
High-Performance Computing for Data Analytics

Dimitri Perrin, Marija Bezbradica, Martin Crane, Heather J. Ruskin
Centre for Scientific Computing & Complex Systems Modelling

Dublin City University
Dublin, Ireland

Email: {dperrin, mbezbradica}@computing.dcu.ie

Christophe Duhamel
ICD-LOSI, STMR (UMR CNRS 6279)
Université de Technologie de Troyes

Troyes, France
Email: christophe.duhamel@utt.fr

Abstract

One of the main challenges in data analytics is
that discovering structures and patterns in complex
datasets is a computer-intensive task. Recent advances in
high-performance computing provide part of the solution.
Multicore systems are now more affordable and more
accessible. In this paper, we investigate how this can be
used to develop more advanced methods for data analytics.
We focus on two specific areas: model-driven analysis and
data mining using optimisation techniques.

1. Introduction

Advances in high-performance computing (HPC) have
resulted not only in improved performance but also in
greater availability of such resources. The cost per GFLOPS
dropped below $1000 for the first time in 2000, below $42 in
2009 [1], and below $2 in 2011 [2]. Ongoing development of
cloud-based solutions is likely to further increase availability
and affordability.

Such resources are particularly needed in data analytics,
where finding hidden structures and patterns in large
heterogenous datasets is typically computer-intensive.

In this paper, we consider two fields of data analytics
where HPC availability is already having a significant
impact, namely analysis based on optimisation techniques
and model-driven analysis.

For each approach, we provide an overview of the
challenges and detail how high-performance computing can
be used to solve these. Two case studies are detailed:
pharmaceutical R&D and genetic research.

2. Data analytics in pharmaceutical R&D

The use of data analytics in drug development and
discovery was historically used in limited scope as the
process of in vitro drug release was considered akin to a
black box, where different inputs were varied in order to
tailor desired outputs. In this sense, internal dynamics of
the pharmaceutical device could not be understood solely

by pure observation as these presents a superposed picture
of the phenomena involved.

Using pharmacokinetic modelling from the drug discovery
phase through to development and manufacturing can
provide: (i) support for the decision making process, (ii)
improved and effective usage of drug development time with
reduction of design parameter space, and (iii) the basis for
analyses both within and between input data sets.

This reduces the amount in vitro / in vivo testing required,
important to cost-effective and flexible solutions. Hence, in
silico modelling and analysis enable extensive offline testing
and evaluation of parameter sensitivity [3].

2.1. Advantages of probabilistic modelling

Drug dissolution system (DDS) models can be broadly
split into two categories. Mechanistic models attempt to
describe the system precisely, using sets of differential
equations, which are useful for data analysis purposes
only if relevant input parameter values, often unobtainable
through in vitro testing, are known. As an alternative to
these, probabilistic models, requiring less detailed initial
knowledge of dissolution parameters are applicable to a
wider range of systems, making these more practical in
enterprise applications. Combined with Cellular Automata
(CA) methods a bottom-up approach is employed to predict
global drug behaviour by describing individual polymer
interactions using a combination of physico-chemicals laws
(such as Fick’s) and probabilistic distributions. Initial
cell states are randomised using Monte Carlo algorithms,
replacing the need to precisely define the initial set up, apart
from giving the outline drug device structure. Following
the first use of CA in pharmaceutical modelling [4], many
subsequent models have been described in the literature
[5]–[8].

2.2. Advantages of high performance computing

In general, there are two sources of large data in
pharmaceutical analysis. The first is due to novel drug
formulations having a considerable amount of experimental
data from the design stage which require processing in order

2012 IEEE/ACM 16th International Symposium on Distributed Simulation and Real Time Applications

1550-6525/12 $26.00 © 2012 IEEE

DOI

234

2012 IEEE/ACM 16th International Symposium on Distributed Simulation and Real Time Applications

1550-6525/12 $26.00 © 2012 IEEE

DOI 10.1109/DS-RT.2012.41

234

to deduce relations between design parameters. Synthetic
sources depend on the device where fine resolutions is
needed for micro- and nano- scale simulations. These require
high performance, large scale infrastructure to execute.
Even though such resources today are readily available,
either from local scientific computing clusters or commodity
public cloud infrastructure, the algorithmic solutions in these
applications are not reported in the scientific literature [3].
Furthermore, in parallelisation of cellular automata systems,
the key challenge to be solved is that of efficient transfer of
cell states across process boundaries where communication
is expensive [9]. This problem becomes more complex for
multiple scales as we switch from classical CA models, to
ones incorporating agent-like behaviours, such as those of
particle diffusion within the drug device.

In this paper we present a high-performance probabilistic
CA framework for large scale data processing, developed
in collaboration with a pharmaceutical enterprise partner,
Sigmoid Pharma Ltd. The framework is used for prediction
of drug release rates from pharmaceutical devices used in
controlled drug delivery, which aims to deliver specific
dosage profiles and reduction of negative side effects, such
as dose dumping. Controlled drug release may be achieved
in many ways, such as by coating the active ingredient (drug)
using one or more layers of polymeric coatings, which are
designed to protect the core component as it traverses the
upper intestine and enters the gastro-intestinal (GI) tract.

The main advantage of using a generic CA framework
is its adaptability to different model scenarios in terms of
supporting various geometries (such as 2D, 3D, tablets,
cylinders and spheres), as well as incorporating a range of
complex phenomena, from basic release mechanisms (such
as diffusion and erosion) to analysis of more specialised
ones (such as clustering of drug in coating or influence of
the dissolution environment).

In Section 2.3 of this paper, we present the data
analytics workflow used for pharmaceutical data collection,
processing, modelling and analysis. Section 2.4 introduces
the CA framework developed and demonstrates a referent
model, as well as covering the main HPC algorithms used
for model parallelisation and optimisation. Analyses for the
simulations are discussed in Section 2.5. Finally, in Section
4 we outline the main findings and possible future directions
for model development.

2.3. Data analysis workflow

In vitro and in silico data analysis and development of
the relevant model were performed based on the workflow
presented in Figure 1 [10]. This continuous feedback loop
is composed of several distinct stages, separated into two
main parts (enterprise and modeller).

Initial drug design and in vitro testing in the USP apparata
[11], is performed by the enterprise partner. The data are

Figure 1. Data analysis and modelling workflow

filtered to determine the variables of interest, intrinsic to
the drug device design process (input parameters such as
geometry, size, drug loadings, and coating thicknesses)
and relevant to the modeller (e.g. types of physical
processes/chemical reactions present, release curves for
different parameter sets, etc.). The data obtained are used
to construct a CA model describing different assumptions
about the dissolution processes present.

The models are then optimised for parallel execution
and simulated on high performance computing clusters for
various input data sets, in order to maximise the gain from
running many simulations at once. As the laboratory testing
is performed for periods of up to 24 hours, then in order for
in silico simulations to be cost-effective, the workflow and
the underlying framework must be able to support running
large numbers of simulations over a relatively short time.

Two main sets of simulation results are generated: (i)
a control set, which validates results against the known
experimental data points and is used to asses model usability
for predictive purposes. For controlled release, a sigmoidal
(”S” Shaped) release curve is expected, demonstrating
properties of a zero-order release kinetics during a period
when the device passes through a region of maximum
adsorption; (ii) a generic data set showing variations of
release profiles, dependent on parameter changes, which can
then be used to feed back into the drug design process.

If model validation is promising, extensive optimisations
can also be performed in order to ensure model robustness
and reusability for similar drug device analysis.

Insight on system evolution is also provided by graphical
representation of the model, which captures successive

235235

stages of the dissolution.

2.4. Analytical framework

The developed framework was used to build several
models (for single [12], and multi-layer coated spheres)
that define a set of common key states and transition rules
describing physico-chemical phenomena of interest. Each
cell state includes information on the type, (i.e. solvent,
core, coating, drug and pore), with state transitions and
drug movement simulating three phenomena of interest: (i)
degradation of polymer chains; (ii) expansion potential of
polymer chains; (iii) number of drug particles present in the
cell.

Degradation (erosion) of polymer chains into oligomers
and monomers depends on the information known about
different polymer properties. This rule can occur at a fixed
rate, using a set probability [8], or follow a probabilistic
distribution (e.g. Erlang [5]), to allow for degraded cell
transitions to a solvent state. Polymer expansion (swelling)
occurs using an analogous mechanism, instead of a cell
transitioning into a new state; it replicates itself into a
neighbouring cell. The penetration of solvent inside the cells
allows free diffusion of drug molecules.

Each rule can be simulated independently and in parallel.
An example for this simulation using parallelisation can
be seen from Figure 2. Phenomena are simulated using a
sequential CA approach, with all cells in the matrix being
updated once every iteration, depending on their previous
state and that of their neighbours.

Depending on the available infrastructure and on the
need for model fine resolutions, the framework is adapted
for different parallelisation strategies [9]. Process level
parallelism, which would require more extensive computing
resources, can be used at the development and analysis
stages where there is a need for processing of large data
sets of experimental data, in order to narrow the window
of input for the wet-lab experiments. Lighter, thread level
parallelism can be utilised even in laboratory conditions and
is adequate for further analysis of single parameter ranges.

The framework adopts a hybrid approach, allowing
selection between the two strategies, which maximises
the utilisation of available high performance infrastructure
by applying both thread and process level parallelism.
Inter-thread and inter-process communication overhead
occurs as a consequence of the cell state being exchanged
during execution rule and is solved by introducing boundary
cell layers, where communication is either sequentialised
(i.e. using locking) for the case of threads, or delegated to
one of the two neighbouring processes for process level.

Figure 2 shows the separation of model space into
individual sections that can be simulated independently
on any number of execution nodes. The separation,
and subsequent collection of simulated results follows

a “scatter-gather” pattern. One, master process spreads
(scatters) the workload across all the nodes, and, after the
processing is finished, it collects (gathers) the results back.
The analysis and extraction of output data follows and is
recorded for the current iteration. The simulation cycle then
starts over.

The central part of Figure 2 shows the described CA
rule execution in the context of the hybrid model. The
top panel of the diagram represents the diffusion process
through three distinct update scenarios. In scenario 1, we
have the normal, isolated (i.e. independent of shared space),
rule execution, where a set of drug molecules can choose
to move to a suitable neighbour. Scenarios 2 and 3 display
rule updates which occur inside the shared layer. In this case
state locking is performed, and cell access is sequentialised
on a first-come first-served basis. In scenario 2, there is no
additional contest from the other thread, so regular cell state
update occurs. However, in scenario 3, as the synchronous
CA update mechanism is used, a second update will not be
aware of the changes made by the first, resulting in a need
to resolve the conflict. In this case, we assume the resulting
state will be cumulative and both diffusions are permitted,
unless a super-saturation of the cell occurs.

The middle panel in the diagram in Figure 2 shows similar
update scenarios in the context of erosion rules. As rules in
this case are passive and affect the self-state only, there is
less potential for conflicts. In case of shared layer access,
however, it is still necessary to lock the cell, in order to
prevent other rule types from affecting it.

Finally, the bottom panel of Figure 2 represents the
scenarios for simulation, incorporating swelling. These
are fairly similar to the diffusion updates, with further
complexity that polymer transfer to neighbouring cell
occurs, influencing erosion cycle in the subsequent iteration.

It is also important to note, that conflicts can occur in
shared cell updates of different types (i.e. swelling and
diffusion or erosion and swelling). In this case, we define
an allowed order of cell updates, where a state change
will block further updates of certain kinds. For example,
an erosion of a cell which degrades the entire remaining
polymer will further block any swelling rules which can be
executed from that cell.

2.5. Results

Figure 3 shows the parallelisation efficiency of the model
presented for different number of cores. As expected, for
fine-grained problems, a hybrid solution has the advantage
over individual thread-level and process-level solutions. The
utilisation of the available processing power is highest for
low-core counts, where inter-process communication does
not occur (1 to 12 cores). For extended range, utilisation falls
somewhat artificially due to a data load factor. The utilisation
on the higher core number is thus low, as simulations were

236236

Figure 2. Hybrid parallel model with main rule types

Figure 3. Hybrid parallelisation efficiency

performed for data sets of millimetre scale, while at the
lower scale efficiency is higher as larger workloads are
assigned to each core [13].

An example of typical data analysis performed on model
input parameters is shown in Figure 4 [12]. The effect
of degradation rate of the chosen polymeric coating on
resulting drug release curve, from a single-coated sphere,

Figure 4. Analysis of coating degradation rate influence
on drug release

was investigated. The effect of coating degradation in range
over 1 to 10 days was simulated. The slower degradation
causes decrease in porosity resulting in slower overall drug
release [12].

When analysing superposed phenomena, common
in controlled release, the dynamics of device radii are

237237

Figure 5. Gel thickness layer dynamics as a
consequence of radii difference

Figure 6. Simulation output vs. in vitro data for double
coated spheres

important, as maintaining constant gel layer thickness
(difference between polymeric, wetted, and core,
non-wetted, radii) results in release curves closer to
zero-order kinetics. Figure 5 illustrates the expansion of the
gel layer in a multi-layer coated sphere as a consequence
of swelling and erosion. This is not easily measurable in in
vitro conditions especially for multi layered coatings.

When building a theoretical model, the most
representative validation is comparison with real
experimental data. In Figure 6, one model output for
simulation of controlled release from spheres with multi
layered coating is compared against in vitro batch results.
This was performed to validate the modelling workflow and
provided satisfactory results, proving the viability of the
model for the specific drug design.

3. HPC and optimisation techniques

As detailed in Section 2, HPC availability has a significant
impact on model-driven data analysis, but it is also crucial
to the ongoing refinement of optimisation techniques. This
Section outlines progress on genetic algorithms.

3.1. Genetic algorithms and their application to
data analytics

A genetic algorithm is an optimisation technique that was
loosely inspired by mutations in nature and how these lead to
biological evolution through survival of the fittest elements
only [14].

The first step is to organise coordinates of points in the
problem space as a sequence, inspired by gene sequences. A
population of sequences is created and a search for optimal
solutions with respect to a fitness function is accomplished
by altering the sequences, hence allowing transformation to
new coordinates in the problem space. Each new sequence
is evaluated, to determine whether it represents a new
optimum.

Evolution operators are used to increase the population
of solutions, by introducing new solutions obtained through
small variations of existing ones. These include mutations
and crossovers, following the bio-inspired nature of the
algorithm. Local searches in the problem space may also
be implemented as evolution operators.

A typical iteration of a genetic algorithm includes the
creation of new solutions, (i.e. the “expansion phase”),
followed by the evaluation of population and selection of
solutions that will be conserved for the next iteration, the
remainder being eliminated, (i.e. the “selection phase”). In
most cases, it is necessary to consider “repair” functions
between these two phases, to restore validity of the new
solutions created through evolution operations.

The final step is, therefore, to consider the “selection
phase” of the algorithm. Here, several approaches can be
taken. In a first one, deterministic selection is used: if the
initial population was 𝑛, then the 𝑛 best solutions in the
expanded population are kept, and the other eliminated.
The main advantage here is that, once the population is
sorted, this type of selection has a very low computing
cost. Diversity, however, may be damaged. The alternative
approach is to consider “tournaments” between solutions,
with the winner kept and the loser eliminated. In this case,
selection is obtained as follows: while solutions still need to
be removed, two elements within the current population are
selected, and the one with the best fitness value is chosen
to be conserved with a probability 𝑝. This probability is
used to adjust the selection pressure: 𝑝 = 1 is equivalent to
the deterministic selection described above, while 𝑝 = 0.5
would correspond to a uniform selection which would not

238238

take fitness into account. Hybrid solutions can also be
considered.

Many data analytics questions can be formulated as
optimisation problems, enabling use of genetic algorithms.
Section 3.3 gives more details about this formulation step in
the context of biological data.

3.2. Parallel genetic algorithms

The frequency at which each evolution operators is
selected obviously has an impact on the efficiency of a given
genetic algorithm. This is particularly true for those based on
local searches. This often requires careful tuning. Another
essential parameter in genetic algorithms is the population
size. A larger population means a better exploration of the
problem space, but comes at a high computing cost, given
that the execution time increases linearly with the population
size.

The solution, here, comes from the parallel nature of
genetic algorithms: each operator only works on one or two
genes at a time, and each gene is used exactly once during
each “expansion phase”. A direct consequence is that these
operators can be used concurrently.

This parallel nature has been considered from the start
and several early implementations have been proposed
[15]. Since then, different approaches have emerged. A
classification has been proposed [16], that we can summarise
as follows:

∙ Global parallelisation. Evaluation of solutions and
genetic evolution of the population are explicitly
parallelised, and each solution has a chance to combine
with any other.

∙ Coarse grained parallelisation. Population of solutions
is divided into subpopulations, and these are isolated
from each. To deal with these, this implementation
introduces a migration operator. Two types of
implementation coexist in this category. In the
island model individuals can migrate to any other
subpopulations, while in the stepping stone model,
migration is limited to neighbouring ones.

∙ Fine grained parallelisation. Subpopulations are very
small, ideally only one solution is run on each
processor. This, of course, requires a massively parallel
computing architecture.

∙ Hybrid parallelisation. The three previous strategies can
be combined.

The most popular strategy is to use coarse grained
parallelisation, (see e.g. [17], [18]), and several
implementation challenges have been reported [16],
[19]. These include:

∙ Topology. Connectivity of subpopulations affects
convergence. Balance is required between isolation,
which allows development of new solutions, and

efficient mixing, which leads to propagation of good
solutions.

∙ Migration rate and frequency. Again, balance is
required between sharing too many solutions, or too
often, and not having a sufficient mixing, which would
lead to independent runs of genetic algorithms on small
populations, producing poor results.

∙ Size of subpopulations. Larger samples mean better
results, but also imply longer computation time.

∙ Effectiveness of genetic operators.

Current advances in high-performance computing means
that coarse grained parallelisation can involve larger
subpopulations as well as a larger number of these.

3.3. Data analytics for genetics

To highlight the use of genetic algorithms in extracting
meaningful information from large and complex datasets, we
consider their application to the analysis of gene expression
microarray data.

Microarray technologies are used for large-scale
transcriptional profiling, through measurement of expression
levels of thousands of genes at the same time. The
motivation here is that by understanding gene expression,
further insight will be gained into cell function and cell
pathology [20].

Expression-intensity values, (based on fluorescent
techniques), are recorded for multiple microarray
experiments carried out under several conditions, (e.g.
environmental, biological phases, different biological
tissues). The data obtained is often presented as a
real-valued matrix: a row contains the expression pattern of
one gene over all the conditions, while a column represents
the pattern of expression of all genes for one condition.
Each matrix element 𝑋𝑖𝑗 is, therefore, the measured
expression of a gene 𝑖 under condition 𝑗.

Given the amount of data produced, extracting meaningful
information is not trivial and several techniques have
been developed over the years to analyse gene expression
microarrays, (see e.g. [21] for a general review). Many
of these are variations of the concept of clustering, where
the objective is to group genes, based on their expression
under multiple conditions (or over different time-points) or,
conversely, to group conditions according to expression of
several genes [22], [23]. Biclustering is the simultaneous
clustering of both genes and conditions and has proved very
powerful [24]. It is, however, an NP-complete problem [25].

We proposed a formulation of the biclustering problem
as the search for minimal subgraphs in a weighted bipartite
graph, where weights are real numbers based on gene
expression data [26].

239239

3.4. Algorithm development

In this Section we summarise, for convenience, the main
features of the genetic algorithm implemented to solve the
biclustering problem, which was previously presented in
more details (see e.g. [27], [28]).

The developed architecture is a coarse-grained
parallelisation based on the stepping stone model. For
migrations, each subpopulation is sorted according to the
total weight of the encoded bicluster, and a bidirectional
ring is used: solutions travelling clockwise are selected
from the “rich area”, (which contains the best solutions of
the subpopulations, i.e. solutions with lowest total weights),
while solutions travelling anti-clockwise are selected from
the “poor area”, (which contains the solutions with the
highest total weights). “Rich” and “poor” areas of a
subpopulation are defined using threshold values for the
total weight of the encoded bicluster.

Solutions are encoded using binary variables.
Interestingly, once a subset of conditions is chosen,
promising biclusters only involve genes for which the
total weight over the selected conditions is negative.
It is, therefore, possible to perform biclustering while
explicitly encoding only a small part of the bicluster. This
significantly reduces the memory space required for each
solution, and allows larger populations.

In this algorithm, four evolution operators are initially
used:
∙ Mutation: a solution is randomly chosen, and one of its

boolean variables is altered.
∙ Uniform mutation: a solution 𝑠 is randomly chosen, and

a boolean array 𝑢, of same length, is also created. A
new solution is then obtained by conserving the value
of a boolean variable 𝑠[𝑖] where 𝑢[𝑖] is equal to 1, and
altering it otherwise.

∙ Single-point crossover: two solutions are randomly
chosen (one within the entire population, the other
within the best 10% solutions). A cutting point
is selected in the solution array, using a uniform
probability, and the solutions exchange the variables
located after that point.

∙ Two-point crossover: same process as above, except
that two cutting points are chosen, and solutions
exchange variables located between these two points.

In this implementation, the encoding ensures that all
solution are valid, and the expansion phase is directly
followed by the selection phase. Here, an hybrid approach
between classic selection strategies, (introduced above), is
considered. The population is sorted, the 𝑛/2 best solutions
are conserved, while the others are involved in ‘tournaments”
until we obtain a population of size 9𝑛/10. Population
size is then restored to 𝑛 by introducing newly created
solutions for which the presence of a given condition in
the solution is inversely proportional to its frequency in

the existing population. This improves the diversity in the
overall population.

3.5. Results

The genetic algorithm was implemented, and tested on
a cluster architecture. The objective of these tests was to
determine whether, given a specific set of weights, the
algorithm can isolate useful biclusters.

Mathematically, it is possible, for a microarray dataset
with 𝑚 conditions, to find the best bicluster using 𝑘
conditions. Doing this, for all possible values of 𝑘 ∈
[0,𝑚], will extract these biclusters. The main limitation
here is, of course, the number of potential biclusters. In a
microarray with 𝑚 conditions, there are 2𝑚 possible subsets
of conditions, and the computation time of this exact method
is, therefore, proportional to this value. With 10 conditions,
this method takes approximately half-a-second on the cluster
used for these simulations. This gives a computation time
of the order of 2𝑚−11 seconds for this specific architecture.
This corresponds to just over a minute with 17 conditions,
four and a half hours with 25 conditions, and already several
thousand years with 50 conditions. This method is obviously
not practical, but for small microarrays, it offers the means
to assess the genetic algorithm.

On small dataset such as the Kasumi Cell Line [29], the
genetic algorithm performs very well, and even a single
run of the local implementation with a population of size
equal to the number of conditions, (here, 𝑚 = 10), finds
the best solution. However, as soon as the number of
conditions in the dataset increasese (e.g. Yeast Cell Cycle
[30], with 𝑚 = 17), the same local implementation is
more limited and some solutions it provides are quite
far from the optimum. The parallel implementation, (with
local parameters unchanged and sixteen islands), still
provides optimal solutions. To further demonstrate the
interest of this parallel implementation, severals runs of each
implementation are performed. Results are shown in Table
1. The local implementation finds each optimal solution in
at least 10% of all runs, but just under half of them are
identified every time. The parallel implementation, with a
similar computation time, finds the best solutions every time.

To improve the overall performance of the algorithm, a
fifth evolution operator is added. An existing solution is
randomly selected, and a local search performed: we add
a condition and remove an active one, (to maintain the
bicluster size), as long as the solution can be improved. For
small microarray dataset, this operator does not improve the
overall performance, as the parallel algorithm was already
identifying the optimal solution for each bicluster size.

For large datasets such as the Lymphoma dataset (𝑚 = 96
[31]), the overall performance is significantly improved, and
the algorithm outperforms the previous implementation over
the whole search domain. It also compares very well with a

240240

Local G.A. Parallel G.A.
Solution size Δ 𝜎 𝑓 Δ 𝜎 𝑓

1 condition 0% 0 100% 0% 0 100%
2 conditions 0% 0 100% 0% 0 100%
3 conditions 0% 0 100% 0% 0 100%
4 conditions 0.1% 0.4 95% 0% 0 100%
5 conditions 18.0% 11.2 25% 0% 0 100%
6 conditions 19.7% 9.5 15% 0% 0 100%
7 conditions 6.8% 5.2 35% 0% 0 100%
8 conditions 0.8% 0.9 30% 0% 0 100%
9 conditions 5.7% 5.0 40% 0% 0 100%
10 conditions 15.4% 6.4 10% 0% 0 100%
11 conditions 12.1% 9.9 35% 0% 0 100%
12 conditions 30.6% 18.9 25% 0% 0 100%
13 conditions 25.3% 19.1 35% 0% 0 100%
14 conditions 0% 0 100% 0% 0 100%
15 conditions 0% 0 100% 0% 0 100%
16 conditions 0% 0 100% 0% 0 100%
17 conditions 0% 0 100% 0% 0 100%

Table 1. Average gap Δ to optimal solution, standard
deviation 𝜎 and frequency 𝑓 at which optimal solutions

are found.

heuristic method developed specifically for this dataset. The
genetic algorithm obtains better solutions for small cluster
sizes, (0-12 conditions), and similar solutions elsewhere, as
shown in Figure 7. Another interesting result is that the
profile obtained is largely conserved over multiple runs: 71
biclusters, (out of 96), are obtained at each run and 18 of
the remaining 25 have a standard deviation smaller than 10%
of the average solution obtained. The latter ones correspond
to non-optimal low-energy solutions in which the algorithm
gets “trapped”. Overall, these results suggest that most of the
solutions identified are optimal for their respective bicluster
size.

Figure 7. A single run of the “hybrid” algorithm
significantly outperforms the “standard” parallel genetic
algorithm overall, and the heuristic method in a specific
region , (low bicluster sizes), and obtains results similar
to that of this method elsewhere.

4. Conclusion

In this paper, we showed benefits of a complete cycle
of in silico data analysis in drug development stages,
starting from a workflow towards comparison and parameter
investigation stage. We have demonstrated both feasibility
and the advantages of combining this process with in
vitro development. The amount of possible analysis that
can be done by the modelling framework in terms of
investigation of parameter influence on drug release is
practically unlimited, allowing analysing model data from
a variety of different perspectives.

Furthermore, HPC extension to the framework makes it
more applicable for a wider set of problems, allowing a fast
and cost-effective modelling solution. Depending on the size
of the device simulated (mili-, micro- or nano-), appropriate
parallelisation strategy can be chosen to maximise the
utilisation of processing power available.

Similarly, we showed that high-performance computing
can be used to significantly improve the efficiency of
optimisation techniques such as genetic algorithms. Using
the parallel structure presented in this paper, it is possible
to combine ease of deployment, computing efficiency and
problem solving accuracy.

This approach is suited to biological data, as highlighted
in the paper, but is easily adapted to other complex datasets.
Other evolutionary algorithms have for instance been applied
to churn detection [32].

Increased availability and affordability of
high-performance computing will facilitate the ongoing
development of these methods, and will contribute to
solving existing challenges in data analytics.

Acknowledgments

Financial support from the Irish Research Council for
Science, Engineering and Technology (IRCSET), co-funded
by Marie Curie Actions under FP7 (Dimitri Perrin), and
through an “Enterprise Partnership Scheme” postgraduate
scholarship with Sigmoid Pharma Ltd. as an Enterprise
Partner (Marija Bezbradica), is warmly acknowledged.

The parallel simulations discussed in this paper were
performed on computational resources provided by the
Centre for Scientific Computing & Complex Systems
Modelling (Sci-Sym, DCU) and by the Irish Centre for
High-End Computing (ICHEC).

References

[1] N. Nakasato, “Oct-tree method on gpu,” 2009. [Online].
Available: http://arxiv.org/abs/0909.0541v1

[2] A. Stevenson, Y. L. Du, and M. E. Afrit, “High-performance
computing on gamer PCs,” Ars Technica, 2011.
[Online]. Available: http://arstechnica.com/science/2011/03/
high-performance-computing-on-gamer-pcs-part-1-hardware/

241241

[3] D. Bader, “Accelerating drug discovery,” Scientific Computing
World, vol. 123, no. 2012, pp. 30–31, 2012.

[4] K. Zygourakis, “Development and temporal evolution of
erosion fronts in bioerodible controlled release devices,”
Chemical Engineering Science, vol. 45, no. 8, pp. 2359–2366,
1990.

[5] A. Göpferich and R. Langer, “Modeling of polymer erosion,”
Macromolecules, vol. 26, no. 1993, pp. 4105–4112, 1993.

[6] J. Siepmann, N. Faisant, and J.-P. Benoit, “A new
mathematical model quantifying drug release from
bioerodible microparticles using monte carlo simulations,”
Pharmaceutical Research, vol. 19, no. 12, pp. 1885–1893,
2002.

[7] A. Barat, H. J. Ruskin, and M. Crane, “3D multi-agent
models for protein release from PLGA spherical particles
with complex inner morphologies,” Theory in Biosciences,
vol. 127, no. 2008, pp. 95–105, 2008.

[8] T. J. Laaksonen, H. M. Laaksonen, J. T. Hirvonen,
and L. Murtomäki, “Cellular automata model for drug
release from binary matrix and reservoir polymeric devices,”
Biomaterials, vol. 30, no. 10, pp. 1978–1987, 2009.

[9] M. Bezbradica, M. Crane, and H. J. Ruskin, “Parallelisation
strategies for large scale cellular automata frameworks
in pharmaceutical modellings,” in Proceedings of 2012
International Conference on High Performance Computing
and Simulation (HPCS2012), Madrid, Spain, July 2012.

[10] U.S. Food and Drug Administration. [Online]. Available:
http://www.fda.gov/

[11] United States Pharmacopeia. [Online]. Available: http:
//www.usp.org/

[12] M. Bezbradica, H. J. Ruskin, and M. Crane, “Modelling
drug coatings: A parallel cellular automata model of
ethylcellulose-coated microspheres,” in Proceedings of the
International Conference on Bioscience, Biochemistry and
Bioinformatics (ICBBB 2011), vol. 5, Singapore, February
2011, pp. 419–424.

[13] I. Martin and F. Tiradoi, “Relationships between efficiency
and execution time of full multigrid methods on parallel
computers,” IEEE Transactions on Parallel and Distributed
Systems, vol. 8, no. 6, pp. 562–573, 1997.

[14] J. H. Holland, Adaptation in natural and artificial systems.
MIT Press, 1975.

[15] J. Grefenstette, “Parallel adaptive algorithms for function
optimization,” Technical report CS-81-19, vol. Vanderbilt
University (TN), 1981.

[16] E. Cantu-Paz, “A summary of research on parallel genetic
algorithms,” IlliGAL report 95007, vol. University of Illinois
(IL), 1995.

[17] D. Levine, “A parallel genetic algorithm for the set
partitioning problem,” Technical report ANL-94/23, vol.
University of Illinois (IL), 1994.

[18] C. M. N. A. Pereira and C. M. F. Lapa, “Coarse-grained
parallel genetic algorithmnext term applied to a nuclear
reactor core design optimization problem,” Annals of Nuclear
Energy, vol. 30, no. 5, pp. 555–565, 2003.

[19] K. Katayama, H. Hirabayashi, and H. Narihisa, “Analysis of
crossovers and selections in a coarse-grained parallel genetic
algorithm,” Mathematical and Computer Modelling, vol. 38,
no. 11-13, pp. 1275–1282, 2003.

[20] F. Valafar, “Pattern recognition techniques in microarray data
analysis: A survey,” Annals of the New-York Academy of
Sciences, vol. 980, no. 1, pp. 41–64, 2002.

[21] G. Stolovitzky, “Gene selection in microarray data: the
elephant, the blind men and our algorithms,” Current Opinion
in Structural Biology, vol. 13, pp. 370–376, 2003.

[22] S. Raychaudhuri, P. D. Sutphin, J. T. Chang, and R. B.
Altman, “Basic microarray analysis: grouping and feature
reduction,” Trends in Biotechnology, vol. 19, pp. 189–193,
2001.

[23] D. K. Slonim, “From patterns to pathways: gene expression
data analysis comes of age,” Nature Genetics, vol. 32, pp.
502–508, 2002.

[24] Y. Cheng and G. M. Church, “Biclustering of expression
data,” in Proceedings of the 8th International Conference
on Intelligent Systems for Molecular Biology (ISMB 2000),
vol. 8, San Diego, California, USA, August 2000.

[25] R. Peeters, “The maximum edge biclique problem is
NP-complete,” Discrete Applied Mathematics, vol. 131, no. 3,
pp. 651–654, 2003.

[26] G. Kerr, D. Perrin, H. J. Ruskin, and M. Crane, “Edge
weighting of gene expression graphs,” Advances In Complex
Systems, vol. 13, no. 2, pp. 217–238, 2008.

[27] D. Perrin, C. Duhamel, H. J. Ruskin, and M. Crane,
“Microarray biclustering: mathematical model and
metaheuristic alternatives,” in International Conference
on Computational Methods (ICCM 2007), Hiroshima, Japan,
April 2007.

[28] C. Duhamel and D. Perrin, “Genetic algorithms to compute
a set of bicliques in microarray biclustering,” LIMOS, Tech.
Rep. RR-08-07, 2008.

[29] Gefitinib Treated Kasumi Cell Line Dataset, MIT Broad
Institute. [Online]. Available: http://www.broad.mit.edu/
cgi-bin/cancer/datasets.cgi

[30] Yeast Cell Cycle, available from R.W. Davis’ website at
Stanford. [Online]. Available: http://genomics.stanford.edu/
yeast cell cycle/cellcycle.html

[31] Lymphoma/Leukemia Molecular Profiling Project Gateway.
[Online]. Available: http://llmpp.nih.gov/lymphoma/

[32] W.-H. Au, K. C. C. Chan, and X. Yao, “A novel evolutionary
data mining algorithm with applications to churn prediction,”
IEEE Transactions on Evolutionary Computation, vol. 7,
no. 6, pp. 532–545, 2003.

242242

