
Promoting a-priori interoperability of HLA-based

Simulations in the Space domain: the SISO Space

Reference FOM initiative

Björn Möller

Pitch Technologies

Repslagaregatan 25

582 22 Linköping, Sweden

bjorn.moller@pitch.se

Alfredo Garro, Alberto Falcone

Department of Informatics, Modeling,

Electronics and Systems Engineering

(DIMES)

University of Calabria

Via P. Bucci 41C, 87036 Rende (CS),

Italy

{alfredo.garro,

alberto.falcone}@dimes.unical.it

Edwin Z. Crues, Daniel E. Dexter

Simulation and Graphics Branch (ER7)

Software, Robotics, and Simulation

Division (ER)

NASA Johnson Space Center

2101 NASA Road 1, Houston, TX

{edwin.z.crues,

daniel.e.dexter}@nasa.gov

Abstract— Distributed and Real-Time Simulation plays a key-

role in the Space domain being exploited for missions and systems

analysis and engineering as well as for crew training and

operational support. One of the most popular standards is the

1516-2010 IEEE Standard for Modeling and Simulation (M&S)

High Level Architecture (HLA). HLA supports the

implementation of distributed simulations (called Federations) in

which a set of simulation entities (called Federates) can interact

using a Run-Time Infrastructure (RTI). In a given Federation, a

Federate can publish and/or subscribes objects and interactions

on the RTI only in accordance with their structures as defined in

a FOM (Federation Object Model). Currently, the Space domain

is characterized by a set of incompatible FOMs that, although

meet the specific needs of different organizations and projects,

increases the long-term cost for interoperability. In this context,

the availability of a reference FOM for the Space domain will

enable the development of interoperable HLA-based simulators

for related joint projects and collaborations among worldwide

organizations involved in the Space domain (e.g. NASA, ESA,

Roscosmos, and JAXA). The paper presents a first set of results

achieved by a SISO standardization effort that aims at providing

a Space Reference FOM for international collaboration on Space

systems simulations.

Keywords— Space, Interoperability, High Level Architecture,

Federation Object Model.

I. INTRODUCTION

Simulation is increasingly used in the Space domain for
several purposes. It is exploited for analysis and engineering,
from mission level down to individual systems and subsystems,
where simulation plays a key tool through the whole lifecycle,
from the concept exploration phase to mission design and
operation. Another example is training of flight crew and flight
controllers, where simulation plays a crucial role as the Space
domain is characterized by scarce training opportunities, high
cost of real equipment, dangerous scenarios and emergency
operations. In particular, great benefits derive from the
exploitation of distributed simulation approaches as they allow
for combining models from the same or different sources

(within the same organization or between different
organizations), to run simulation between different locations,
and to promote scalability, modularization and usability [4].
Indeed, several distributed simulations have been developed for
example for docking vehicles with the ISS and for mission
training, in many cases with participants from several nations
[1], [10], [11].

To facilitate the integration of distributed simulation
models within a common architecture the IEEE Standard for
Modeling and Simulation (M&S) High Level Architecture
(HLA) has been defined [6].

In the HLA standard, a distributed simulation is called
Federation and it is composed of several HLA simulation
entities, each called a Federate, which can interact using a Run-
Time Infrastructure (RTI). The RTI represents a backbone of a
Federation execution and provides a set of standard protocols
and services to manage the communications and data exchange
between Federates. Each Federation has a Federation Object
Model (FOM) that is created in accordance with the Object
Model Template (OMT) provided by the standard. A FOM
defines the set of information that can be exchanged and
managed in a Federation; indeed, a federate can publish and/or
subscribe objects (and related attributes) and interactions (and
related parameter) on the RTI only in accordance with their
structures as defined in the FOM [8].

Although HLA is increasingly used in the Space domain to
meet the requirements for simulation interoperability in the US,
Europe and to some extent in Asia, so far different
organizations and projects have developed incompatible FOMs
to meet their specific needs but increasing the long-term cost
for interoperability. In this context, the availability of a
reference FOM for the Space domain will enable the
development of interoperable HLA-based simulators and
related joint projects and collaborations among worldwide
organizations involved in the Space domain (e.g. NASA, ESA,
and ASI).

However, there is currently no reference FOM that
addresses Space exploration, since, for example, the RPR FOM

is restricted to defense operations in a geocentric environment
running in real time [9].

To fill this void, a Product Development Group (PDG) has
been recently activated in SISO with the aim to provide a
Space Reference FOM for international collaboration on Space
systems simulations [14]. Members of the PDG come from
several countries and contribute experiences from projects
within NASA, ESA and other organizations. Participants
represent government, academia and industry.

Moreover, the PDG benefit from the wide experience
gained in the “Simulation Exploration Experience” (SEE)
(formally Smackdown) SISO’s university outreach program
[1], [3], [10]. Indeed, competencies from NASA and other
organizations have been reused in the SEE project to create a
core Space Reference FOM. Approximately fifteen different
university teams have successfully used this FOM for six
consecutive integration projects during the last six years, thus
providing a solid base for the SISO standardization initiative.

The Space Reference FOM shall support interoperability
for space simulations. This includes federations executing in
real-time as well as federations executing in logical-time
(including as-fast-as-possible). The primary focus is on
training, analysis, mission support and engineering although
other types of usage, like test and concept exploration may also
be supported to some degree.

The standard consists of two parts: (i) the SISO Standard
for the Space Reference FOM Federation Agreement. This is a
natural language, human readable overview, description and
specification of the FOM; (ii) The Space Reference FOM. This
is a set of computer-interpretable HLA IEEE 1516- 2010 FOM
modules (XML files), intended for consumption by HLA
runtime infrastructure and other software tools.

These outcomes are expected to make collaboration
politically, contractually and technically easier. It is also
expected to make collaboration easier to manage and extend.

The Space Reference FOM provides for baseline
interoperability. Project specific modules that extend it can be
added as needed and commonly used extensions can be added
to the standard as they mature.

The first version of the standard under release focuses on
handling of time and space; in particular, the Space Reference
FOM provides the following: (i) a flexible positioning system
using Coordinate Reference Frames for arbitrary bodies in
space, (ii) a naming conventions for well-known Reference
Frames, (iii) definitions of common time scales, (iv) federation
agreements for common types of time management with focus
on time stepped simulation, and (v) support for physical
entities, such as space vehicles and astronauts.

The rest of the paper is organized as follows. An overview
of the Space Reference FOM is given in Section II. In Section
III, the part of the standard for handling Coordinate Reference
Frames is presented. Section IV introduces the time scales
exploited in the standard to represent the time coordinate of
entities in Space. Section V is devoted to discuss main issues
and chosen solutions for managing the time advancement of
Federation executions (including real-time simulations)

compliant with the standard. The part of the standards that
models physical Space entities, such as space vehicles and
astronauts, is reported in Section VI. Finally, conclusions are
drawn and future work delineated.

II. THE SPACE REFERENCE FOM: AN OVERVIEW

In the HLA standard, a FOM is a specification defining the
information exchanged at runtime to achieve a given set of
federation objectives. A FOM includes the definition of
Objects (ObjectClass) and Interactions (InteractionClass) [8].
An ObjectClass is composed of a set of attributes whose values
define the state of the object at any point during the simulation
execution; whereas, an InteractionClass defines an event that a
Federate can generate or react to during a simulation. It is
composed of a set of parameters that define its characteristics.
These two kinds of information are exchanged through a
publish/subscribe model by using the services provided by the
RTI [6]. A Federate can register an Object, which is an instance
of an ObjectClass, and then change the values of its attributes.
Other Federates that are subscribed to that ObjectClass can
discover the related instances and then receive attribute value
updates. The Interactions work in a similar way, except that
interactions have associated a set of parameters and are not
persistent (an interaction is “destroyed” after being consumed).

The Space Reference FOM defines a hierarchy of object
and interaction classes for HLA that provides interoperability
between simulations in the Space systems domain. It is
designed to link simulations of discrete physical entities into
distributed collaborative simulations of complex Space related
systems. Its capabilities include representations of:

• Physical entities such as mobile surface systems,
atmospheric flight systems, space flight systems,
lifeforms, infrastructure elements, and interactions
between them.

• Collections of individual entities collected as a single
aggregate entity.

• Environmental objects and processes.

• Communications between entities.

• Emissions generated by entities.

• Logistics, including repair and resupply.

The introduced object and interaction classes are grouped
in separate FOM modules (XML files) so as to allow for a
more flexible and effective management of the standard
proposal as well as of its extension. At the moment the
following four modules have been defined:
SISO_SpaceFOM_datatypes, SISO_SpaceFOM_environment,
SISO_SpaceFOM_entity, SISO_SpaceFOM_switches.

The SISO_SpaceFOM_datatypes module provides the
definitions of: (i) simple data types, for handling the main
scalars physical quantities (Angle, Mass, MassRate,
MassMomentOfInertia, Length, Velocity, Acceleration, Scalar,
AngularRate, AngularAcceleration, Time, Energy, Power,
SignalStrength, Temperature, TemperatureRate, Force,
Torque); (ii) array data types, for handling vectors physical
quantities (Vector, Matrix, PositionVector, VelocityVector,

AccelerationVector, AngularVelocityVector,
AngularAccelerationVector, InertiaMatrix, ForceVector,
TorqueVector); (iii) fixed record data types, for handling the
spacetime coordinates and states of reference frames
(SpaceTimeCoordinateState, ReferenceFrameTranslation,
ReferenceFrameRotation, AttitudeQuaternion). Moreover, the
definition of the HLA logical timestamp and lookahead time
are also provided (both represented as 64 bits integers:
HLAinteger64Time). The above introduced data types are used
for object attributes as well as interaction parameters and
adopt the International System of Units (SI) wherever possible.

The SISO_SpaceFOM_environment module provides the
fundamental data types used to represent the basic physical
environmental properties associated with space-based
simulations. For instance, any position of an entity in a Space
FOM simulation is related to a particular reference frame.
Many different reference frames can be used in a federation
execution. The Environment FOM Module specifies how these
are represented (see Section III).

The SISO_SpaceFOM_entity module provides the
definitions of vehicle related object classes. In particular, it
defines the PhysicalEntity object, which can be a man-made
vehicle or a major sub-element of a man-made vehicle, with the
following attributes: name, type, status, parent reference frame,
position, velocity, acceleration, attitude, rotational velocity,
rotational acceleration, mass, mass rate, center of mass,
inertia, time. The SpaceVehicle object class is also defined as
an extension of the PhysicalEntity object class that also
includes the force and torque attributes. Moreover, the
PhysicalInterface object class is also specified.

The SISO_SpaceFOM_switches module provides
configurations settings for the Federation execution by way of
global Federation execution wide switches for LRC (Local
Run-Time Component) and RTI behavior [6]. Indeed, the
1516-2010 HLA standard defined a set of switches that shall be
set in the FOM. These switches regulate the behavior of some
of the optional actions the RTI can perform on behalf of the
Federate, such as automatically requesting updates of an
instance attribute when an object instance is discovered or
advising the Federates when certain events occur. To facilitate
easy replacement of these settings, for the modular version of
the HLA 1516-2010 Space FOM the switches have been
confined to the SISO_SpaceFOM_switches FOM module. It is
expected that federations might choose to update this module
based on their federation agreement.

A. Building Federations using the Space Reference FOM

The Space FOM provides a starting point for building
Federations for the space domain. In addition to this, it is
strongly recommended that each particular federation
development team produce a Federation Agreement that
specifies additional design information. This may include:

• The purpose of the Federation;

• The range of scenarios to be supported;

• Participating federates;

• Additional FOM modules that are used;

• Common data or databases that are used;

• Additional services and conventions for services
exchange;

• Technical configuration data, such as networking and
host information;

• Test and integration procedures.

In order to develop a Space FOM federation, development
teams are encouraged to use and follow the IEEE 1730-2010
Distributed Simulation Engineering and Execution Process
(DSEEP) [5]. It provides a proven seven-step process, from
establishing the goals and constraints for the federation to the
final execution.

It is expected that many Space federations will choose to
build upon and extend the Space Reference FOM. Extensions
shall be created by adding more FOM modules. Developers are
strongly advised not to modify the standardized FOM modules.
The main principles for adding extensions are the following:

(i). Object and Interaction classes that provide
specializations of a standardized class shall be defined
as subclasses of these standardized classes. They shall
be defined in a project specific extension module;

(ii). Object and Interaction classes that do not provide
specializations of a standardized class shall be defined
as subclasses of HLAobjectRoot. They shall be defined
in a project specific extension module;

(iii). Any new data types shall be defined in a project
specific extension module.

It is recommended to group extension classes and data
types in extension modules based on functional areas.

In the following Sections, a more detailed description of the
main introduced FOM classes and datatypes and rules for
accomplishing specific distributed simulation tasks are
provided.

III. HANDLING COORDINATE REFERENCE FRAMES

Reference frames are a fundamental concept for
representing when and where any physical entity exists in time
and space. This representation is referred to as the state of the
entity. In order to represent the state of something, it is
necessary to express that state with respect to some time scale
and some referent coordinate system. This combination of time
and coordinate system is referred as a space-time coordinate or
reference frame.

In the Space FOM a ReferenceFrame object class is defined
as an observational reference frame along with a companion
right-handed orthogonal set of coordinate axes that are fixed in
the frame. A ReferenceFrame is characterized by the following
attributes (see Fig. 1):

• name, a unique name for a reference frame instance;

• parent_name, a string that must correspond to the name
attribute of some other ReferenceFrame object instance
in the simulation or empty for a 'root' reference frame;

• state, a four dimensional representation of the space-
time coordinate state of a reference frame with respect
to its parent reference frame and expressed by using a
SpaceTimeCoordinateState fixed record data type.

If the parent_name is an empty string, then only the time
dimension has meaning.

The time field in the SpaceTimeCoordinateState specifies
the simulated physical time (Terrestrial Time, TT), which
represents the time dimension associated with a reference
frame state. The other fields in a SpaceTimeCoordinateState
are the translational_state and rotational_state. Indeed, many
applications require knowledge of the relative attitude of one
frame with respect to another. This results in three (3)
dimensions of position (translational_state), three (3)
dimensions of attitude (rotational_state) and one (1) dimension
of time. The translational_state field represents the reference
frame's translational state with respect to its parent frame (if the
frame has no parent, this attribute is meaningless) in terms of:
(i) the position (a PositionVector) of the subject frame origin
with respect to the referent origin with components expressed
in the referent coordinate axes; (ii) the velocity (a
VelocityVector) of the subject frame origin with respect to its
referent origin with components expressed in the referent
coordinate axes. The rotational_state field represents the
rotational state of a reference frame with respect to a 'referent'
frame in terms of: (i) an attitude_quaternion (an
AttitudeQuaternion) that specifies the orientation of the subject
frame with respect to the referent; (ii) the angular_velocity (an
AngularVelocityVector) of the subject frame with respect to the
referent with components resolved onto the subject coordinate
axes.

In a given simulation scenario (e.g. a mission to Mars),
each reference frame has a parent reference frame in which its
position and attitude are expressed (except for a root reference
frame). Thus, it is possible to organize the set of reference
frames, useful to represent the coordinates of the involved
space entities, in a rooted tree structure (a rooted directed
acyclic graph), provided that there is only a root reference
frame and the others have at least that root as highest common
ancestor (see Fig. 2 for an example, a detailed discussion on the
reported and most common reference frames for the Space
domain is outside the scope of this paper).

Given a reference frame rooted tree structure, it is possible
to transform a space-time coordinate expressed in a starting
reference frame to those expressed in a target reference frame.
The transformation is performed by following in the tree the
path that goes from the source to the target reference frame
through the lowest common ancestor and by using the
information provided by the state of the ReferenceFrames
along the path. Those transformations are based on well-known
formulas from quaternion algebra [7]. This capability is very
important when the mission under consideration involves
entities operating in different and distant regions of space (e.g.
on or close to different celestial bodies in the solar system) and
that can also travel among them. Indeed, for expressing the
space-time state of each entity with the adequate precision it is
required to refer to the reference frame centered in the closest
point to that entity. As an example, if a spacecraft is orbiting

the Moon a good choice could be to represent its coordinate in
the MoonCentricInertial reference frame (a reference frame
centered in the Moon and with fixed axes directions
independent of the Moon’s rotation), then when the spacecraft
leaves the moon to travel to Mars the reference frame can
change to SolarSystemBarycentricInertial (a reference
frame centered in the center of mass of the solar system and
with fixed axes directions); finally, when the spacecraft reaches
Mars, the right choice might be MarsCentricInertial (a
reference frame centered in Mars and with fixed axes
directions). A similar situation happens when considering a
simulation involving entities operating on all the above
mentioned celestial bodies.

In order to be compliant with the Space Reference FOM the
following rules shall be respected: (i) all reference frames used
in a Federation execution shall be documented in the associated
Federation Agreement; (ii) only one root reference frame shall
exist within a Space FOM compliant federation execution; (iii)
all reference frame parent frames shall exist as owned
published object instances when the federation execution is
running (e.g. advancing time). Moreover, along with the Space
FOM, a recommended set of standard reference frames is
provided as well as naming conventions, defined using EBNF
(Extended Backus-Naur Form) notation, to correctly construct
the name of any non-standard reference frame according to the
Space FOM recommendations. These guidelines should enable
a-priori interoperability without limiting the flexibility in the
definition of Space FOM compliant Federations.

Fig. 1. Structure of a Reference Frame.

Fig. 2. A Reference Frame Tree.

IV. TIME COORDINATES AND TIME REPRESENTATIONS

Time is a main concept to deal with in the Space domain.
For a simulation, time is often translated into a sequentially
increasing count of cycles in an execution loop. However, that
is not really time, that is a count. The logical progression
toward actual time would be to assign a specified quantity of
time change with each execution cycle.

In a Space FOM based simulation the following different
times can be distinguished:

 Physical Time (PT); it is the non-spatial dimension
associated with the space-time continuum in which
events are ordered in irreversible succession from the
past to the present to the future. This is the fourth
dimension in a space-time reference frame; the other
three being the spatial dimensions representing position
(see Section III). This can be conceptualized as a
bidirectional infinite time line. This is the time line in
which people live, work and simulate. This is
sometimes referred to as “real world” time.

 Wall Clock/Computer Time (CT); unfortunately,
physical time cannot be measured as an absolute value.
A solution is to model the passage of time, usually with
some form of oscillator, and count the oscillations with
respect to some arbitrary epoch and use that as a model
of time. This is often referred to as “Wall Clock” time.
This is how a computer “measures” time. Since any
clock, including a computer, counts from some defined
starting point (epoch); a unidirectional infinite time line
is the corresponding representation here.

 Simulation Elapsed Time (SET); it is the time measure
associated with an individual simulation starting at zero
and advancing monotonically in quantifiable steps. With
cyclic executives, this is often based on some integer or
floating-point counter. The counter is incremented by a
predetermined amount on each cycle of the executive.
This is sometimes referred to as executive time. Note
that discrete event simulations usually make non-
uniform steps in time. A simulation with no specified
stop time would correspond to a unidirectional infinite
time line. A simulation with a specified stop time would
correspond to a finite time line. It is important to note
that there is no substantive correlation between the
passage of Simulation Elapsed Time, Computer Time or
Physical Time. Any correlation of Simulation Elapsed
Time to the passage time in the real world will be
established in the time management policies (see

Section V). Simulation Elapsed Time will progress at
whatever rate the simulation is capable of running on a
given computer.

 Simulation Scenario Time (SST); is a model within a
simulation that associates the Simulation Elapsed Time
with a representation of the problem’s Physical Time.
This model may provide mappings to and between
multiple physical time scales (see Subsection IV.A).
However, this is not the same Physical Time in the real
world. This is the Physical Time in the problem space;
which may be in the past, present or future. Simulation
Scenario Time is sometimes referred to as dynamic time
when used as the independent variable for numeric state
propagation. This sometimes corresponds to an
Ephemeris Time when used to “look-up” a priori state
information for an entity in the federation execution
(e.g. the position and velocity of Mars at a given time).
Simulation Scenario Time is related to Simulation
Elapsed Time by the starting modeled physical time, or
epoch, of the simulation. Designating the simulation
epoch as SST0 results in the following relationship
between Simulation Scenario Time and Simulation
Elapsed Time: SST = SST0 + SET.

 HLA Logical Time (HLT); is the time line used by HLA
to order messages, regulate execution time advance and
enable deterministic behavior in a distributed
simulation. Indeed, in a time managed HLA based
simulation, the RTI regulates the time advance during
the Federation execution by providing to the Federates
that asked to advance in time (by sending to the RTI a
Time Advance Request (TAR)) a Time Advance Grant
(TAG) so as to guarantee they will not receive messages
with time stamps in the past [6]. HLA Logical Time
often has a start epoch of 0 (HLT0 = 0.0) but this is not
an HLA requirement. HLA Logical time can be thought
of as a Federation wide Simulation Elapsed Time.
However, HLA Logical Time and individual Federate
Simulation Elapsed Time will not correspond if the
Federate is a late-joiner (i.e. it joined a Federation that
was already advancing in time).

 Federation Scenario Time (FST); is a conceptual time
associated with the physical systems being modeled in
the participating Federates in the Federation execution.
Federation Scenario Time is conceptual in that it is
never computed anywhere in the federation execution
but is implied by the Simulation Scenario Time of the
individual federates and their time management
schemes. This time should also be related to the HLA
Logical Time by a constant offset FST0, so as that FST

= FST0 + HLT. FST should match the SSTs across all

federates within the federation execution to within the
accuracy of the time management mechanisms (see
Subsection IV.A).

A. Time Representations

The preceding Section helps to identify what time is being
considered. This section discusses and defines how time is
represented in a simulation time line and by the Space

Reference FOM. Just as distance can be measured from
different starting points and with different units (e.g. meters vs.
feet), time can be measured from different starting points
(epochs) and with different units (seconds, angles, or days).
Thus, in the Space Reference FOM, Time is characterized by
(see Fig. 3):

 an Epoch, which specifies the starting point to measure
time (e.g. J2000, N50, GPS, UNIX);

 a Unit, which specifies the unit used to measure the
passage of the time from the starting epoch (Day, Hour,
Minute, Second, Millisecond, etc.);

 a Time Scale, which is a system of assigning dates to
events used to define absolute time. The Terrestrial
Time (TT) time scale is used to represent absolute time
for all Space FOM scenario physical time stamps;
however, other time scales are also supported (e.g. TAI,
UTC, UTC1, GPST, TCG) [12].

A Time can be a FloatingPointTime or an IntegerTime
depending on the HLA datatype used to represent it and that
must be interpreted on the basis of the specified Unit of
measure.

Fig. 3. Definition of a Time Coordinate.

V. FEDERATION TIME MANAGEMENT

Support for HLA Time Management services by Space
FOM compliant federates is optional, and should be negotiated
on an exercise by exercise basis. As a default and at a
minimum, Space FOM federates shall operate with time
stepped, clock driven, independent time advance (see [4]).
Operation of the Space FOM in modes other than this time-
flow mechanism is not failsafe.

Clock driven simulations are considered "real-time"
because each second of elapsed execution time is equivalent to
one second of time in the virtual world. Time synchronization,
if it is used at all, is performed outside of the simulation itself.
For example, Network Time Protocol (NTP) is often used to
synchronize “wall clock” times across a Federation.

The two main time management scenario that have been
considered are the following: (i) HLA Time managed real time
with pacing federate (a federate that actively manages the
advancement of HLA logical time during execution) and fixed
time steps. This can be implemented in a strict/conservative
way (with no frame overruns, i.e. a failure to complete
processing of a HLA logical time frame during the desired real-
time frame) or in an elastic way with catch-up on overruns
(with a limited or unlimited number of allowed overruns); (ii)
all federates externally synched to external reference (Central
Timing Equipment - CTE) with fixed time steps. This can be
implemented in strict/conservative way (i.e. with no frame
overruns that implies hard real time) or in an elastic way with
catch-up on overruns that can be in a limited (firm real time) or
unlimited number (soft real time).

The first version of the standard under release focuses on a
time management approach that is Time Stepped using HLA
Time management and involves a Pacing Federate using
constant time step and look-ahead. It can be locked to real time
or scaled real time and elastic with catch-up on (pacing
federate) overruns (i.e. soft real-time). An example is provided
in Fig. 4. Also a Time Stepped approach using un-paced HLA
time management with constant time step and look-ahead is
supported. Future standard release will include Time Stepped
using CTE and Time Stepped using CTE and HLA Time
Management.

Fig. 4. HLA Time Management with early TAR from Pacing Federate.

A Space FOM compliant Federation that uses HLA Time

management shall agree on a Federation Time Step. Given a

Federation Time Step, the time step of each Federate

participating in the Federation shall be a positive integer

multiple of the Federation Time Step: Federate Time

Step = m * Federation Time Step (mℕ+), which

implies that: Federate Time Step >= Federation

Time Step. At the same time, the Federate Time Step shall

be a positive integer multiple of its internal Simulation Time

Step (i.e. the native time step used inside the simulation when

state is propagated, for example the dynamics rate):
Federate Time Step = n * Simulation Time

Step (nℕ+), which implies that: Simulation Time

Step <= Federate Time Step. The inequalities

introduced above guarantee a correct and effective

synchronization during the Federation execution between the

involved Federates. In particular, a Federate that is to be

synchronized with the Federation execution shall advance the

Federate Logical Time using the HLA TAR/TAG mechanism

and be HLA Time Constrained (i.e. it can receive timestamped

messages) and optionally HLA Time Regulating (it can send

timestamped messages). Specifically, the following rules hold

to avoid dysfunctional behavior during a Space FOM based

Federation execution:

 all data in the Federation that is related to the simulated

scenario shall be sent by using Timestamped Order

(TSO) delivery;

 all data in the Federation that is related to managing the

scenario execution shall be sent by using Receive

Order (RO) delivery;

 a federate that wishes to produce TSO data shall enable

HLA Time Regulating;

 a federate that wishes to receive TSO data with

ordering shall enable HLA Time Constrained;

 a Federate that needs to receive RO data shall Enable

Asynchronous Delivery;

 a Federate that has called TAR shall not produce data

before it has received a TAG;

 a federate shall only produce TSO data with time stamp

greater or equal to the TAG time plus look-ahead (that

specifies a lowest limit of how far in the future a

federate can send messages);

 a federate shall call TAR when it has produced all TSO

data in the frame to which is has been granted.

Some additional rules hold for message time stamping; in

particular:

 updates and interactions shall be time stamped with the

HLA Logical Time for which the data is valid and sent

by using TSO delivery. The exception is represented by

management interactions/attributes and initialization

data, which shall be sent by using RO delivery.

 Time stamping of updates and interactions shall be

done with HLA Logical Time (HLT) stamps that

correspond to the correct Federation Scenario Time

(FST). Certain data may include the federate

Simulation Scenario Time (SST) explicitly (see Section

IV), e.g. Reference Frame state and Physical Entity

state (see Sections III and VI respectively).

It is worth noting that the above specified rules represent

just a first set of indications for the implementation of a

Federation compliant with the Space Reference FOM and that

should act in a nominal way; however, a wider and refined set

of rules is under definition.

VI. REPRESENTING SPACE PHYSICAL ENTITIES

A Physical Entity is a man-made vehicle or major sub-
element of a man-made vehicle. Space vehicles have two
reference frames intrinsically attached to them: a 'body frame'
and a 'structural frame'. Neither of these is part of the
ReferenceFrame object hierarchy. The body frame origin is the
vehicle center of mass. The structural frame is located at some
well-defined point on the vehicle, but this point is not specified
in the FOM. The offset of the body frame origin from the
structural frame origin is captured as the vehicle's center of

mass location attribute. The relative orientation of the structural
frame with respect to the body frame is assumed fixed (not
time varying), but it is not specified in the FOM. All dynamics
of the vehicle are calculated by propagating the body frame
with respect to the vehicle's 'parent reference frame' which is an
object instance in the ReferenceFrame hierarchy and is named
by the vehicle's parent_reference_frame attribute.

The PhysicalEntity object class is designed to provide a
basis for the individual entities that are the principal
participants in Space FOM federations. The current definition
of the PhysicalEntity object class is based on the prototype that
has been used in the SISO SEE-Smackdown project [13] and
that is going to be improved and extended during the
standardization activity. The core attributes shared by all
entities include the entity’s position and attitude with respect to
a defined parent reference frame and a time tag in a defined
physical time scale (see Section IV.A). This is sufficient to
position the entity in time and space. However, mass, mass
rate, center of mass, inertia, velocity, acceleration, angular
velocity and angular acceleration are included to support
latency compensation of the state data (a.k.a dead reckoning) –
that is, to approximate its position and orientation during the
period of time between state updates.

By combining position/maneuver data with classification
information, the PhysicalEntity object class provides the set of
attributes needed to visualize an entity in the virtual world. An
overview of the PhysicalEntity attributes is provided in Fig. 5.

In the Space FOM, the SpaceVehicle object class extends
the PhysicalEntity object class to provide additional attributes
associated with a maneuvering spacecraft. Specifically, it
provides additional force and torque attributes used to provide
additional information associated with vehicle effectors and
environmental effects. These can be used for both visualization
and to improve state propagation between updates. Other
extensions of the PhysicalEntity object class, as well as of the
SpaceVehicle object class, can be defined on the basis of the
specific simulation needs.

Fig. 5. Structure of a Physical Entity.

VII. CONCLUSION

The SISO Space Reference FOM standardization initiative
presented in the paper aims at supporting the development of

interoperable simulations of complex space systems and
missions, and enhance a priori interoperability among Space
FOM users. The principal intended areas of use are training,
analysis, mission support and engineering. However, other
areas of use, like test and concept exploration, are also
supported.

The benefits of the proposed Reference Space FOM
include:

• Interoperability: The ability for several simulations,
each focusing on particular tasks, to interoperate and
jointly create a collaborative simulation with wider and
richer contexts.

• Composability: The ability to build collaborative
simulations from components that can be combined in
different ways, with new or existing simulations, to
reach a particular goal.

• Reusability: The ability to use existing simulations in
new contexts. It will be possible to build generic and
reusable simulations and tools for the Space domain
based on the Space FOM.

The SISO Space Reference FOM initiative builds upon
many years of simulation experience by professionals in
government organizations, industry and academia. Early
prototypes of the Space FOM have been tested in the
SISO/SCS programs called “Smackdown” and “Simulation
Exploration Experience”. The SISO working group is going to
promote and fully experiment the first release of the standard in
ongoing projects involving worldwide organizations active in
the Space domain (e.g. NASA, ESA, Roscosmos, and JAXA).

Finally, a software library and an HLA Development Kit
that aim at easing the development of Federates and
Federations compliant with the SISO Space Reference FOM
are under implementation. By using these tools the developers
could focus on the specific aspects and behaviors of their
federates by delegating to the services provided by the
underlying software layers the management of the common
aspects and functionalities related to the standard.

ACKNOWLEDGMENT

The authors would like to thank all the members of the
SISO Space Reference FOM (SRFOM) Product Development
Group (PDG) and, in particular, Michael Madden (NASA

Langley), Alexander Vankov and Anton Skuratovskiy
(RusBITech).

REFERENCES

[1] L. Arguello, L. Dwedari, G. D. Lauderdale, A. Vankov, and P. Chliaev,
ESA-NASA Distributed Simulation Experiment: First Results and
Lessons Learned. In Proc. of the European Simulation Interoperability
Workshop (EURO-SWIG), 2001.

[2] A. Falcone, A. Garro, On the integration of HLA and FMI for supporting
interoperability and reusability in distributed simulation. In Proc. of the
Symposium on Theory of Modeling and Simulation - DEVS Integrative
M and S Symposium, DEVS 2015, Part of the 2015 Spring Simulation
Multi-Conference (SpringSim 2015), pp 9-16, SCS Press, 2015.

[3] A. Falcone, A. Garro, F. Longo, and F. Spadafora, Simulation
Exploration Experience: A Communication System and a 3D Real Time
Visualization for a Moon base simulated scenario. In Proc. of the 18th
IEEE/ACM International Symposium on Distributed Simulation and
Real Time Applications (ACM/IEEE DS-RT), pp. 113-120, IEEE
Computer Society, 2014.

[4] R. M. Fujimoto, Parallel and distributed simulation systems, John Wiley
& Sons, 2010.

[5] IEEE Recommended Practice for Distributed Simulation Engineering
and Execution Process (DSEEP). IEEE Standard 1730-2010 (2011).

[6] IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA): 1516-2010 (Framework and Rules); 1516.1-2010
(Federate Interface Specification); 1516.2-2010 (Object Model Template
(OMT) Specification).

[7] J. B. Kuipers, Quaternions and rotation Sequences: a Primer with
Applications to Orbits, Aerospace, and Virtual Reality. Princeton
University Press, Princeton, New Jersey, 1999.

[8] B. Möller, The HLA tutorial v1.0, Pitch Technologies, Sweden.

[9] B. Möller, A. Dubois, P. Le Leydour, R. Verhage, RPR FOM 2.0: A
federation object model for defense simulations. In Proc. of the Fall
Simulation Interoperability Workshop (Fall SIW), pp. 233-247, 2014.

[10] R. G. Phillips, E. Z. Crues, Time management issues and approaches for
real time HLA based simulations. In Proc. of the Fall Simulation
Interoperability Workshop (Fall SIW), pp. 332-343, 2005.

[11] L. Rabelo, S. Sala-Diakanda, J. Pastrana, et al., Simulation Modeling of
Space Missions Using the High Level Architecture. Modelling and
Simulation in Engineering, vol. 2013, Article ID 967483, 12 pages,
2013. doi:10.1155/2013/967483.

[12] P. K. Seidelmann, T. Fukushima , Why new time scales? Astronomy &
Astrophysics vol.265, pp. 833-838, 1992.

[13] Simulation Exploration Experience (SEE) project, [online], available
at http://www.exploresim.com/

[14] SISO Space Reference FOM (SRFOM) Product Development Group
(PDG) wesite, [online], available at
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/SRF
OMPDGSpaceReferenceFederationObjectModel.aspx.

