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Abstract—Discrete Event Simulation is a widely used technique

LP LP
that is used to model and analyze complex systems in many N Eniity
fields of science and engineering. The increasingly largezsg of :[III] :I]II]
simulation models poses a serious computational challenggince

I I

the time needed to run a simulation can be prohibitively larg.
For this reason, Parallel and Distributes Simulation techiques
have been proposed to take advantage of multiple executiomits

which are found in multicore processors, cluster of workstsions Multicore
or HPC systems. The current generation of HPC systems inclugb Workstation
hundreds of thousands of computing nodes and a vast amount of

ancillary components. Despite improvements in manufactung :I]II] I[[I]

processes, failures of some components are frequent, andeth = =

situation will get worse as larger systems are built. In thispaper
we describe FT-GAIA, a software-based fault-tolerant extasion
of the GAIA/ART IS parallel simulation middleware. FT-GAIA Fig. 1. Structure of a Parallel and Distributed Simulation.
transparently replicates simulation entities and distributes them
on multiple execution nodes. This allows the simulation todlerate

crash-failures of computing nodes; furthermore, FT-GAIA offers . . . .
some protection against byzantine failures since synchrazation 1om the[EEL, and the simulation time is advanced.t@hen,

messages are replicated as well, so that the receiving entit the eventis executed, possibly triggering the generatioew
can iqlentifyland Idistgc?r:do;:ol;#jgz?Argiszagﬁzhixve l?cr)(t)(\)/ideean events to be scheduled for execution at some future time.
eR?sirlltrg(sem)?N t?w\ﬁ gatlwilgh degree of fault tolerance ca?n Fl:)>e acft}:iped', Contlnuou.s advapces in-our underst_andlng of complex sys-
at the cost of a moderate increase in the computational loadfo €MS, combined with the need for higher model accuracy,
the execution units. demand an increasing amount of computational power and
represent a major challenge for the capabilities of theegurr

. INTRODUCTION generation of high performance computing systems. Thezgfo
srqquentidms techniques may be inappropriate for amadyzi
?arge or detailed models, due to the huge number of events
that must be processed. Parallel and Distributed Simulatio
(PADS) aims at taking advantage of modern high performance
cgmputing architectures — from massively parallel comute
?o multicore processors — to handle large models efficidfly
The general idea ¢f PADS is to partition the simulation model
into submodels, called Logical Proces$s J(LPs) which can
Pd evaluated concurrently by different Processing Element
s). More precisely, the simulation model is described in

Communication
Network

Computer-assisted modeling and simulation plays an imp
tant role in many scientific disciplines: computer simua#
help to understand physical, biological and social phemame
Discrete Event Simulation (DES) is of particular interestce
it is frequently employed to model and analyze many typ
of systems, including computer architectures, commuitinat
networks, street traffic, and others.

In a[DES, the system is described as a set of interacti
entities; the state of the simulator is updated by simufati

events which happen at discrete points in time. The OVeratims of multiple interacting Simulated Entityis (SEs) whic

s_tructu.re of a sequential _event-pase_d S|mglator is relgtiv are assigned to differeif 1 Ps. EaCh]LP is executed on a
simple: the simulator engine maintains a list, called Fauitur,. L : : -
differenfPE, and is in practice the container of a set otiesti

Event List [EEL), of all pending events, sorted in non desreaThe execution of the simulation is obtained through the

ing time of occurrence. The simulator executes a loop, whe&Chan e of timestamped messages (representing sinmulatio
at each iteration, the event with lower timestatrip removed 9 P 9 P 9

events) between entities. EachlILP has an queue where mes-
OThe publisher version of this paper is available aS@dES are inserted before being dispatched to the appmpria
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D’Angelo, Stefano Ferretti, Moreno Marzolla, Lorenzo Armaroli. Fault-  distributed simulator.

Tolerant Adaptive Parallel and Distributed Simulation. Proceedings of E . £l . licati . inal
the IEEE/ACM International Symposium on Distributed Simul ation and xecution of long-running applications on increasingly

Real Time Applications (DS-RT 2016)". larger parallel machines is likely to hit theliability wall [2].


http://arxiv.org/abs/1606.07310v2
https://doi.org/10.1109/DS-RT.2016.11

quires the running application to periodically save itdestan
non-volatile storage (e.qg., disk) so that it can resume it

10 LPs from the last saved snapshot in case of failure. It should be
2 gl gao0LPs i observed that saving a snapshot may require consideratsg ti
< therefore, the interval between checkpoints must be ciéyefu
Z o6l ] tuned to minimize the overhead.
g Functional replication consists on replicating parts of th
g 0.4 - 1 application on different execution nodes, so that failuras
g,i o2 L 1 be tolerated if there is some minimum number of running

instances of each component. Note that each component must
- - be modified so that it is made aware that multiple copies of its
hour day month  year  peers exist, and can interact with all instances appragtyiat
Time (t) It is important to remark that functional replication is
not effective against logical errors, i.e., bugs in the ingn
applications, since the bug can be triggered at the same time
Fig. 2. System reliabilityR(N, t) assuming a MTTF for eadiLP of one ON all instances. A prominent — and frequently mentioned —
year; higher is better, log scale on theaxis. example is the failure of the Ariane 5 rocket that was caused
by a software error on its Inertial Reference Platforims ERP
There were twd IRP, providing hardware fault-tolerance, bu
This means that, as the system size (number of componemgh used the same software. When the two software instances
increases, so does the probability that at least one of th@gere fed with the same (correct) input from the hardware,
components fails, therefore reducing the system Mean Tiffe bug (an uncatched data conversion exception) caushd bot
To Failure (MTTH). At some point the execution time of theyrograms to crash, leaving the rocket without guidance [4].
parallel application may become larger than[the MITTF of itshe N-version programming techniquél [5] can be used to
execution environment, so that the application has litience protect against software errors, and requires runningrabve
to terminate normally. functionally equivalent programs that have been indepeityle
As a purely illustrative example, let us consider a parallgleveloped from the same specifications.
machine with N [PHs. Let X; be the stochastic variable In this paper, we present FT-GAIA, a fault-tolerant exten-
representing the duration of uninterrupted operation efith sjon of the GAIA/ARTS parallel and distributed simulation
th[PE, taking into account both hardware and software ®dlur middleware [6], [7]. FT-GAIA is based on functional replica
Assuming that allX; are independent and exponentially distion, and can handle crash errors and byzantine faultsgusin
tributed (thlS a.SSUmption is somewhat unrealistic but Wldethe Concept ofkerver groups{SJ: simulation entities are rep”_
used [3]), we have that the probabilify(X; > t) thatlLRBi cated so that the model can be executed even if some of them
operates without failures for at leastime units is fail. We show how functional replication can be implemented
P(X; > 1) = e M as an additional software layer in the GAIA/ART stack; all
modifications are transparent to user-level simulation etgd
where is the failure rate. The joint probability that a [[Ps therefore FT-GAIA can be used as a drop-in replacement to
operate without failures for at leasttime units is therefore GAIA/ARTIS when fault tolerance is the major concern.
R(N,t) = T], P(X; > t) = eV this is the formula for  This paper is organized as follows. In Sectidn Il we review
the reliability of N components connected in series, where art related to fault tolerance [0 PADS. The GAIA/ART
each component fails independently, and a single failuirgbr parallel and distributed simulation middleware is dessib
down the whole system. in Section[dIl. Sectiof1V is devoted to the description of
Figure[2 shows the value aR(N,t) (the probability of FT-GAIA, a fault-tolerant extension to GAIA/ARS. An
no failures for at least consecutive time units) for systemsempirical performance evaluation of FT-GAIA, based on a
with N = 10, 100, 1000 CBs, assuming B_MTTF of one yearprototype implementation we have developed, is discussed
(A =~ 2.7573x 10~ 8s~1). We can see that the system reliabilityin Section[Y. Finally, Sectiofi VI provides some concluding
quickly drops as the number &f 1 Ps increases: a simulatiogmarks.
involving N = 1000 [CPs and requiring one day to complete
is very unlikely to terminate successfully. Il. RELATED WORK
Although the model above is overly simplified, and is not Although fault tolerance is an important and widely dis-
intended to provide an accurate estimate of the reliabdfty cussed topic in the context of distributed systems research
actual parallel simulations, it does show that buildingleabde it received comparatively little attention by the PADS com-
system out of a large number of unreliable parts is challengi munity. The proposed approaches for bringing fault toleean
Two widely used approaches for handling hardware-relateml[PADS are either based on checkpointing or on functional
reliability issues are those based oheckpointing and on replication, with a few works considering also partiallynee
functional replication The checkpoint-restore paradigm retralized architectures.




A. Checkpointing system. Therefore, DARX tries to dynamically identify whic

In [9] the authors propose a rollback based optimistRgents are more “important’, and what degree of replication
recovery scheme in which checkpoints are periodically gavahould be used for those agents in order to achieve the desire
on stable storage. The distributed simulation uses an op@vel of fault-tolerance. It should be observed that DARX
mistic synchronization scheme, where out-of-order (‘g;{raonly handles crash failures, while FT-GAIA also deals with
gler”) events cause rollbacks that are handled accorditigeto Byzantine faults.

Time Warp protocol [1_0]. Thg novel idea is to model failures . THE GAIA-ARTIS MIDDLEWARE

as straggler events with a timestamp equal to the last saved ) ) o )
checkpoint. In this way, the authors can leverage the TimeT0 Make this paper self-contained, we provide in this
Warp protocol to handle failures. section a brief introduction of the GAIA/AR® parallel and

In [L1], [12] the authors propose a new framework calle@listributed simulation middleware; the interested reaer
Distributed Resource Management System (DRMS) to implEeferred to[[6], [[7], [19] and the software homepagel [20].
ment reliable IEEE 1516 federation [13]. The DRMS handles The Advanced RTI SysterfARTIS) is a parallel and
crash failures using checkpoints saved to stable storage, distributed simulation middleware loosely inspired by the
is then used to migrate federates from a faulty host to a n&yntime Infrastructure described in the IEEE 1516 standard
host when necessary. The simulation engine is again based gigh Level Architecture” (HLA) [21]. ARTIS implements a
an optimistic synchronization scheme, and the migration Bgralle_l/_dlstrlbgted architectures where the_ 5|mL_1IamodeI
federates is implemented through Web services. is partitioned in a set df IP$ [1]. As described in Secfibn I,

In [14] the authors propose a decoupled federate archit&}e execution arghitecture in charge of running the sintat
ture in which each IEEE 1516 federate is separated intolSacOmposed of interconnectedIPEs and dach PE runs one or

virtual federate process and a physical federate process. fnore[LE's (usually, R RE hosts dnelLP).
former executes the simulation model and the latter pravide !N @ [PADSs, the interactions between the model com-

middleware services at the backend. This solution enabf@nents are driven by message exchanges. The low com-
the implementation of fault-tolerant distributed simigat Putation/communication ratio makés PADS communication-
schemes through migration of virtual federates. b_ound,_so that '_the wall-clock execution time of distributed
The CUMULVS middleware [15] introduces the support fopimulations is highly dependent on the performance of the
fault tolerance and migration of simulations based on checgommunication network (i.e., latency, bandwidth and ftte
pointing. The middleware is not designed to Sulegeducmg the communication overhead can be crucial to s_peed
but it allows the migration of running tasks for load balamgi UP the event processing rate [of PADS. This can be achieved
and to improve a task’s locality with a required resource. DY clustering interacting entities on the same physicat, hsss
A slightly different approach is proposed in [16]. In whichthat communications can happen through shared memory.
the authors introduce the Fault Tolerant Resource Shagieg S Among the various services provided by AT time man-
tem (FT-RSS) framework. The goal of FT-RSS is to build fauRgement (i.e., synchronization) is fundamental for oltgin
tolerant IEEE 1516 federations using an architecture ircivhi Correct simulation runs that respect the causality deperids
a separate FTP server is used as a persistent storage sysé@vents. ARTS supports both conservative (Chandy-Misra-
The persistent storage is used to implement the migration Bfyant [22]) and optimistic (Time Warp [10]) synchronizzi
federates from one node to another. The FT-RSS middlew&/g0rithms. Moreover, a very simple time-stepped synchro-
supports replication of federates, partial failures aridstep Nization is supported.

failures. The Generic Adaptive Interaction Architectu(SAIA) is a
) o software layer built on top of ARB [20]. In GAIA, each TP
B. Functional Replication acts as the container of sofie]SEs: the simulation model is

In [17] the authors propose the use of functional replicatigartitioned in its basic components (fhel SEs) that are atiéat
in Time Warp simulations with the aim to increase the simwamong the[TPs. The system behavior is modeled by the
lator performance and to add fault tolerance. Specifictily, interactions among tHe SEs; such interactions take the é6rm
idea is to have copies of the most frequently used simulatiimestamped messages that are exchanged among the entities
entities at multiple sites with the aim of reducing messaggom the user’s point of view, a simulation model based on
traffic and communication delay. This approach is used @AIA/ARTS follows a Multi Agent System (MAS) approach.
build an optimistic fault tolerance scheme in which it isn fact, eacH SE is an autonomous agent that performs some
assumed that the objects are fault free most of the time. Taetions (individual behavior) and interacts with other rige
rollback capabilities of Time Warp are then used to correiit the simulation.
intermittent and permanent faults. In most cases, the interaction between[thé SEs[of a PADS

In [18] the authors describe DARX, an adaptive replicatioare not completely uniform, meaning that there are clusters
mechanism for building reliable multi-agent systems. Beinof [SHs where internal interactions are more frequent. The
targeted to multi-agent systems, rather than PADS, DARX ssructure of these clusters of highly interacting entitieay
mostly concerned with adaptability: agents may change thehange over time, as the simulation model evolves. The
behavior at any time, and new agents may join or leave thientification of such clusters is important to improve the



Simulation Entities of N distinct simulation entities, FT-GAIA generatds x M

5 E entities, by generating/ independent instances of each sim-
A 5 F ulation entity. All instancesdy, ... Ay, of the same entityd
User-defined C perform the same computation: if no fault occurs, they poedu

simulation model the same result

Replication comes with a cost, both in term of additional

FT-GAIA

B, g D, E G, F, processing power that is needed to execute all instancds, an
GAIA A ¢ ' E, _F, D, also in term of an increased communication load between
A D, °F E the[[Bs. Indeed, if two entitiest and B communicate by
3 C1 B, A 2 . . .
s 2 sending a message frorh to B, then after replication each
ARTIS instance A; must send the same message to all instances

Bj, 1 < i,j < M, resulting in M? (redundant) messages.
— 4 struct the FT-GAIA Simulati - Therefore, the level of replicatiofd must be chosen wisely
dézgfi.ne.d simé:ﬁgtri%n ;rcgjc(i:elljrge;i)nesea set of entsi{?e:;aBl,og, eDn,g}IE,Fe};uéir in order to achieve a gOOd_ balance between oyerhead and
GAIA creates multiple (in this example, 3) instances of eaolity, that are fault tolerance, also depending on the types of failureasfer
handled by GAIA. failures or Byzantine faults) that the user wants to address
Handling crash failures:A crash failure happens when
a[PE halts, but operated correctly until it halted. In thiseza
performance of R PADS: indeed, by putting heavily-intéraet ) simulation entities running on thaL PE stop their exiut
entities on as fed LIPs as possible, we may replace most{y the local state of computation is lost. From the theory
the expensive LAN/WAN communications by more efficiengs gistributed systems, it is known that in order to tolergte
shared memory messages. crash failures we must execute at ledst= f + 1 instances
In GAIA, the analysis of the communication pattern igf each simulation entity. Each instance must be executed on
based on simple self-clustering heuristics|[19]. For eXampga differentPEs, so that the failure of @lPE only affects one
in the default heuristic, every few timesteps for eacli SE jgstance of all entities executed there. This is is equivale
found which[LP is the destination of the large percentage gf running s copies of a monolithic (sequential) simulation,
interactions. If it is not thé_ [P in which tHe BE is containegjith the difference that a sequential simulation does nouin
then a migration is triggered. The migratior{ofl SEs anfong LR$ communication and synchronization overhead. However,
is transparent to the simulation model developer; entitigf|ike sequential simulations, FT-GAIA can take advantage
migration is useful not only to reduce the communicatiogf more thanM [PBs, by distributing allN x M entities
overhead, but also to achieve better load-balancing amagyg the available execution units. This reduces the workload
the [[Bs, especially on heterogeneous execution platforg\$ the[PEs, reducing the wall-clock execution time of the
where execution units are not identical. In these casesAGALimulation model.
can migrate entities away from less powerfull PEs, towards Handling Byzantine FailuresByzantine failures include
more capable processors if available. all types of abnormal behaviors of[@alPE. Examples are: the
crash of a component of the distributed simulator (d.gl, LP
. or entity); the transmission of erroneous/corrupted detenf
FT-GAIA is a fault-tolerant extension to the GAIA/ARS an entity to other entities; computation errors that lead to
distributed simulation middleware. As will be explaineddve erroneous results. In this casd = 2f + 1 replicas of a
FT-GAIA uses functional replication of simulation entii¢o system are needed to tolerate up ftdoyzantine faults in a
achieve tolerance against crashes and Byzantine failuresdistributed system using the “majority” rule: &nJSE ins&nc
the[PEs. B; can process an incoming messagefrom A; when it
FT-GAIA is implemented as a software layer on top ofeceives at leasf + 1 copies ofm from different instances of
GAIA and provides the same functionalities of GAIA withthe sender entityd. Again, all M instances of the sanie KE
only minor additions. Therefore, FT-GAIA is mostly transpa must be located on differehi PEs.
ent to the user, meaning that any simulation model built for Allocation of Simulation Entities:Once the level of
GAIA can be easily ported to FT-GAIA. replication M has been set, it is necessary to decide where
FT-GAIA works by replicating simulation entities (seeto create theM instances of al[SEs, so that the constraint
Fig. [3) to tolerate crash-failures and byzantine faults dfiat each instance is located on a diffefent PE is met. In FT-
the[PEs. A crash may be caused by a failure of the hardw&@alIA the deployment of instances is performed during the
— including the network connection — and operating systemetup of the simulation model. In the current implementatio
A byzantine failure refers to an arbitrary behavior of"a PEhere is a centralized service that keeps track of the Initia
that causes the 1P to crash, terminate abnormally, or to sdadation of all[SE instances. When a newl SE is created, the
arbitrary messages (including no messages at all) to b#er Pservice creates the appropriate number of instances dngord
Replication is based on the following principle. If a convento the redundancy model to be employed, and assigns them
tional, non-fault tolerant distributed simulation is comspd to the[LPs so that all instances are located on differemt LPs.

IV. FAULT-TOLERANT SIMULATION



Note that all instances of the sainel SE receive the samd initia WCT with different numbers of simulation entiies
seed for their internal pseudo-random number generatuss; t

T T T
3 LPs, no fault tolerance —+—

500 [ 3 LPs, byzantine f. tolerance —+—

3 LPs, crash tolerance
guarantees that their execution traces are the same, lesgrd 4175 no Tl tlerance —-— [
. . . S, qras olerance
of the[LR where execution occurs and the degree of replicatio 4 LPs, byzanine i olerance —»—
Message Handling:We have already stated that fault- 5LPs, byzantine . tolerance =

400 | 5 LPs, crash tolerance —&— ] 4

tolerance through functional replication has a cost in tefm §
increased message load améng SEs. Indeed, for a replicationo 1
level M (i.e., there areM instances of eadh $E) the numbe& 3
of messages exchanged between entities grows by a factorgote A
M2, / ! .

A consequence of message redundancy is that message, |
filtering must be performed to avoid that multiple copiestaf t
same message are processed more than once by thd_same SI% e — - : :
instance. FT-GAIA takes care of automatically filtering the 4000 6000 8000 10000 12000 14000 16000 18000 20000
excess messages according to the fault model adoptednfilter omaton Entes
is done outside of the"$E, which are therefore totally unawatig. 4. wall Clock Time as a function of the number[GfILPs, farying
of this step. In the case of crash failures, only the first cofoy number of SEs. The number [of1 Ps is equal to the numbELDf Piggatibn
each message that is received By & SE is processed; allrfurlhsadled. Lower is better.
copies are dropped by the receiver. In the case of Byzantine

failures with replication levell/ = 2f + 1, each entity must graphs are peers, while links represent communication con-
wait for at leastf + 1 copies of the same message before fections[[23],[[24]. In these overlays, nodes have all tieesa
can handle it. Once a strict majority has been reached, ﬂi@t-degree, that has been setstin our experiments. During
message can be processed and all further copies of the sgeesimulation, each node periodically updates its neighbo
messages that might arrive later on can be dropped. set. Latencies for message transmission over overlay fnks
Entities Migration: can benefit from migration generated using a lognormal distribution[25].
of entities to balance computation/communication load andThe simulated communication protocol works as follows.
reduce the communication cost, by placing entities thataut Periodically, nodes send PING messages to other nodes, that
frequently “next” to each other (e.g., on the samé LP) [19} turn reply with a PONG message that is used by the
In FT-GAIA, entity migration is subject to the constraintith sender to estimate the average latencies of the links (note
instances of the sanie SE can never reside on the Eaine thBt communication links are, in fact, bidirectional). The
Entity migration is handled by the underlying GAIA/ARS  destination of a PING is randomly selected to be a neighbor
middleware [[6]: eacli [IP runs a fully distributed “clusteyin (with probabilityp), or a non-neighbor (with probability—p).
heuristic” that tries to put together (i.e., on the samé LR neighbor is a node that can be reached through an outgoing
the[SEs that interact frequently through message exchangig in the directed overlay graph.
Special care is taken to avoid putting too many entities @ th Each node of the P2P overlay is represented yla SE within
samé LPs that would become a bottleneck. Once a new feas#dend L. Unless stated otherwise, gach LP was executed on a
allocation is found, the entities are migrated by movingrthedifferent[PE, so that no twio ILPs shared their execution node.

=

&

——g———
i

state to the new [P. We consider three scenarios:n@ fault scenario, where no
faults occur, acrash scenario, where crash failures occurs,
V. EXPERIMENTAL EVALUATION and aByzantinescenario where Byzantine faults occurs.

In this section we evaluate a prototype implementation We executed 15 independent replications of each simulation
of FT-GAIA by implementing a simple simulation model™un- In all the following charts, mean values are reportetth wi

of a Peer-to-Peer communication system. We execute fhé9-5% confidence interval.
simulation model with FT-GAIA under different workloadB. Impact of the number & 1Ps and |SEs

parameters (described below) and record the Wall Clock TimeFigure{Z shows the WQT of the simulation that was executed
m (exgludlng the time to setup the simulation) and Oth%r 10000 timesteps with a varying numbeir[ofl SEs; recall that
metrics of interest. The tests were performed on a clustertﬂg number of SEs is equal to the number of nodes in the
workstations, each being_equipped with an Intel Core i5(-)4_5%2P overlay graph. The number[GfILPs was set to 3, 4, and
3.30 GHz Processors W'th 8 GB of RAM_' The Operating \ye show thé_WCIT for the three failure scenarios we are
System was Debian Jessie. The workstations are COnne"HSHSidering: no failure, a single crash, and a single Bymant
through a Fast Ethernet LAN. failure. In all these cases the self-clustering (i.e. ntigrg is
disabled.

Results with 3 and 4 IJPs are similar, with a slight im-

We simulate a simple P2P communication protocol ov@rovement with 4TPs. Conversely, higher WICT is observed
randomly generated directed overlay graphs. Nodes of twben 5[LPs are used. As expected, the higher the number

A. Simulation Model



WCT with different numbers of LPs (8000 simulation entities)
300

T T T T
no fault tolerance ——

crash tolerance
byzantine f. tolerance —*—

200 B

150 | B

Wall Clock Time (sec)

100 | B

50 B

#LPs

Fig. 5. Wall Clock Time as a function of the numberoflLPs, WB00O[SEs.
Migration is disabled. Lower is better.

WCT with different numbers of LPs (16000 simulation entities)
450

T T T T
no fault tolerance ——
crash tolerance

WCT with different numbers of simulation entities (varying the amount of LPs on hosts)
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0 2000 4000 6000 8000 10000 12000 14000
# Simulation Entities

16000 18000

no fault tolerance, 4 LPs on 4 hosts ——
crash tolerance, 4 LP su 4 host
byzantine f. tolerance, 4 LP su 4 host —«—
no fault tolerance, 8 LPs on 8 hosts —&—
crash tolerance, 8 LP su 8 host
byzantine f. tolerance, 8 LP su 8 host —&—
no fault tolerance, 8 LPs on 4 hosts
crash tolerance, 8 LP su 4 host <
byzantine f. tolerance, 8 LP su 4 host
no fault tolerance, 16 LPs on 4 hosts
crash tolerance, 16 LP su 4 host
byzantine f. tolerance, 16 LP su 4 host —&—

byzantine f. tolerance —*— i

Fig. 7. [WCT as a function of the number [GfILPs, with differemimbers
of [Pk for eac_PE. Migration is disabled. Lower is better.

350 B
300 B

250 —
over 4PEs (2TPs per host), arid)(16[LBs over £ PEs (41Ps
per host). For each scenario, we consider the three failure
scenarios already mentioned (no failures, crash, Byzantin
failures). Also in these cases, the migration is disabledthE
curve in the figure is related to one of those scenarios, when
varying the amount df SEs. It is worth noting that, when two
or more[LPs are run on the samelPE, they can communicate
using shared memory rather than by LAN.

We observe that the scenario witlh 4] LPs over 4 PEs is influ-
enced by the number 6f $Es and the failure scenario, while in
the other cases it is the numberof|LPs that mainly determines
the simulator performance. When 81LPs are present, slightly
of BHBs the higher thEEWQT, since the simulation incurs #petter results are obtained with[4]LPs (rather than 8). This
a higher communication overhead. Moreover, all curves haigedue to the better communication efficiency (e.g. reduced
a similar trend. In particular, the increment due to the tiaullatency) provided by the shared memory with the respect to
management schemes is mainly due to the higher amountlg LAN protocols.
messages exchanged among nodes. The worst performance is measured when [18 LPs are

Figures andl6 show tlhe WCT when varying the number gkecuted on 4 BEs. This is due to the fact that the amount
LPs, with 8000 and 16000 $Es, respectively. The two cha@f computation in the simulation model is quite limited.
emphasize the increment of the time required to terminate thherefore, partitioning theé $Es in 16 LPs has the effect to
simulations with 5LPs and in presence of Byzantine fault§icrease the communication cost without any benefit under
This is due to the increased number of messages exchanggicomputational point of view (i.e. in the model there i no
among th€ LPs: each message needs to be sent to #iree ( €nough computation to be parallelized).

1) different destinations in order to guarantee fault talem

Wall Clock Time (sec)

150 | B

[

100 q

50 - A

0 ! ! ! !

#LPs

Fig. 6. [WCT as a function of the number[oflLPs, with 10000 SEkgjrition
is disabled. Lower is better.

D. Impact of the number of failures

C. Impact of the number of LPs per host We now study the impact of the number of faults on the

In the previous experiments, we placed e&ach LP in simulationfWCT. We consider two scenarios, one wifh™® LPs
differenfPE. Figur€]7 shows the WCT when more than[ofe Ld®er 5[PEs (Figurgl8), and one with 81LPs ovér4 PEs (Figure
is placed in d_PE. In particular, we consider the followin@). The choice of & [IPs is motivated by the fact that this is
scenarios: iff 4 [[Bs placed over A REs (1 1LP per hosf)) ( the minimum number df TIPs that allows us to tolerate up to
8[LBs placed over B REs [T 1P per hosti,) (8 LPs placed 2 Byzantine faults. The scenario witlZ81LPs ofid PEs allows



WCT with different numbers of faults (5 LPs) E . |mpact O'[SES mlg ratlon

600 T T T
byf:ti §§§§Eit “ — % Figure[10 shows the"WGQT with different failure schemes,
s00 |- pyzanine . tolerance, 6000 smulaton endties. = /11 when[SEs migration is enabled/disabled. In this case, émaltr
obtained with thd_SEs migration is similar to that obtained
o 4000 A when no migration is performed but the overall performance
g are better when the migration is turned off. This is due to the
£ ol A overhead introduced by the self-clustering heuristics ted
g [SEs state that is transfered between[ihé LPs. In other words,
. A the adaptive clustering 6f $Es, in this case, is unable te giv
a speedup.
100 | m A It is worth noting that, in this prototype, we have decided to
/ use the very general clustering heuristics that were ajremé
0 i— — . plemented in GAIA/ARTB. We think that, more more specific
0 . : heuristics will be able to improve the clustering performean

and therefore balance the overhead introduced by the suppor
Fig. 8. as a function of the number of faults; 10000 tirepstwith  of fault tolerance.
5[[Bs. Migration is disabled. Lower is better.

WCT with different number simulation entitities, migration on/off

60 T T T T T T T T
- no migration, no fault tolerance —+—
WCT with different numbers of faults (8 LPs) migration, no fault tolerance ——

200 . . . . no migration, crash tolerance

migration, crash tolerance

% 50 - no migration, byzantine f. tolerance —a— -

migration, byzantine f. tolerance —6—

40
150 |

30

Wall Clock Time (sec)

20

Wall Clock Time (sec)
=
1)
o
T
1

10

_E—

crash tolerance, 2000 simulation entities —— %7 J‘% ! L L L L L
Dy e 2000 Smulaon enites % 2000 4000 6000 8000 10000 12000 14000 16000 18000
o ) ) byzantine f. 10IerancF, 6000 simulation entities s # Simulation Entities
) 1 2 3
# Faults Fig. 10. [WCT with[SEs migration ON/OFF, as a function of themier

) ) . of SHs. Lower is better.
Fig. 9. [WCT as a function of the number of faults; 2000 timpstever 8

LPs. Migration is disabled. Lower is better.

VI. CONCLUSIONS ANDFUTURE WORK

. . , : In this paper we described FT-GAIA, a software-based fault-
testing 3 Byzantine faults with 2_ILPs per hosts, reducing the, : : -
communication overhead. tolerant extension of the GAIA/ARS parallel and distributed

_ _ simulation middleware. FT-GAIA transparently replicasas-

Figure[8 shows the WCTs measured with 0, 1 and 2 faultgation entities and distributes them on multiple exeautio
Each curve refers to a scenario composed of 2000 or 60Q&yes. In this way, the simulation can tolerate crashifedu
SEs with crash or Byzantine failures. As expected, the highgng Byzantine faults of computing nodes. FT-GAIA can
the number of faults, the higher the WICTs, especially whejenefit from the automatic load balancing facilities predd
Byzantine faults are considered. Indeed, in this case aehiglyy GAIA/ARTIS that allow simulated entities to be migrated
amount of communication messages is required among nog@song execution nodes. A preliminary performance evainati
in order to properly handle the faults. of FT-GAIA has been presented, based on a prototype imple-

A higher (WCT is measured with 8_1Ps, as shown imentation. Results show that a high degree of fault toleranc
Figure[®. In this case, the amount of faults does not inflaan be achieved, at the cost of a moderate increase in the
ence the simulation performance too much. As before, themputational load of the execution units.
computational load of this simulation model is too low for As a future work, we aim at improving the efficiency of FT-
gaining from the partitioning in §81Ps. In other words, th&AIA by leveraging on ad-hoc clustering heuristics. Indeed
latency introduced by the network communications is so higte believe that specifically tuned clustering and load bafan
that both the number of SEs and and the number of faults hamechanisms can significantly reduce the overhead intrauce
a negligible impact. by the replication of the simulated entities.



ACRONYMS

DES Discrete Event Simulation

FEL Future Event List

GVT Global Virtual Time

IRP Inertial Reference Platform

LVT Local Virtual Time

LP Logical Process

MTTF Mean Time To Failure

PADS Parallel and Distributed Simulation
PE Processing Element

SE Simulated Entity

WCT Wall Clock Time
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