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Abstract—Discrete Event Simulation is a widely used technique
that is used to model and analyze complex systems in many
fields of science and engineering. The increasingly large size of
simulation models poses a serious computational challenge, since
the time needed to run a simulation can be prohibitively large.
For this reason, Parallel and Distributes Simulation techniques
have been proposed to take advantage of multiple execution units
which are found in multicore processors, cluster of workstations
or HPC systems. The current generation of HPC systems includes
hundreds of thousands of computing nodes and a vast amount of
ancillary components. Despite improvements in manufacturing
processes, failures of some components are frequent, and the
situation will get worse as larger systems are built. In thispaper
we describe FT-GAIA, a software-based fault-tolerant extension
of the GAIA/ART ÌS parallel simulation middleware. FT-GAIA
transparently replicates simulation entities and distributes them
on multiple execution nodes. This allows the simulation to tolerate
crash-failures of computing nodes; furthermore, FT-GAIA offers
some protection against byzantine failures since synchronization
messages are replicated as well, so that the receiving entity
can identify and discard corrupted messages. We provide an
experimental evaluation of FT-GAIA on a running prototype.
Results show that a high degree of fault tolerance can be achieved,
at the cost of a moderate increase in the computational load of
the execution units.

I. I NTRODUCTION

Computer-assisted modeling and simulation plays an impor-
tant role in many scientific disciplines: computer simulations
help to understand physical, biological and social phenomena.
Discrete Event Simulation (DES) is of particular interest,since
it is frequently employed to model and analyze many types
of systems, including computer architectures, communication
networks, street traffic, and others.

In a DES, the system is described as a set of interacting
entities; the state of the simulator is updated by simulation
events, which happen at discrete points in time. The overall
structure of a sequential event-based simulator is relatively
simple: the simulator engine maintains a list, called Future
Event List (FEL), of all pending events, sorted in non decreas-
ing time of occurrence. The simulator executes a loop, where
at each iteration, the event with lower timestampt is removed
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Fig. 1. Structure of a Parallel and Distributed Simulation.

from the FEL, and the simulation time is advanced tot. Then,
the event is executed, possibly triggering the generation of new
events to be scheduled for execution at some future time.

Continuous advances in our understanding of complex sys-
tems, combined with the need for higher model accuracy,
demand an increasing amount of computational power and
represent a major challenge for the capabilities of the current
generation of high performance computing systems. Therefore,
sequential DES techniques may be inappropriate for analyzing
large or detailed models, due to the huge number of events
that must be processed. Parallel and Distributed Simulation
(PADS) aims at taking advantage of modern high performance
computing architectures – from massively parallel computers
to multicore processors – to handle large models efficiently[1].
The general idea of PADS is to partition the simulation model
into submodels, called Logical Processs (LPs) which can
be evaluated concurrently by different Processing Elements
(PEs). More precisely, the simulation model is described in
terms of multiple interacting Simulated Entitys (SEs) which
are assigned to different LPs. Each LP is executed on a
different PE, and is in practice the container of a set of entities.
The execution of the simulation is obtained through the
exchange of timestamped messages (representing simulation
events) between entities. Each LP has an queue where mes-
sages are inserted before being dispatched to the appropriate
entities. Figure 1 shows the general structure of a paralleland
distributed simulator.

Execution of long-running applications on increasingly
larger parallel machines is likely to hit thereliability wall [2].
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Fig. 2. System reliabilityR(N, t) assuming a MTTF for each LP of one
year; higher is better, log scale on thex axis.

This means that, as the system size (number of components)
increases, so does the probability that at least one of those
components fails, therefore reducing the system Mean Time
To Failure (MTTF). At some point the execution time of the
parallel application may become larger than the MTTF of its
execution environment, so that the application has little chance
to terminate normally.

As a purely illustrative example, let us consider a parallel
machine with N PEs. Let Xi be the stochastic variable
representing the duration of uninterrupted operation of the i-
th PE, taking into account both hardware and software failures.
Assuming that allXi are independent and exponentially dis-
tributed (this assumption is somewhat unrealistic but widely
used [3]), we have that the probabilityP (Xi > t) that LP i

operates without failures for at leastt time units is

P (Xi > t) = e−λt

whereλ is the failure rate. The joint probability that allN LPs
operate without failures for at leastt time units is therefore
R(N, t) =

∏
i P (Xi > t) = e−Nλt; this is the formula for

the reliability of N components connected in series, where
each component fails independently, and a single failure brings
down the whole system.

Figure 2 shows the value ofR(N, t) (the probability of
no failures for at leastt consecutive time units) for systems
with N = 10, 100, 1000 LPs, assuming a MTTF of one year
(λ ≈ 2.7573×10−8s−1). We can see that the system reliability
quickly drops as the number of LPs increases: a simulation
involving N = 1000 LPs and requiring one day to complete
is very unlikely to terminate successfully.

Although the model above is overly simplified, and is not
intended to provide an accurate estimate of the reliabilityof
actual parallel simulations, it does show that building a reliable
system out of a large number of unreliable parts is challenging.

Two widely used approaches for handling hardware-related
reliability issues are those based oncheckpointing, and on
functional replication. The checkpoint-restore paradigm re-

quires the running application to periodically save its state on
non-volatile storage (e.g., disk) so that it can resume execution
from the last saved snapshot in case of failure. It should be
observed that saving a snapshot may require considerable time;
therefore, the interval between checkpoints must be carefully
tuned to minimize the overhead.

Functional replication consists on replicating parts of the
application on different execution nodes, so that failurescan
be tolerated if there is some minimum number of running
instances of each component. Note that each component must
be modified so that it is made aware that multiple copies of its
peers exist, and can interact with all instances appropriately.

It is important to remark that functional replication is
not effective against logical errors, i.e., bugs in the running
applications, since the bug can be triggered at the same time
on all instances. A prominent – and frequently mentioned –
example is the failure of the Ariane 5 rocket that was caused
by a software error on its Inertial Reference Platforms (IRPs).
There were two IRP, providing hardware fault-tolerance, but
both used the same software. When the two software instances
were fed with the same (correct) input from the hardware,
the bug (an uncatched data conversion exception) caused both
programs to crash, leaving the rocket without guidance [4].
The N -version programming technique [5] can be used to
protect against software errors, and requires running several
functionally equivalent programs that have been independently
developed from the same specifications.

In this paper, we present FT-GAIA, a fault-tolerant exten-
sion of the GAIA/ART̀IS parallel and distributed simulation
middleware [6], [7]. FT-GAIA is based on functional replica-
tion, and can handle crash errors and byzantine faults, using
the concept ofserver groups[8]: simulation entities are repli-
cated so that the model can be executed even if some of them
fail. We show how functional replication can be implemented
as an additional software layer in the GAIA/ARTÌS stack; all
modifications are transparent to user-level simulation models,
therefore FT-GAIA can be used as a drop-in replacement to
GAIA/ARTÌS when fault tolerance is the major concern.

This paper is organized as follows. In Section II we review
the art related to fault tolerance in PADS. The GAIA/ARTÌS
parallel and distributed simulation middleware is described
in Section III. Section IV is devoted to the description of
FT-GAIA, a fault-tolerant extension to GAIA/ART̀IS. An
empirical performance evaluation of FT-GAIA, based on a
prototype implementation we have developed, is discussed
in Section V. Finally, Section VI provides some concluding
remarks.

II. RELATED WORK

Although fault tolerance is an important and widely dis-
cussed topic in the context of distributed systems research,
it received comparatively little attention by the PADS com-
munity. The proposed approaches for bringing fault tolerance
to PADS are either based on checkpointing or on functional
replication, with a few works considering also partially cen-
tralized architectures.



A. Checkpointing

In [9] the authors propose a rollback based optimistic
recovery scheme in which checkpoints are periodically saved
on stable storage. The distributed simulation uses an opti-
mistic synchronization scheme, where out-of-order (“strag-
gler”) events cause rollbacks that are handled according tothe
Time Warp protocol [10]. The novel idea is to model failures
as straggler events with a timestamp equal to the last saved
checkpoint. In this way, the authors can leverage the Time
Warp protocol to handle failures.

In [11], [12] the authors propose a new framework called
Distributed Resource Management System (DRMS) to imple-
ment reliable IEEE 1516 federation [13]. The DRMS handles
crash failures using checkpoints saved to stable storage, that
is then used to migrate federates from a faulty host to a new
host when necessary. The simulation engine is again based on
an optimistic synchronization scheme, and the migration of
federates is implemented through Web services.

In [14] the authors propose a decoupled federate architec-
ture in which each IEEE 1516 federate is separated into a
virtual federate process and a physical federate process. The
former executes the simulation model and the latter provides
middleware services at the backend. This solution enables
the implementation of fault-tolerant distributed simulation
schemes through migration of virtual federates.

The CUMULVS middleware [15] introduces the support for
fault tolerance and migration of simulations based on check-
pointing. The middleware is not designed to support PADS
but it allows the migration of running tasks for load balancing
and to improve a task’s locality with a required resource.

A slightly different approach is proposed in [16]. In which,
the authors introduce the Fault Tolerant Resource Sharing Sys-
tem (FT-RSS) framework. The goal of FT-RSS is to build fault
tolerant IEEE 1516 federations using an architecture in which
a separate FTP server is used as a persistent storage system.
The persistent storage is used to implement the migration of
federates from one node to another. The FT-RSS middleware
supports replication of federates, partial failures and fail-stop
failures.

B. Functional Replication

In [17] the authors propose the use of functional replication
in Time Warp simulations with the aim to increase the simu-
lator performance and to add fault tolerance. Specifically,the
idea is to have copies of the most frequently used simulation
entities at multiple sites with the aim of reducing message
traffic and communication delay. This approach is used to
build an optimistic fault tolerance scheme in which it is
assumed that the objects are fault free most of the time. The
rollback capabilities of Time Warp are then used to correct
intermittent and permanent faults.

In [18] the authors describe DARX, an adaptive replication
mechanism for building reliable multi-agent systems. Being
targeted to multi-agent systems, rather than PADS, DARX is
mostly concerned with adaptability: agents may change their
behavior at any time, and new agents may join or leave the

system. Therefore, DARX tries to dynamically identify which
agents are more “important”, and what degree of replication
should be used for those agents in order to achieve the desired
level of fault-tolerance. It should be observed that DARX
only handles crash failures, while FT-GAIA also deals with
Byzantine faults.

III. T HE GAIA-ART ÌS MIDDLEWARE

To make this paper self-contained, we provide in this
section a brief introduction of the GAIA/ART̀IS parallel and
distributed simulation middleware; the interested readeris
referred to [6], [7], [19] and the software homepage [20].

The Advanced RTI System(ARTÌS) is a parallel and
distributed simulation middleware loosely inspired by the
Runtime Infrastructure described in the IEEE 1516 standard
“High Level Architecture” (HLA) [21]. ART̀IS implements a
parallel/distributed architectures where the simulationmodel
is partitioned in a set of LPs [1]. As described in Section I,
the execution architecture in charge of running the simulation
is composed of interconnected PEs and each PE runs one or
more LPs (usually, a PE hosts one LP).

In a PADSs, the interactions between the model com-
ponents are driven by message exchanges. The low com-
putation/communication ratio makes PADS communication-
bound, so that the wall-clock execution time of distributed
simulations is highly dependent on the performance of the
communication network (i.e., latency, bandwidth and jitter).
Reducing the communication overhead can be crucial to speed
up the event processing rate of PADS. This can be achieved
by clustering interacting entities on the same physical host, so
that communications can happen through shared memory.

Among the various services provided by ARTÌS, time man-
agement (i.e., synchronization) is fundamental for obtaining
correct simulation runs that respect the causality dependencies
of events. ART̀IS supports both conservative (Chandy-Misra-
Bryant [22]) and optimistic (Time Warp [10]) synchronization
algorithms. Moreover, a very simple time-stepped synchro-
nization is supported.

The Generic Adaptive Interaction Architecture(GAIA) is a
software layer built on top of ART̀IS [20]. In GAIA, each LP
acts as the container of some SEs: the simulation model is
partitioned in its basic components (the SEs) that are allocated
among the LPs. The system behavior is modeled by the
interactions among the SEs; such interactions take the formof
timestamped messages that are exchanged among the entities.
From the user’s point of view, a simulation model based on
GAIA/ARTS̀ follows a Multi Agent System (MAS) approach.
In fact, each SE is an autonomous agent that performs some
actions (individual behavior) and interacts with other agents
in the simulation.

In most cases, the interaction between the SEs of a PADS
are not completely uniform, meaning that there are clusters
of SEs where internal interactions are more frequent. The
structure of these clusters of highly interacting entitiesmay
change over time, as the simulation model evolves. The
identification of such clusters is important to improve the



Fig. 3. Layered structure of the FT-GAIA simulation engine.The user-
defined simulation model defines a set of entities{A,B, C,D,E, F}; FT-
GAIA creates multiple (in this example, 3) instances of eachentity, that are
handled by GAIA.

performance of a PADS: indeed, by putting heavily-interacting
entities on as few LPs as possible, we may replace most of
the expensive LAN/WAN communications by more efficient
shared memory messages.

In GAIA, the analysis of the communication pattern is
based on simple self-clustering heuristics [19]. For example,
in the default heuristic, every few timesteps for each SE is
found which LP is the destination of the large percentage of
interactions. If it is not the LP in which the SE is contained
then a migration is triggered. The migration of SEs among LPs
is transparent to the simulation model developer; entities
migration is useful not only to reduce the communication
overhead, but also to achieve better load-balancing among
the LPs, especially on heterogeneous execution platforms
where execution units are not identical. In these cases, GAIA
can migrate entities away from less powerful PEs, towards
more capable processors if available.

IV. FAULT-TOLERANT SIMULATION

FT-GAIA is a fault-tolerant extension to the GAIA/ARTÌS
distributed simulation middleware. As will be explained below,
FT-GAIA uses functional replication of simulation entities to
achieve tolerance against crashes and Byzantine failures of
the PEs.

FT-GAIA is implemented as a software layer on top of
GAIA and provides the same functionalities of GAIA with
only minor additions. Therefore, FT-GAIA is mostly transpar-
ent to the user, meaning that any simulation model built for
GAIA can be easily ported to FT-GAIA.

FT-GAIA works by replicating simulation entities (see
Fig. 3) to tolerate crash-failures and byzantine faults of
the PEs. A crash may be caused by a failure of the hardware
– including the network connection – and operating system.
A byzantine failure refers to an arbitrary behavior of a PE
that causes the LP to crash, terminate abnormally, or to send
arbitrary messages (including no messages at all) to other PEs.

Replication is based on the following principle. If a conven-
tional, non-fault tolerant distributed simulation is composed

of N distinct simulation entities, FT-GAIA generatesN ×M

entities, by generatingM independent instances of each sim-
ulation entity. All instancesA1, . . . AM of the same entityA
perform the same computation: if no fault occurs, they produce
the same result.

Replication comes with a cost, both in term of additional
processing power that is needed to execute all instances, and
also in term of an increased communication load between
the LPs. Indeed, if two entitiesA and B communicate by
sending a message fromA to B, then after replication each
instanceAi must send the same message to all instances
Bj , 1 ≤ i, j ≤ M , resulting inM2 (redundant) messages.
Therefore, the level of replicationM must be chosen wisely
in order to achieve a good balance between overhead and
fault tolerance, also depending on the types of failures (crash
failures or Byzantine faults) that the user wants to address.

Handling crash failures:A crash failure happens when
a PE halts, but operated correctly until it halted. In this case,
all simulation entities running on that PE stop their execution
and the local state of computation is lost. From the theory
of distributed systems, it is known that in order to toleratef

crash failures we must execute at leastM = f + 1 instances
of each simulation entity. Each instance must be executed on
a different PEs, so that the failure of a PE only affects one
instance of all entities executed there. This is is equivalent
to runningM copies of a monolithic (sequential) simulation,
with the difference that a sequential simulation does not incur
in communication and synchronization overhead. However,
unlike sequential simulations, FT-GAIA can take advantage
of more thanM PEs, by distributing allN × M entities
on the available execution units. This reduces the workload
on the PEs, reducing the wall-clock execution time of the
simulation model.

Handling Byzantine Failures:Byzantine failures include
all types of abnormal behaviors of a PE. Examples are: the
crash of a component of the distributed simulator (e.g., LP
or entity); the transmission of erroneous/corrupted data from
an entity to other entities; computation errors that lead to
erroneous results. In this caseM = 2f + 1 replicas of a
system are needed to tolerate up tof byzantine faults in a
distributed system using the “majority” rule: an SE instance
Bi can process an incoming messagem from Aj when it
receives at leastf +1 copies ofm from different instances of
the sender entityA. Again, all M instances of the same SE
must be located on different PEs.

Allocation of Simulation Entities:Once the level of
replicationM has been set, it is necessary to decide where
to create theM instances of all SEs, so that the constraint
that each instance is located on a different PE is met. In FT-
GAIA the deployment of instances is performed during the
setup of the simulation model. In the current implementation,
there is a centralized service that keeps track of the initial
location of all SE instances. When a new SE is created, the
service creates the appropriate number of instances according
to the redundancy model to be employed, and assigns them
to the LPs so that all instances are located on different LPs.



Note that all instances of the same SE receive the same initial
seed for their internal pseudo-random number generators; this
guarantees that their execution traces are the same, regardless
of the LP where execution occurs and the degree of replication.

Message Handling:We have already stated that fault-
tolerance through functional replication has a cost in termof
increased message load among SEs. Indeed, for a replication
level M (i.e., there areM instances of each SE) the number
of messages exchanged between entities grows by a factor of
M2.

A consequence of message redundancy is that message
filtering must be performed to avoid that multiple copies of the
same message are processed more than once by the same SE
instance. FT-GAIA takes care of automatically filtering the
excess messages according to the fault model adopted; filtering
is done outside of the SE, which are therefore totally unaware
of this step. In the case of crash failures, only the first copyof
each message that is received by a SE is processed; all further
copies are dropped by the receiver. In the case of Byzantine
failures with replication levelM = 2f + 1, each entity must
wait for at leastf + 1 copies of the same message before it
can handle it. Once a strict majority has been reached, the
message can be processed and all further copies of the same
messages that might arrive later on can be dropped.

Entities Migration: PADS can benefit from migration
of entities to balance computation/communication load and
reduce the communication cost, by placing entities that interact
frequently “next” to each other (e.g., on the same LP) [19].
In FT-GAIA, entity migration is subject to the constraint that
instances of the same SE can never reside on the same LP.
Entity migration is handled by the underlying GAIA/ARTÌS
middleware [6]: each LP runs a fully distributed “clustering
heuristic” that tries to put together (i.e., on the same LP)
the SEs that interact frequently through message exchanges.
Special care is taken to avoid putting too many entities on the
same LPs that would become a bottleneck. Once a new feasible
allocation is found, the entities are migrated by moving their
state to the new LP.

V. EXPERIMENTAL EVALUATION

In this section we evaluate a prototype implementation
of FT-GAIA by implementing a simple simulation model
of a Peer-to-Peer communication system. We execute the
simulation model with FT-GAIA under different workload
parameters (described below) and record the Wall Clock Time
(WCT) (excluding the time to setup the simulation) and other
metrics of interest. The tests were performed on a cluster of
workstations, each being equipped with an Intel Core i5-4590
3.30 GHz processors with 8 GB of RAM. The Operating
System was Debian Jessie. The workstations are connected
through a Fast Ethernet LAN.

A. Simulation Model

We simulate a simple P2P communication protocol over
randomly generated directed overlay graphs. Nodes of the
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graphs are peers, while links represent communication con-
nections [23], [24]. In these overlays, nodes have all the same
out-degree, that has been set to5 in our experiments. During
the simulation, each node periodically updates its neighbor
set. Latencies for message transmission over overlay linksare
generated using a lognormal distribution [25].

The simulated communication protocol works as follows.
Periodically, nodes send PING messages to other nodes, that
in turn reply with a PONG message that is used by the
sender to estimate the average latencies of the links (note
that communication links are, in fact, bidirectional). The
destination of a PING is randomly selected to be a neighbor
(with probabilityp), or a non-neighbor (with probability1−p).
A neighbor is a node that can be reached through an outgoing
link in the directed overlay graph.

Each node of the P2P overlay is represented by a SE within
some LP. Unless stated otherwise, each LP was executed on a
different PE, so that no two LPs shared their execution node.
We consider three scenarios: ano fault scenario, where no
faults occur, acrash scenario, where crash failures occurs,
and aByzantinescenario where Byzantine faults occurs.

We executed 15 independent replications of each simulation
run. In all the following charts, mean values are reported with
a 99.5% confidence interval.

B. Impact of the number of LPs and SEs

Figure 4 shows the WCT of the simulation that was executed
for 10000 timesteps with a varying number of SEs; recall that
the number of SEs is equal to the number of nodes in the
P2P overlay graph. The number of LPs was set to 3, 4, and
5. We show the WCT for the three failure scenarios we are
considering: no failure, a single crash, and a single Byzantine
failure. In all these cases the self-clustering (i.e. migration) is
disabled.

Results with 3 and 4 LPs are similar, with a slight im-
provement with 4 LPs. Conversely, higher WCT is observed
when 5 LPs are used. As expected, the higher the number
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of SEs the higher the WCT, since the simulation incurs in
a higher communication overhead. Moreover, all curves have
a similar trend. In particular, the increment due to the faults
management schemes is mainly due to the higher amount of
messages exchanged among nodes.

Figures 5 and 6 show the WCT when varying the number of
LPs, with 8000 and 16000 SEs, respectively. The two charts
emphasize the increment of the time required to terminate the
simulations with 5 LPs and in presence of Byzantine faults.
This is due to the increased number of messages exchanged
among the LPs: each message needs to be sent to three (2M+
1) different destinations in order to guarantee fault tolerance.

C. Impact of the number of LPs per host

In the previous experiments, we placed each LP in a
different PE. Figure 7 shows the WCT when more than one LP
is placed in a PE. In particular, we consider the following
scenarios: (i) 4 LPs placed over 4 PEs (1 LP per host), (ii )
8 LPs placed over 8 PEs (1 LP per host), (iii ) 8 LPs placed
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over 4 PEs (2 LPs per host), and (iv) 16 LPs over 4 PEs (4 LPs
per host). For each scenario, we consider the three failure
scenarios already mentioned (no failures, crash, Byzantine
failures). Also in these cases, the migration is disabled. Each
curve in the figure is related to one of those scenarios, when
varying the amount of SEs. It is worth noting that, when two
or more LPs are run on the same PE, they can communicate
using shared memory rather than by LAN.

We observe that the scenario with 4 LPs over 4 PEs is influ-
enced by the number of SEs and the failure scenario, while in
the other cases it is the number of LPs that mainly determines
the simulator performance. When 8 LPs are present, slightly
better results are obtained with 4 LPs (rather than 8). This
is due to the better communication efficiency (e.g. reduced
latency) provided by the shared memory with the respect to
the LAN protocols.

The worst performance is measured when 16 LPs are
executed on 4 PEs. This is due to the fact that the amount
of computation in the simulation model is quite limited.
Therefore, partitioning the SEs in 16 LPs has the effect to
increase the communication cost without any benefit under
the computational point of view (i.e. in the model there is not
enough computation to be parallelized).

D. Impact of the number of failures

We now study the impact of the number of faults on the
simulation WCT. We consider two scenarios, one with 5 LPs
over 5 PEs (Figure 8), and one with 8 LPs over 4 PEs (Figure
9). The choice of 5 LPs is motivated by the fact that this is
the minimum number of LPs that allows us to tolerate up to
2 Byzantine faults. The scenario with 8 LPs on 4 PEs allows
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Fig. 9. WCT as a function of the number of faults; 2000 timesteps over 8
LPs. Migration is disabled. Lower is better.

testing 3 Byzantine faults with 2 LPs per hosts, reducing the
communication overhead.

Figure 8 shows the WCTs measured with 0, 1 and 2 faults.
Each curve refers to a scenario composed of 2000 or 6000
SEs with crash or Byzantine failures. As expected, the higher
the number of faults, the higher the WCTs, especially when
Byzantine faults are considered. Indeed, in this case a higher
amount of communication messages is required among nodes
in order to properly handle the faults.

A higher WCT is measured with 8 LPs, as shown in
Figure 9. In this case, the amount of faults does not influ-
ence the simulation performance too much. As before, the
computational load of this simulation model is too low for
gaining from the partitioning in 8 LPs. In other words, the
latency introduced by the network communications is so high
that both the number of SEs and and the number of faults have
a negligible impact.

E. Impact of SEs migration

Figure 10 shows the WCT with different failure schemes,
when SEs migration is enabled/disabled. In this case, the trend
obtained with the SEs migration is similar to that obtained
when no migration is performed but the overall performance
are better when the migration is turned off. This is due to the
overhead introduced by the self-clustering heuristics andthe
SEs state that is transfered between the LPs. In other words,
the adaptive clustering of SEs, in this case, is unable to give
a speedup.

It is worth noting that, in this prototype, we have decided to
use the very general clustering heuristics that were already im-
plemented in GAIA/ART̀S. We think that, more more specific
heuristics will be able to improve the clustering performance
and therefore balance the overhead introduced by the support
of fault tolerance.
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VI. CONCLUSIONS ANDFUTURE WORK

In this paper we described FT-GAIA, a software-based fault-
tolerant extension of the GAIA/ART̀IS parallel and distributed
simulation middleware. FT-GAIA transparently replicatessim-
ulation entities and distributes them on multiple execution
nodes. In this way, the simulation can tolerate crash-failures
and Byzantine faults of computing nodes. FT-GAIA can
benefit from the automatic load balancing facilities provided
by GAIA/ARTÌS that allow simulated entities to be migrated
among execution nodes. A preliminary performance evaluation
of FT-GAIA has been presented, based on a prototype imple-
mentation. Results show that a high degree of fault tolerance
can be achieved, at the cost of a moderate increase in the
computational load of the execution units.

As a future work, we aim at improving the efficiency of FT-
GAIA by leveraging on ad-hoc clustering heuristics. Indeed,
we believe that specifically tuned clustering and load balancing
mechanisms can significantly reduce the overhead introduced
by the replication of the simulated entities.



ACRONYMS

DES Discrete Event Simulation
FEL Future Event List
GVT Global Virtual Time
IRP Inertial Reference Platform
LVT Local Virtual Time
LP Logical Process
MTTF Mean Time To Failure
PADS Parallel and Distributed Simulation
PE Processing Element
SE Simulated Entity
WCT Wall Clock Time
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