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Department of Electronic Engineering, National University of Ireland Maynooth

National University of Ireland Maynooth
Maynooth, Co, Kildare, Ireland

Email: xzhang@eeng.nuim.ie

Abstract—Consistency maintenance in Distributed Interac-
tive Applications (DIAs) is subjected to network characteristics
such as limited bandwidth and latency. Predictive contract
mechanisms are techniques that compensate for the effect of
network latency by extrapolating future entity states from
historical records. These approaches trade inconsistency within
human perceptual limits for reduced network traffic and
latency. This paper explores the use of an information metric
to analyse the effect of network latency on remote consistency
and thus establishes a novel framework to model predictive
contract mechanisms as a lossy information sharing process.
Such a perspective facilitates a novel explicit analysis of the
trade-off between network traffic and inconsistency.
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I. INTRODUCTION

Modern computer network technology allows geograph-
ically distant end-users to exchange information and col-
laboratively interact with each other in a shared networked
virtual environment. Such applications can be described
as Distributed Interactive Applications (DIAs). DIAs are
widely deployed in various domains such as military sim-
ulations (SIMNET [1], DIS [2]), distributed virtual envi-
ronments (NPSNET [3]) and multiplayer computer games
(Quake [4]). Despite the diversity of this application class,
one of the most persistent problems has been the issue of
maintaining a sufficiently synchronized and dynamic view
of the simulation state for all users across the network, i.e.
DIAs require some level of consistency.

In a DIA, a virtual entity or object that represents a
participant is typically described by a number of state
variables, which are synchronized through sending update
messages across the network. Consistency has been defined
in diverse ways [5]. In the context of this paper, it refers
to spatial similarity between the state of an local object and
its remote replication. Unfortunately, absolute consistency in
DIAs is impossible to achieve because of network latency
[6]. In fact, increasing update frequency for finer remote
state replication and better consistency leads to more data
being transmitted and worse latency if the traffic exceeds
the limited network bandwidth, and thus ironically com-
promises consistency. This “Consistency-Throughput Trade-

off ” requires DIA designers to employ various consistency
maintenance mechanisms to maintain a sufficient level of
consistency through optimal use of network resources.

Generally, techniques and approaches used by these mech-
anisms can be classified into three classes [6]: information
management techniques which reduce the amount of data
transmitted across the network to optimize the bandwidth
usage so that latency can be minimized; time management
techniques that manage consistency by manipulating time to
mask the effect of network latency and system architecture
techniques which seek to improve the efficiency of data
processing and dissemination.

One important group of information management tech-
niques is predictive contract mechanisms, which have been
widely utilized in military training simulations and computer
games [1], [7]. Predictive contract mechanisms compare the
actual state of a local entity to the estimate made by some
prediction scheme from contextual dynamics. Entity state
updates (ESUs) are only generated when the prediction error,
i.e. the difference between the actual and estimated states,
violates a given threshold. The remote hosts, on receiving
ESUs, predict the entity state using the same prediction
scheme. In doing so, predictive contract mechanisms main-
tain a controlled inconsistency for reduced network traffic.
There is significant research focused on designing prediction
models that better fit entity dynamics [5], [8], [9]. In order
to balance the trade-off between the number of update
transmissions and the resultant inconsistency, suitable error
thresholds must be carefully chosen [10]–[14]. In so far as
the authors are aware, there exists no analytical measure
of the contribution of the mechanisms in reducing data
transmission.

Our previous work on this issue applies information
theory to establish a novel framework for predictive contract
mechanisms [15]. Mutual information [16] is employed to
measure the dependence between the real state dynamic
and the approximated state dynamic on the local host. The
inconsistency induced by discarding prediction errors within
the threshold limit is measured as the information loss in
the local approximation. Such a perspective facilitates an
analytical study of the trade-off between consistency and
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throughput.
In this paper, we extend our previous model [15] by in-

cluding the remote inconsistency in this information frame-
work. The effect of network latency on fidelity degradation
is also measured from an information perspective. This
completed information model is a compact representation
of key aspects of predictive contract mechanisms, namely
entity dynamics, prediction models, threshold and latency.
Furthermore the model explicitly shows how tuning the
threshold affects the system in the “Consistency-Throughput
Trade-off ”. Analyses of our model are presented through an
experimental study.

The remainder of this paper is organized as follows.
For the convenience of the reader, fundamental principles
of predictive contract mechanisms are outlined in the next
section. This is followed by detailed explanations of the
complete information model in Section III. Section IV
presents our results and discussion from an experimental
study perspective. Finally, the paper ends with conclusions
and directions for future work in Section V.

II. PREDICTIVE CONTRACT MECHANISMS

Predictive contract mechanisms make use of prediction
models to extrapolate entity states and therefore reduce the
number of messages transmitted across the network. The
operation of these mechanisms is commonly divided into
two main components: prediction and convergence [2], [17].
The local and remote hosts in the application apply the same
prediction model to generate their own approximations of the
entity dynamic. Convergence algorithms are only used on the
remote hosts to correct large prediction errors on arrivals of
the ESUs, such that more natural motion is obtained.

The prediction algorithms estimate future entity states
from existing ESUs. The local host that controls the entity
keeps the estimation as a local model of the entity dynamic.
The model is compared with the actual motion and whenever
the prediction error exceeds a pre-defined threshold, an ESU

containing accurate information about the instantaneous dy-
namic is generated for further extrapolation. On receiving
the ESU, the remote hosts extrapolate the remote model ac-
cordingly using the same prediction algorithm until the next
ESU arrives. In standard Dead Reckoning and its various
extensions, linear and polynomial functions are used as the
extrapolation equations [2], [18]. More complicated methods
involving statistical learning, such as Kalman filters [9] and
Neural Networks [8], have been employed to improve the
performance of prediction.

The convergence algorithms define how prediction errors
are corrected on the remote hosts on receiving an ESU,
so that the remote model looks more natural and smooth.
Currently, polynomial equations are the most commonly
used convergence algorithms [17], [18]. The convergence
is the post-operation taken for the sole purpose of better
perceptual experience [17], and is thus independent of ESU
generation and bandwidth consumption.

Fig. 1 illustrates the operation of predictive contract
mechanisms. Notice that the network latency induces extra
transmission error in the remote model and the remote
inconsistency may exceed the local threshold. Consider the
simulation tick k = 0 from when the local model error
reaches the threshold h and a new update is generated. The
local model is corrected immediately but the remote model
keeps diverging from the real dynamic over the period of the
network latency of L ticks, because the now out-of-date ESU
is still in use on the remote site. The remote inconsistency
Re can be described as in

Re = h +

L∑

k=1

Δv(k)Ts = h + LTsΔv, (1)

where Ts is the simulation interval, Δv(k) is the differ-
ence in velocity between the real dynamic and the remote
extrapolation at the simulation tick k , and Δv is the
average difference in velocity over the time of the update
transmission. Among these aspects that determine the remote
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Figure 1. Visual illustration of predictive contract mechanisms. In this case, we use linear extrapolation and first-order convergence where the remote
model converges to an extrapolated future point over several steps along a straight line, instead of replacing the predicted value immediately.
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inconsistency, the local threshold is deterministic, the net-
work latency is uncontrollable, and the difference in velocity
depends on how the prediction model fits the entity dynamic.
Therefore, the prediction algorithm is the core of the whole
mechanism. Simple or complicated, having closed form
equations or not, these algorithms are essentially functions
or mappings f(·) that relate the contextual dynamics to
the predicted states. More accurate mappings minimize the
difference in velocity by making better prediction, and the
resultant reduction in update transmission leads to shorter
latency, which makes the remote inconsistency more con-
trollable. However there lacks measurements that relate
prediction accuracy and the resulting traffic saving.

In the next section, we present a new framework that
views predictive contract mechanisms from an information
theory perspective. In this framework, the contribution of
the prediction model is measured by the ability to make use
of the temporal dependence in the entity dynamic. More
importantly, given a desired fidelity level, the information
metric gives the minimal bandwidth requirement to build
the remote model. An incomplete information model that
focuses only on local operation was introduced in our
earlier work [15]. Here we extend the local information
framework by taking latency and remote inconsistency into
consideration.

III. INFORMATION MODEL

The information model presented here is based on the idea
that ESUs can be used to extrapolate future motion because
there is temporal dependence among states at different times,
therefore instantaneous entity motion states in the ESUs hold
some level of knowledge that can help locate future entity
states. In information theory, this dependency or knowledge

is measured by the concept of Mutual Information [16]. A
detailed review about the related mathematics and concepts
can be found in [15].

The information model redefines the illustration in Fig. 1
into a flow diagram in Fig. 2. Here the entity dynamic
yields a discrete time series d(k) = {d(1), d(2), . . .}, where
k is the index of the simulation step and the value of
d(k) varies within a finite discrete set of entity state values
S = {si}. The remote model d̄(k) = {d̄(1), d̄(2), . . .} is
state approximation simulated by the remote hosts using
predictive contract mechanisms.

The model views predictive contract mechanisms as in-
formation processing, in which information about the entity
dynamic is included in ESUs at the local host and remotely
extracted to reconstruct the remote model. Each ESU, as
an information carrier, holds full information about the
instantaneous entity state and some information about future
states. The full instantaneous information is the entropy
H(d) of the dynamic d, which is also the average data rate
required for a perfectly accurate approximation where an
update u(k) is generated at every simulation tick k and no
prediction scheme is applied. The entropy is given as in

H(d) = −
∑

si

pd(si) log pd(si), (2)

where pd(si) is the probability function of the entity state.
Extrapolation uses the knowledge about the future states

included in ESUs for prediction. Consider predicting the
entity state d(k + τ) from the ESU u(k) generated τ

steps earlier. For a certain prediction span τ , the available
knowledge or interdependence that can be utilized by pre-
diction schemes for extrapolation is measured by mutual
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Figure 2. Information model of predictive contract mechanisms. Information generated by the local dynamic d is included with loss into the ESUs, from
which the remote model d̄ is simulated. The extrapolated dynamic d̃ is compared to the real dynamic to decide whether an ESU is needed to correct the
prediction error.
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information I(u; dτ ) between u(k) and d(k + τ), as in

I(u; dτ ) = I(u(k); d(k + τ))

=
∑

u(k),d(k+τ)

pud(u(k), d(k + τ))

· log
pud(u(k), d(k + τ)

pu(u(k))pd(d(k + τ))
, (3)

where pu and pd are corresponding probability functions of
the sequences, and pud is the joint probability of the two.
This mutual information is the average amount of knowledge
in an ESU that can be used to predict the entity state τ

steps later than its generation. Here we define the functioning
period Tf of an ESU as the period during which this ESU
is referenced by prediction schemes to generate modelled
states. The local ESU functioning period is the time interval
between successive ESU generations, and remotely it is
between ESU arrivals. On average, the information MIs

stored in an ESU for extrapolating one modelled state is the
mutual information averaged over the functioning period.

MIs =

∑
τ∈Tf

I(u; dτ )

Tf

(4)

The stored information MIs in (4) is mostly the character-
istic of the entity dynamic in that it characterizes the capacity
of the ESU to carry information for extrapolation. An ESU
could also have full information about all the future states
in deterministic dynamics, or none in cases of completely
random motions.

With the information stored in the ESUs, predictive con-
tract mechanisms extrapolate the remote approximation by
interpreting that information using extrapolation equations.
The mutual information I(d; d̄) in (5) reflects the amount of
information about the entity dynamic that is actually used in
extrapolating the remote model, and thus measures the in-
formation utilization. It is then apparent that the information
utilization is bounded by the stored information. Given the
ESUs, better algorithms could utilize a higher percentage of
the stored information to produce more accurate predictions.

I(d; d̄) = I(d(k); d̄(k))

=
∑

d(k),d̄(k)

pdd̄(d(k), d̄(k))

· log
pdd̄(d(k), d̄(k))

pd(d(k))pd̄(d̄(k))
(5)

The spatial analysis of the remote inconsistency in (1)
can also be redefined from this information perspective.
By allowing for local model error within the threshold,
prediction contract mechanisms prune the original infor-
mation generation rate H(d) of the entity dynamic to the
storing rate MIs of the ESUs. The local information loss
is controlled by the threshold. The network latency endured

by the transmission adds further information loss and only a
reduced information rate I(d; d̄) is reconstructed remotely.

In the next section, we apply this model to a practical
navigation motion dataset in a virtual environment [19]. The
scenario settings are representative of virtual environment
interactions.

IV. EXPERIMENTS AND RESULTS

The practical test scenario we use here to illustrate how
the proposed framework works is a head dataset taken from
the StepWim navigation technique [19], where the experi-
ment subject explores the virtual environment and his/her
movement is recorded. The discrete entity state unit is 4
mm. For the convenience of illustration, we only consider
the x-coordinate positions as the entity states. Therefore, the
motion of the entity is a one-dimensional dynamic and is
recorded as a scalar time sequence d(k) = {d(1), d(2), . . .}.
Analysis to higher-dimensional movements can be con-
ducted in a similar manner.

The entity dynamic is sampled at the frequency of 1607
Hz. Our experiments were conducted for varying error
thresholds and constant latencies. The extrapolation equation
we examine here is linear. At each simulation step k , the
linear extrapolation for the current entity state is

d̃(k) = d(ku) + (k − ku)v(ku), (6)

where d(ku) and v(ku) are the sampled position and velocity
included in the latest ESU generated at time-step ku , i.e.
u(k) = {d(k), v(k)}. For ease of analysis, no convergence
algorithm is applied, since user perception is beyond the
purpose of this paper.

Fig. 3 shows the actual entity motion, along with the local
and remote models. A local error threshold of 32 units and a
constant network latency of 60 ms were used. The expanded
view shows the delay of remote corrections and transmission
error induced by the network latency.

In Fig. 4(a), the information measurement in (3) shows the
capacity of the ESUs to carry information about future states
for varying prediction spans. An entropy H(d) of 8.8699
bits is given by (2) for the navigation dataset, which is
the average information required to reconstruct the entity
motion with absolute accuracy. An ESU holds this full
information for the immediate state (τ = 0), and only partial
information for the future (τ > 0). The decreasing feature of
the mutual information indicates that given the knowledge
about instantaneous entity motion, the future entity state
becomes less predictable as the prediction span increases.
By using the incomplete information, predictive contract
mechanisms trade consistency for less network traffic. The
information carried by an ESU for extrapolating the local
and remote models depends on its functioning period. The
situation for a threshold of 8 units and a latency of 40 ms
is shown in Fig. 4(a). The average ESU functioning period
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Figure 3. The actual entity motion and the local and remote models for an error threshold of 32 units and a constant latency of 60 ms. A zoomed-in
section in (a) is shown in (b).
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Figure 4. (a) Information capacity of ESU for increasing prediction spans. The local and remote functioning periods TLf and TRf are also included.
The average ESU functioning period is 33 ms for an error threshold of 8 units and a latency of 40 ms. (b) Average information per simulation tick that is
available for extrapolation for different threshold values.

is 33 ms. As in (4), the average included information for
varying thresholds and latencies is shown in Fig. 4(b).

The behaviour of the decreasing mutual information mea-
surement highlights the characteristics of the entity dynamic
from the perspective of predictability. Application parame-
ters, such as error threshold in the case of dead-reckoning,
must be set up accordingly. A quite slower information drop
can be expected for entity motions such as a car-racing
game, where objects mostly move along their assigned lanes.

In this case, a large error threshold is preferred because the
ESUs stay in effect longer without causing much further
information loss, and network traffic is reduced. In other
scenarios, for example, where players shoot enemies out
of random hiding places, mutual information would drop
faster, and the ESU functioning period has to be short to
include timely information and thus a tight threshold is
better. Given the mutual information chart and the network
conditions, a proper threshold can be chosen such that
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sufficient information is carried by the ESUs to maintain
acceptable inconsistency while minimizing network traffic.

The network latency is reflected in the information chart
in Fig. 4(a) by the shifting of the remote functioning period.
This shifting causes further information loss in ESU because
the mutual information decreases as the latency grows.

Average remote inconsistency measured in spatial distance
is compared with the mutual information between the remote
model and the actual dynamic for varying thresholds and in-
creasing constant latencies in Fig. 5. The mutual information
measurement agrees with the inconsistency in that low mu-
tual information comes with high inconsistency, indicating
less interdependence between the model and actual motion.
More importantly, This also indicates the information rate to
maintain such inconsistency. For example, the consistency
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Figure 5. (a) Average remote error for varying thresholds and increasing
constant latencies. (b) Mutual information between the remote model and
the actual dynamic.

maintenance mechanism used here (linear extrapolation and
no convergency) provides an information rate of 5.11 bits
per simulation tick, or 8.22 Kbps, to maintain an average
remote inconsistency of 14 units for a local error threshold
of 8 units and a latency of 40 ms.

The remote model is the result of the extrapolation. The
mutual information in Fig. 5(b) measures the amount of
knowledge in the remote model, and reflects the amount
of information actually utilized by the extrapolation equa-
tion. Comparative examination of Fig. 4(b) and Fig. 5(b)
reveals that the information included in the ESUs is not
completely used by the linear extrapolation. The utilization
ratio varies from 60% to 90%, and is lower for larger
thresholds. This utilization of included information can be
a performance measurement of the extrapolation algorithm.
More sophisticated prediction schemes could make better
use of the included information and thus improve consis-
tency. However designing such schemes generally requires
more prior information about the dynamic, such as training
data. Furthermore, such algorithms would be application-
sensitive.

Finally, it is true that the information metric is computa-
tionally complex. However, information metric can achieve
more than just inconsistency measurement as spatial dif-
ference. As stated above, the information model reframes
predictive contract mechanisms as a information communi-
cation process. In addition, the information metric suggests
optimal interpretation of the transmitted data. In Fig. 5,
the mutual information drops very slowly for larger laten-
cies while the remote error keeps growing rapidly. This is
because mutual information measures general relationship
between two variables rather than spatial similarity only.
This difference is illustrated in Fig. 6, which displays a full
dataset of 5 ticks for a trivial simulation used for illustrative
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Figure 6. Mutual information measures general interdependence instead
of spatial similarity.
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purposes. Although the initial extrapolation vector is not
perfect and the modelled path diverges from the actual
motion, the mutual information is still perfect because the
actual motion can be determined with absolute certainty
from the modelled path. The modelled path can be trans-
formed to the actual motion with perfect accuracy. Therefore
the information metric suggests that there exists a mapping
that can transform the results of the linear extrapolation and
better interpret the mutual information to present improved
consistency. However, designing such a mapping is beyond
the scope of this work.

V. CONCLUDING DISCUSSION

This paper explores the use of information theory to
reframe predictive contract mechanisms as an information
process. In our information model, aspects of consistency
maintenance, namely entity dynamics, prediction algorithms,
threshold, and network latency are analysed using an inte-
grated information metric. Such analysis facilitates a novel
understanding of the “Consistency-Throughput Trade-off ”,
and suggests improvement of application design. Our future
work will focus on measuring different extrapolation equa-
tions and designing optimal entity state distribution protocol.
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