “areas of influence” of each
mobile device, resulting in dynamically shaped causality-
domains and component interaction schemes. Given two
or more neighbor-hosts sharing the wireless medium, the
causal effect of signal interference could result in a chain
of local-state events up to the high protocols’ layers [35].
In our approach, we define a model entity as the data
structure defined to model a Simulated Mobile Host
(SMH). A certain degree of time-locality of local
communication can be considered an acceptable
assumption in many wireless system models, depending
on the communication load and the mobility model
assumptions.

A high degree of causality in the simulation of the
wireless hosts’ communication is driven by the local-
topology interaction (i.e. transmissions) between neighbor
hosts [17, 35]. Under the modeling and simulation
viewpoint, wireless systems can be considered highly
dynamic systems: if a SMH changes its position, it will
eventually interact with a new community of neighbor
hosts. The system dynamics can be influenced by motion
model and speed, and also by the SMHs density.

Our testbed consists of a distributed discrete event
simulation of model components (i.e. logical processes)
executed over a set of physical execution units (PEUs),
connected by a physical LAN network. Our design
approach is mainly focused on the adaptive
communication reduction between the PEUs where
Logical Processes (LP) are executed. Every LP is
statically allocated and executed on a single PEU.
Specifically, one single LP cannot be split over two or
more PEUs, more LPs can be executed over a single PEU,
and LPs cannot be migrated between PEUs.

Every LP is managed by a runtime simulation core
(RTI) as a single simulation component. On the other
hand, a single LP is implicitly formed by a set of threads,
each one managing and updating the state (i.e. local data
structures) of a set of Simulated Mobile Hosts (SMHs). A
communication between wireless hosts can be modeled as
a set of interactions (i.e. message-events) between any
couple of adjacent SMHs. Since a wireless
communication must be always modeled as a broadcast
within a limited local transmission range, this requires
that each SMH within a variable range would be notified
with the transmission-related event-messages. Each event
would result in a multiple set of one-to-one interactions
(i.e. event messages) among local SMHs. If the sender
SMH and its neighbors belong to the same LP (i.e. they
are executed on the same PEU), or if they belong to
different LPs implemented over the same PEU, then their
interactions can be considered local (e.g. shared memory

Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’04)

1550-6525/04 $20.00 © 2004 IEEE

communication) and do not involve any physical network
communication. On the other hand, every interaction
involving participants implemented over foreign LPs (e.g.
LPs implemented over different PEUs) may require time-
expensive physical network communication. By reducing
the physical network communication we can reduce the
synchronization delays. By clustering neighbor SMHs
within the same LP, or within the LPs executed over the
same PEU, we obtain the advantage of closing the
causality effect of modeled communication within the
PEU where the interacting LPs (and respective SMHs)
are executed. In addition, clustered interacting SMHs
would limit interactions with the management layers of
the RTI, by further reducing the computation and
communication overheads. To sum up, by limiting the
network communication in favour of the local (shared
memory) communication, the wall clock time required by
the simulation runtime to achieve full synchronization
would be reduced. This would make it possible to obtain
a fast simulation.

A static approach could be adopted to optimally
distribute the SMHs within the LPs in the simulation
initialization phase. The optimal solution for allocation is
hard to find and could be defined in many ways,
depending on the targeted overheads' reduction.
Typically, the optimality is defined with respect to latency
(to reduce the physical network communication cost) or
computation (to obtain an optimally balanced execution
parallelism). Anyway, this should be explicitly performed
offline by the modeler, on the basis of the modeling
assumptions. Moreover, as it will be demonstrated in the
final results, the model dynamics (e.g. the SMH mobility)
would make the optimal distribution ineffective after few
simulation steps. This result may translate in a
performance degradation for the simulation speedup,
mainly due to the increasing cost of communication and
synchronization required between distributed model
components (logical processes). In our approach the
optimization is dynamically performed at runtime, by the
proposed simulation middleware migrating the SMHs
between LPs. In this way, the modeler is alleviated by the
optimization task, and the system converges towards a
balanced, tuneable and pseudo-optimal model
components’ distribution driven by the model interaction
scheme. If we assume a time-locality in the interaction
between neighbor hosts, it could be convenient to migrate
the foreign SMH to the LP (and to the PEU) where its
new neighbors are located, by reducing in this way the
cost of successive interactions. This assumption is
typically verified in MANETs, e.g. most routing protocols
are based on “proximity” concept to decide the routing
path of communications, and such communications
usually last for a significant time, following a
bidirectional session-based scheme. The effect of the
time-locality of the causality effect inside each logical
process will be investigated in the final section, by
varying the SMH mobility speed.

3. The distributed simulation framework

The HLA implementation criticisms [38, 3, 4, 9] and the
lack of Open Source RTIs are the main motivations
behind the design and implementation of ARTÌS
(Advanced RTI System). The main purpose of ARTÌS is
the efficient support of complex simulations in a parallel
and distributed environment.
The ARTÌS implementation [4] follows a component-
based design, that results in easily extendable
middleware. The solutions proposed for time management
and synchronization in distributed simulations have been
widely analyzed and discussed in the design phase.
Currently, ARTÌS supports the conservative time
management based on both the time-stepped approach,
and the Chandy-Misra-Bryant algorithm. We are working
on the extension of ARTÌS to support optimistic time
management algorithms. The initial choice to support the
conservative approach was a speculation on the highly
unpredictable characteristics of our target models of
interest [3], which may result in frequent rollbacks. In
ARTÌS, many design optimizations have been applied to
obtain adequate protocols for synchronization and
communication in Local Area Network (LAN) or Shared
Memory (SHM) multiprocessor architectures. In our
vision the communication and synchronization
middleware should be adaptive and user-transparent
about all the optimizations required to improve
performances. The current scheme adopts an incremental
straightforward policy: given a set of LPs on the same
physical host, such processes always communicate and
synchronize via read and write operations, performed
within the address space of LPs, in the shared memory.
To implement these services we have designed,
implemented and tested many different solutions, based
on Inter Process Communication (IPC) semaphores and
locks, busy-waiting, and "wait on signals" with a limited
set of temporized spin-locks. The latter solution has
demonstrated very low latency and limited CPU
overhead, good performances obtained in multi-CPU
systems, good scalability, and no need to reconfigure the
operating system kernel level.
Two or more LPs located on different hosts (i.e. no
shared memory available), on the same local area network
segment, communicate by using a light Reliable-UDP (R-
UDP) transport protocol over the IP protocol. Ongoing
activity is evaluating the use of raw sockets for R-UDP
data segments directly encapsulated in MAC Ethernet
frames (i.e. bypassing the IP layer). Two or more LPs
located on Internet hosts rely on standard TCP/IP
connections.

3.1. The Generic Adaptive Interaction
Architecture (GAIA)

The PDES simulator built to obtain an experimental
evidence of our proposal is based on a distributed

Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’04)

1550-6525/04 $20.00 © 2004 IEEE

architecture made by a set of logical processes glued
together by the ARTÌS middleware. In [3] we adopted
the High Level Architecture (HLA) DMSO (Department
of Military Simulation Office, US Department of
Defense) implementation RTI-1.3NGv3.2 as the basis for
our work. On top of the HLA RTI we built a middleware
extension called Generic Adaptive Interaction
Architecture (GAIA). GAIA provides the interaction to
the simulation core, the location and distribution data
management, the random number generator, tracefile-
logging and other simulation facilities.
 The target of GAIA is to provide migration and
service APIs to the simulation developer. Because of the
unavailability of DMSO RTI source-code in our previous
work, the GAIA facilities were initially provided as an
external middleware on top of the DMSO RTI [3]. The
development of ARTÌS middleware has permitted to
merge the GAIA framework within the runtime core, still
reducing the runtime overheads.
We implement SMH models as code with data structures
to define and maintain the SMH state information. GAIA
migrates the “data structure”, i.e. the state information of
SMHs between LPs. This required to design and to
implement a migration layer for the “state” of the SMH
model entities between LPs. The ARTÌS runtime has been
extended to execute static models and to exploit migration
by means of a small set of Application Programming
Interfaces (APIs) providing migration services for
migration-enabled models.
 To test our framework we implemented a time-stepped,
conservative, parallel and distributed discrete-event
simulation of a mobile wireless system.

3.1.1 The heuristic migration-policy definition

 The dynamic migration of simulated hosts is not free
of costs: some analytical or heuristic metrics are required,
to be evaluated at runtime, to define “if and where” it
would be profitable to migrate a SMH. The state size of a
SMH and the amount of “time-locality” of the causal
dependency between neighbor hosts, are the most
relevant parameters influencing the migration policy.
Specifically, the policy depends on the motion models,
the interaction rate between SMHs, and the overall load
balancing between the PEUs. By focusing on the network
communication-reduction viewpoint, it would be optimal
to allocate every object on a single PEU, by running the
distributed simulation over a single PEU. Obviously, this
is not the intended purpose of the GAIA mechanism: the
external communication-reduction needs a trade-off with
effective load-balancing of the parallel executions. The
optimal policy would require to dynamically partition the
sets of the most frequently interacting SMHs model
components, by allocating them over the PEUs in a
perfect load-balanced way. This problem could be NP-
hard because, depending on the model assumptions, it
may be defined as a variation of the multiple knapsack

problem. Anyway, we implemented a combination of two
low-cost heuristic schemes, that adaptively converge to a
near-to-optimal solution, under the system assumptions
considered in the implementation. The heuristic migration
rules are quite simple and have been improved with
respect to the early design of our previous work [3].
Let a tagged SMH(j) be executed on the i-th PEU. Let us
define Rj_e=Me/Mi as the ratio of the Me “external”
messages sent to the e-th PEU, with respect to the number
(Mi) of “local” messages sent within the local (i-th) PEU.
Every SMH(j) evaluates the defined ratio Rj_e for every
foreign e-th PEU. If the maximum ratio obtained is
greater than a global threshold-value K, then the
corresponding PEU is chosen as the candidate destination
for the SMH(j) migration in the next timestep. No
migration is performed, otherwise. Upon arrival on a new
PEU, every SMH resets its message counters (Mx). The
value of K is a simple tuning parameter that can be used
to control the rate of migrations and the threshold of
external communication required in order to balance the
migration overhead. The proposed algorithm leads to
good performances, but the information collected by
every SMH during the whole simulation run must be
upper bounded. The inclusion of old aged events
information can bias the migration heuristic estimates.
Current implementation is based on periodic resets of the
SMH estimates (every fixed amount of time-steps). A
reset is performed also after every SMH migration. A
Sliding Window scheme for recent event messages will
be investigated as future work.

3.2. The heuristic load-balancing policy definition

 The steady state behavior of the migration heuristic in
isolation would lead to the asymptotic clustering of all the
SMHs over a restricted set of the available execution
units. This is because the adaptive effect of migrations is
focused on the reduction of “external” communication
overheads. The migration heuristic must be composed
with a load balancing policy, and the heuristics’ tradeoffs
should be optimized in orthogonal way. The load
balancing strategy implemented by the GAIA middleware
defined in [3] has been redesigned in a straight-forward
and approximate way: SMHs migration towards/from a
tagged PEU is possible whenever a perfect load balancing
can be achieved. The simplifying assumptions supporting
the load balancing scheme are: only one LP is
implemented over a PEU, and every PEU must execute
the same number of SMHs instances. This translates on
the assumption that every PEU implements a uniform
fraction of the total number of SMHs in the system.
Previous experience with GAIA shown that dynamic
fluctuations in the balancing strategy could lead to
computational asymmetry for PEUs, affecting the
simulation speedup. A crowded LP can become a
synchronization bottleneck for the system. More
specifically, the load balancing mechanism governs the

Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’04)

1550-6525/04 $20.00 © 2004 IEEE

migration heuristic, by allowing only balanced migrations
between every pair of LPs. A three-phases migration
procedure is the result of our implementation: in the first
round every LP must claim the number of candidate
migrations and their destinations. In the second round the
balancing condition is evaluated, and in the third step all
the migrations that match the load balancing rules are
performed.

4. Model definition and experimental results

4.1. Wireless system’s model definition

 Now we illustrate the key concepts of our target
wireless system and model definition. We assume a high
number of simulated mobile hosts (SMHs), each one
following a Random Mobility Motion model (RMM).
This motion model is far from being real, but the choice
was driven by the unpredictable and uncorrelated
mobility pattern of SMHs. This is the worst case analysis
for our mechanism, because any heuristic definition
cannot rely on any assumption about the motion
correlation and predictability of SMHs. The only
correlation effect we would exploit in our mechanism is
given by the “time-locality” of communication sessions
between neighbor-hosts. Given the mechanism definition,
our feeling is that any other widely used motion model,
like any restricted, correlated or Group Mobility model,
would result better than the adopted RMM model, for any
migration heuristic. In the following, the RMM model is
defined. SMHs swings between mobile and static epochs.
At the beginning of each epoch, every SMH decides to
stay or to change its mobile or static state, by following a
geometric distribution with parameter p=1/2. When
entering a mobile state, new, uncorrelated and uniformly-
distributed direction and speed are randomly selected and
maintained up to a static epoch. The cycle is repeated for
the whole simulation by every SMH. Sometimes we
considered two motion sub-models related to the motion
speed: (slow-mobility) S-RMM and (fast-mobility) F-
RMM. The F-RMM model is characterized by high
speeds (25 spaceunits/timestep), and S-RMM is based on
lower speeds (10 spaceunits/timestep). To stress the
migration scheme, we have also used an extreme sub-
model with very high speed (100 spaceunits/timestep).
 Space is modeled as a torus-shaped 2-D grid-topology,
10.000x10.000 spaceunits, populated by a constant
number of SMHs. The torus space topology, indeed
unrealistic, is commonly used by modelers to prevent
non-uniform SMHs’ concentration in any area. This
allows to evaluate the mechanism behavior in a worst
case scenario, where the clustering of SMHs is not
trivially determined by high concentration in small areas.
We believe that these are stressing examples for our
mechanisms, because they will lead to a high migration
overhead, given the motion model defined. The simulated

space is wide and open, without obstacles. The modeled
communication between SMHs is a constant flow of ping
messages (i.e. constant bit rate), transmitted by every
SMH to all neighbors within a wireless communication
range of 250 spaceunits. Again, this choice is stressing
the migration mechanism under the mobility effects of
continuously transmitting SMHs. In our proposal, since
the SMH migration policy is evaluated on the basis of the
local and remote interaction (i.e. communication), no
communication translates in no migration needs, hence no
additional communication, synchronization and migration
overheads. The rate of ping messages is constant because
it is the control parameter for communication:
increasing/reducing the ping rate would be equivalent to
change the interaction rate. In our analysis we have
investigated the impact of different ping-message sizes on
the migration mechanism effect. We plan to extend this
model with the real implementation of message flows,
routing protocols and applications as a future work.

4.2. Experimental results

 The set of experiments and the analysis shown in this
section is similar to the analysis reported in [3] for the
GAIA over HLA RTI system. Anyway, in this work,
both the GAIA and the ARTÌS frameworks realized a
completely different tool for simulation than the
preliminary tool analyzed in [3]. The GAIA middleware
has been completely reimplemented, and both the
migration and the load-balancing heuristics have been
completely redesigned. Moreover, the composition of
GAIA with ARTÌS results in lower management
overheads and greater speedup than the framework
architecture described in [3].
 The experiments were executed over a variable set of
M PEUs each one equipped by Dual Xeon Pentium IV
2800 Mhz, 3 GB RAM, connected by a Fast Ethernet
(100 Mb/s) LAN. We performed multiple runs, and the
confidence intervals obtained with a 95% confidence
level are lower than 5% the average value of the
performance index shown.
 In the following we define as “static” or “dynamic” a
distributed simulation with the migration heuristic turned
OFF or ON, respectively. All the performed experiments
were started with a pseudo-random, uniform distribution
of a variable number of SMHs (3.000 up to 9.000) over a
grid topology (10.000 x 10.000 spaceunits). Initially, the
set of SMHs is randomly allocated over the set of PEUs,
without any optimal allocation. The choice of the initial
random distribution allows to analyze the transient
dynamic effect of our migration mechanism. Moreover,
the random distribution would be asymptotically obtained
in a “static” simulation, starting from any initial (and
optimal) allocation scheme, due to the SMHs’ mobility.
Most of the figures presented show transient behavior of
the performance indices, because this describes the
dynamics and fast convergence effect of the proposed

Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’04)

1550-6525/04 $20.00 © 2004 IEEE

mechanisms. Steady-state results have been also
discussed to define the asymptotical behavior of the
proposed mechanisms.

4.2.1 Initial and runtime distribution. A graphical
representation of the dynamic SMH allocation between
PEUs is shown in figure 1 and figure 2.

Figure 2. 3000 SMHs, steady state SMH distribution in
“dynamic” simulation, over PEU1 (black), PEU2 (white)
and PEU3 (red or gray)

Both figures show a snapshot of the random distribution
of 3000 SMHs distributed on the 2D grid space. Every
dot in the figures represents the current position of a

SMH in the simulated area. Dot colors illustrate which
PEU is executing the SMH. Three PEUs have been
considered in this phase. Black dots refer to approx. 1000
SMHs allocated on PEU1, white dots refer to approx.
1000 SMHs initially allocated on PEU2 and red (gray)
dots refers to remaining 1000 SMHs allocated over
PEU3. Every SMH transmits a sequence of broadcast
messages to all other SMHs located within its
transmission range. A sample of the initial (and runtime)
random SMH allocation over three PEUs in a static
distributed simulation (that is, no migration) will appear
as in figure 1. Under the system model assumptions,
every SMH interacting with a subset of neighbor SMHs
would have on the average 33% of its neighbors
belonging to every available PEUs. After few time-steps
from the initial random allocation of SMHs, the steady-
state allocation obtained by the migration mechanism in a
dynamic simulation appears like in figure 2. It results
clear the clustering of highly interacting SMHs, obtained
and maintained at the steady state, independently from the
initial node allocation and despite the high SMHs'
mobility.

4.2.2. The local communication ratio (LCR). The
simulations performed mainly focused on the evaluation
of the communication cost needed to implement the
model interactions (i.e. event-messages) between SMHs.
We define as a “local communication” (LC) a shared
memory communication between SMHs clustered on the
same PEU. On the other hand, an “external”
communication (EC) is a message involving a physical
network communication between different PEUs. For
every PEU, we collected results regarding the local
communication ratio LCR=LC/(LC+EC). LCR results
have been collected and analyzed with the heuristic
migration policy respectively ON and OFF (i.e. with a
static allocation), with respect to the SMH density and
with respect to the value of the migration control
parameter K. The LCR index is not related to the size of
messages and describes how much the causality effects
are closed inside each LP by adopting the migration
mechanism. This index is not relevant about the amount
of speedup obtained, because it does not describe the
communication overhead for the objects’ migration and
data distribution management. Despite the mobility model
and the model dynamics, the LCR demonstrates that a
given percentage of messages required to perform the
simulation runs can be transformed from ECs to LCs. In
figure 3 we show the transient percentage of local
communication (LCR) as a function of the modeled SMH
density and the SMH speed, in static and dynamic
simulations. SMHs are initially distributed randomly over
the set of PEUs, like in figure 1. When the migration is on
(K=3), the adaptive runtime re-allocation of SMHs
increases the percentage of local communication, almost
independently by the SMH density (3000 up to 9000

Figure 1. 3000 SMHs, initial random SMHs distribution,
and steady state random distribution in “static” simulation,
over PEU1 (black), PEU2 (white) and PEU3 (red or gray)

Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’04)

1550-6525/04 $20.00 © 2004 IEEE

SMH in the area) and by the average SMH speed (Fast-
RMM and Slow-RMM).

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 lo

ca
l c

om
m

un
ic

at
io

n
(L

C
R

)

Timesteps

3 LPs, K=3

F-RMM - 1000 objects/LP (total 3000)
S-RMM - 1000 objects/LP (total 3000)
F-RMM - 2000 objects/LP (total 6000)
F-RMM - 3000 objects/LP (total 9000)
S-RMM - 2000 objects/LP (total 6000)
S-RMM - 3000 objects/LP (total 9000)

F-RMM - 2000 objects/LP, Migration off

Figure 3. Transient LCR vs. SMH density (S-RWP, F-
RWP)

A static simulation (migration off) always maintains the
system on a flat level of local communication ratio (about
33%) as expected for this scenario. The steady state LCR
for the dynamic simulation gives higher percentage of
local communication than the static one (up to 88% for
Fast-RMM, in figure 3). The higher the SMH speed, the
higher the LCR convergence to the steady state value.
The obtained values outperforms the results obtained in
[3]: as an example, 61% vs. 88% LCR for the same
scenario.
Figure 4 shows the transient LCR results by varying the
K value defined to control the migration heuristic. As
expected, low K values make the initial (and transient) re-
allocation faster than high K values, and marginally affect
the steady state LCR. These results show that the K
parameter can control the convergence speed to the steady
state, and high K values limit the number of migrations
performed. The dynamic system converges to a steady-
state LCR around 88% for Fast-RMM, and around 84%
for Slow-RMM motion models (see figure 4).

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 lo

ca
l c

om
m

un
ic

at
io

n
(L

C
R

)

Timesteps

S-RMM vs F-RMM, 3 LPs, 2000 objects/LP (total 6000)

F-RMM, Migration on, K = 3
S-RMM, Migration on, K = 3
F-RMM, Migration on, K = 5
S-RMM, Migration on, K = 5
F-RMM, Migration on, K = 7
S-RMM, Migration on, K = 7

S-RMM, Migration off

Figure 4. Transient LCR vs. Average K value (slow and
fast RMM mobility)

The effect of the underlying load-balancing mechanism is
transparent in these results. The differences between F-
RMM and S-RMM is a clear indication of the different
“time-locality” effect and persistence of interactions
which is captured by the migration heuristics.
Figure 5 shows what happens if the migration mechanism
is switched off at runtime (i.e. timestep 1000 on figure 5).
The LCR ratio converges to the average value of a
random, static allocation scheme. This convergence ratio
is influenced by the motion model speed: a high SMH
speed translates to fast convergence. This demonstrates
the “time-locality” effect which is captured by the
migration heuristic, and the fact that any initial, optimal,
static allocation policy would not be adequate for this
kind of dynamic models.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

P
er

ce
nt

ag
e

of
 lo

ca
l c

om
m

un
ic

at
io

n
(L

C
R

)

Timesteps

3 LPs, 1000 objects/LP (total 3000), K=3

10 m/s, Migration on
10 m/s, Migration on/off (ts > 1000)
25 m/s, Migration on/off (ts > 1000)

100 m/s, Migration on/off (ts > 1000)
Migration off

Figure 5. Transient LCR, slow/fast RMM mobility,
migration mechanism turned OFF at timestep 1000

4.2.3. Execution-time analysis. In table 1 we show the
wall-clock time required for simulating the initial 1000
timestep of simulated-time interval, by adopting different
execution configurations. We are not describing the
speedup index obtained by parallel and distributed
simulations with respect to a monolithic sequential
simulation. This choice is made since we defined our
model as a worst case scenario with respect to the
sequential/parallel speedup analysis (e.g. low local
computation, frequent communications, low persistence
of interactions due to random uncorrelated mobility). The
asymptotic speedup of the proposed implementations, and
scalability beyond 3 PEUs will be evaluated as a future
work. What we are interested in, is the evaluation of the
static and dynamic approaches for parallel and distributed
simulation, to demonstrate that our migration-based
mechanism could outperform a static approach, even in
the worst-case scenario. As a worst-case scenario we
mean a scenario where a high degree of uncorrelated
mobility combined with frequent communication is
performed. Both static SMHs scenarios, and limited-
communications, would reduce the need for migrations,
returning the static (migration-off) performance.

Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’04)

1550-6525/04 $20.00 © 2004 IEEE

Before commenting the wall-clock time data shown in
table 1, it is worth noting the simulated time of a
simulation run is limited to only 1000 timesteps. This is a
really short simulation run. Significant run-length for
simulations would be of many thousands timesteps,
depending on the convergence time and variance of
simulation indices.

Table 1. Preliminary execution-time results (single run
execution, 1000 timesteps)

M PEUs, N federates,
5000 SMHs (constant)

Migration
Wall Clock

Time (s)
1000 ts

M = N = 1 Off 23 min, 38 sec
M = 1, N = 3 Off 20 min, 40 sec
M = 1, N = 3 On, K=3 18 min, 42 sec

M = N = 2 Off 18 min, 01 sec
M = N = 2 On, K=3 16 min, 03 sec
M = N = 3 Off 14 min, 30 sec
M = N = 3 On, K=3 12 min, 36 sec
M = N = 3 On, K=7 14 min, 17 sec

The wall-clock time indicated in Table 1 includes the
initial re-allocation, and object distribution management
overhead, which is characteristic of the migration
mechanism, in the dynamic approach. Despite the initial
migration overheads, the results show that a simulated
time of only 1000 timeslots is sufficient for our
implementation to recover all the initial and runtime
migration overheads. Overheads are almost immediately
balanced by the external messages’ reduction. This is
even more relevant given all the worst-case assumptions
about the light local computation for each SMH. The
results presented in Table 1 shows that the parallel and
distributed simulation of the referenced model always
outperforms both a monolithic simulation, and the static
distributed simulation. By increasing the number of PEUs
involved in the simulation we always obtain a reduction
of the wall-clock time required for the initial timesteps.
By simply activating the migration framework the wall
clock time required by a dynamic distributed simulation
reduces of 10%, 12% and 13% for 3 LPs on 1 PEU, 2 LPs
on 2 PEUs, and 3 LPs on 3 PEUs, respectively. The gain
indicated is relative to the static distributed simulation.
Results presented in Table 1 have been obtained with the
worst case modeling assumption that a ping message
contains no payload (i.e. header only). We expect that the
increase of the ping message would result in the
amplification of the communication overheads, and in
additional advantages of the dynamic simulation, which
increases the LCR. Figure 6 illustrates the wall clock
times obtained by increasing the payload size of the
modeled ping messages in the simulations. Small payload
sizes (up to 64 bits) result in a 10-15% speedup of the
dynamic vs. static distributed simulation. By increasing

the payload up to 1024 bits the speedup gain is greater
than 120%.

0

500

1.000

1.500

2.000

2.500

3.000

3.500

W
al

l C
lo

ck
 T

im
e

(s
)

0 32 64 128 256 512 1024

Ping Size (Bytes)

Migration OFF Migration ON

Figure 6. Wall Clock Time vs. Ping Packet Size

5. Conclusions and future work

In this work we defined and tested a new framework
obtained as the integration of two recently developed
middlewares defined to support the parallel and
distributed simulation of large scale, complex and
dynamically interacting system models. The ARTÌS
middleware is a new framework incorporating a set of
features that allow an adaptive optimization of the
communication layer management in a distributed
simulation scenario supported by heterogeneous systems
and communication services. ARTÌS has been integrated
with GAIA, a dynamic mechanism for the runtime
management and adaptive allocation of model entities in a
distributed simulation. By adopting a runtime evaluation
of causal bindings between model entities GAIA adapts
the dynamic and time-persistent causal effects of model
interactions to dynamic migration of model entities. We
tested our adaptive framework and the migration and
load-balancing heuristics in the testbed simulation of a
prototype mobile wireless system, characterized by
Simulated Mobile Hosts (SMHs). The results obtained
demonstrate that the combined effect of ARTÌS
management and GAIA heuristics leads to a significant
reduction in the communication and synchronization
overheads between the physical execution units.
Simulation performance enhancements have been
obtained also in worst-case modeling assumptions and
simulation system scenarios.
 Our future work will include the ARTÌS extension
with optimistic management and the definition of new
models for dynamically interacting systems like multi-
agent systems, P2P models, wireless ad hoc and sensor
networks, biology-inspired models and molecular
systems, elementary particles physics and cosmology
systems.

Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’04)

1550-6525/04 $20.00 © 2004 IEEE

References

[1] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, and
H.Y. Song, “PARSEC: a parallel simulation environment for complex
systems”, IEEE Computer, 31(10), October 1998, pp.77-85

[2] A. Berrached, M. Beheshti, O. Sirisaengtaksin, and A. Korvin,
“Alternative Approaches to multicast group allocation in HLA data
distribution”, Proc. Of the 1998 Spring Simulation Interoperability
Workshop, 1998

[3] L.Bononi, G.D'Angelo, L.Donatiello, “HLA-Based Adaptive
Distributed Simulation of Wireless Mobile Systems”, in Proceedings of
IEEE/ACM Intern. Workshop on Parallel and Distributed Simulation
(PADS'03), San Diego, CA, June 2003

[4] L.Bononi, M. Bracuto, G. D’Angelo, L. Donatiello, “ARTÌS: a
Parallel and Distributed Simulation Middleware for Performance
Evaluation”, University of Bologna Int. Report,
http://www.cs.unibo.it/~bononi/Reports/ArtisTR.pdf, Mar. 2004

[5] A. Boukerche, and S.K. Das, “Dynamic Load Balancing Strategies
for Conservative Parallel Simulation”, Proc. of 11-th Workshop on
Parallel and Distributed Simulation (PADS’97), June 1997, Lockenhaus,
Austria, pp. 20-28

[6] A. Boukerche, and A. Fabbri, “Partitioning Parallel Simulation of
Wireless Networks”, Proc. of the 2000 Winter Simulation Conference
(WSC), 2000

[7] J. Dahmann, R.M. Fujimoto, and R.M. Weatherly, “High Level
Architecture for Simulation: an update”, Winter Simulation Conference,
December 1998

[8] S.R. Das, “Adaptive protocols for Parallel Discrete Event
Simulation”, Proc. of Winter Simulation Conference, 1996

[9] W.J. Davis, G.L. Moeller, “The High Level Architecture: is there a
better way?”, proc. Winter Simulation Conference, 1999

[10] E. Deelman, and B.K. Szymanski, “Dynamic load balancing in
parallel discrete event simulation for spatially explicit problems”, Proc.
of the 12-th workshop on Parallel and distributed simulation PADS’98,
July 1998

[11] DMSO: Defence Modeling and Simulation Office (1998), High
Level Architecture RTI Interface Specification, Vers. 1.3

[12] A. Ferscha, “Parallel and Distributed Simulation of Discrete Event
Systems”, In Handbook of Parallel and Distributed Computing,
McGraw-Hill, 1995

[13] Fujimoto, R.M., Parallel and Distributed Simulation Systems, John
Wiley & Sons, 2000

[14] B.P. Gan, Y.H. Low, S. Jain, S.J. Turner, W. Cai, W.J. Hsu, and
S.Y. Huang, “Load balancing for conservative simulation on shared
memory multiprocessor systems”, Proc. of the 14-th workshop on
Parallel and distributed simulation (PADS’00), May 28-31, 2000,
Bologna, Italy, p.139-146

[15] P. Huang, D. Estrin, and J. Heidemann, “Enabling large-scale
simulations: Selective abstraction approach to the study of multicast
protocols”, proc. Mascots'98, Oct. 1998

[16] IEEE Std 1516-2000: IEEE standard for modeling and simulation
(M&S) high level architecture (HLA) - framework and rules, - federate
interface specification, - object model template (OMT) specification, -
IEEE Recommended Practice for High Level Architecture (HLA)
Federation Development and Execution Process (FEDEP), 2000

[17] Internet Engineering Task Force, MANET WG Charter,
http://www.ietf.org/html.charters/manet-charter.html

[18] K.G. Jones, and S.R. Das S.R., “Parallel Execution of a sequential
network simulator”, Proc. of the 2000 Winter Simulation Conference,
2000

[19] O.E. Kelly, J. Lai, N.B. Mandayam, A.T. Ogielski, J. Panchal, R.D.
Yates, “Scalable parallel simulations of wireless networks with
WiPPET: modeling of radio propagation, mobility and protocols”,

Mobile Networks and Applications, v.5, n.3, September 2000, pp.199-
208

[20] W.W. Liu, C.C. Chiang, H.K. Wu, V. Jha, M. Gerla, and R.
Bagrodia, “Parallel simulation environment for mobile wireless
networks”, Proc. of Winter Simulation Conference, 1996

[21] B. Logan, and G. Theodoropoulos, “The Distributed Simulation of
Multi-Agent Systems”, Proc. of the IEEE, 2001

[22] J. Lüthi, and S. Großmann, “The resource sharing system: dynamic
federate mapping for HLA-based distributed simulation”, Proc. of the
15-th workshop on Parallel and distributed simulation (PADS’01), May
2001, Lake Arrowhead

[23] M. Myjak, S. Sharp, W. Shu, W. Wei, J. Riehl, D. Berkley, P.
Nguyen, S. Camplin, and M. Roche, “Implementing object transfer in
HLA”, Proc. 5-th Simulation Interoperability Workshop (SIW’99),
Orlando, Florida, March 1999

[24] K. Perumalla, R.M. Fujimoto, and A. Ogielsky, “TeD - A language
for modeling telecommunications networks”, Performance Evaluation
Review 25(4), 1998

[25] D.M. Rao, and P.A. Wilsey, “An Ultra-large Scale Simulation
Framework”, Proc. of MASCOTS '99, Oct. 1999

[26] D.M. Rao, and P.A. Wilsey, “An object oriented framework for
parallel simulation of ultra-large communication networks”, proc. 3-rd
Inter.l symposium on computing and object oriented parallel
environments, Nov. 1999

[27] D.M. Rao, and P.A. Wilsey, “Parallel Co-simulation of
Conventional and Active Networks”, Proc. of MASCOTS’00, August
2000

[28] G.F. Riley, R.M. Fujimoto, M.H. Ammar, “A generic framework
for parallelization of network simulations”, Proc. of MASCOTS'99,
College Park, MD, October 1999

[29] G.F. Riley, M.F. Ammar, R.M. Fujimoto, K. Perumalla, and D. Xu,
“Distributed Network Simulations using the Dynamic Simulation
Backplane”, MASCOTS' 01, Aug. 2001

[30] G.F. Riley, and M.H. Ammar, “Simulating Large Networks How
Big is Big Enough?”, Proc. of First Intern.l Conference on Grand
Challenges for Modeling and Simulation, Jan. 2002

[31] J. Short, R. Bagrodia, and L. Kleinrock, “Mobile wireless network
system simulation”, Wireless Networks 1, August 1995

[32] T.K. Som, and R.G. Sargent, “Model structure and load balancing
in optimistic parallel discrete event simulation”, Proc. of the 14-th
workshop on Parallel and distributed simulation, May 2000, Bologna

[33] B.K. Szymanski, Y. Liu and R. Gupta, “Parallel network simulation
under distributed genesis”, Proc. of the 17-th workshop on Parallel and
distributed simulation, 2003, Washington DC, USA

[34] B.K. Szymanski, and Y. Liu, “Loosely-coordinated, distributed,
packet-level simulation of large-scale networks”, Proc. of the Winter
Simulation Conference, December 2003

[35] K. Tang, M. Correa, and M. Gerla, “Effects of Ad Hoc MAC Layer
Medium Access Mechanisms Under TCP”, ACM/Kluwer Mobile
Networks and Applications, 2001

[36] UCB/LNBL/VINT The NS2 network simulator,
http://www.isi.edu/nsnam/ns/

[37] A. Varga, OMNET++ in "Software Tools for Networking", IEEE
Network Interactive. July 2002, Vol.16 No.4

[38] V-Y Vee, and W-J Hsu, “Locality-preserving load-balancing
mechanisms for synchronous simulations on shared-memory
multiprocessors”, Proc. of 14-th workshop on Parallel and distr.
simulation, May 2000, Bologna, Italy, p.131-138

[39] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: A library for
parallel simulation of large-scale wireless networks”, Proc. of Workshop
of Parallel and Distributed Simulation (PADS’98), Banff, Alberta,
Canada, May 1998

Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’04)

1550-6525/04 $20.00 © 2004 IEEE

