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Abstract—This paper introduces a novel approach to predict-
ing UK-wide daily traffic counts on all roads in England and
Wales, irrespective of sensor data availability. A key finding of
this research is that many roads in a network may have no
local connection, but may still share some common law, and this
fact can be exploited to improve simulation. In this paper we
show that: (1) Traffic counts are a function of dependant spatial,
temporal and neighbourhood variables; (2) Large open-source
data, such as school location and public transport hubs can,
with appropriate GIS and machine learning, assist the prediction
of traffic counts; (3) Real-time simulation can be scaled-up to
large networks with the aid of machine learning and, (4) Such
techniques can be employed in real-world tools. Validation of the
proposed approach demonstrates an 88.2% prediction accuracy
on traffic counts across the UK.

I. INTRODUCTION

A major concern of traffic flow prediction is to provide up-
to-date, fast and accurate predictions for customer-focussed
Intelligent Transport Systems (ITS). Traffic flow prediction
has a wide range of applications, from assessing potential
designs for new road layouts, reducing or removing accident
hotspots, to short-term prediction of traffic congestion;
see [1] [2]. Such systems also provide travellers with the
potential to make informed decisions in real time, to avoid
unnecessary stress, save time and, ever importantly, to reduce
carbon emissions. In this research we extend historic traffic
flow information to all roads in the UK with the use of
spatio-temporal machine learning. This paper considers three
key methods; spatio-temporal linear regression to act as a
baseline model, a KNN algorithm as inspired by previous
traffic flow models [3] and, a REPTree decision tree which,
to the best of our knowledge, has never been utilised in traffic
flow prediction.

Temporal approaches have been consistently applied in
current state-of-the-art predictive models applying ARIMA,
Markov Chains, Bayesian Belief Networks (BBN) and
Artificial Neural Networks (ANN), primarily for short term
prediction for intelligent traffic systems such as the UK’s
CGI-Systems [2] [4], producing a mean absolute percentage
error as low as 8.6% [3]. However, these previously
utilised approaches consistently lack two characteristics,
(1) information regarding a road’s surrounding environment
and (2) information about roads that have no sensors.

These additional characteristics, we believe, have potential
to transform distributed traffic simulations. For example,
a complete urban network can prove costly to accurately
simulate at low-level [5]. However, if one were to make
assumptions regarding traffic similarities based on a
road’s surroundings, then the number of simulations can
be significantly reduced to a subset of roads unique by feature.

In the remainder of this paper we: (I) Review the most
successful spatio-temporal road usage predictors published to
date and assess how these predictions complement common
simulation solutions; (II) Describe the process of data
collection and feature selection; (III) Present a description
of the data and machine learning approaches undertaken;
(IV) Interrogate the results of supporting experiments before
presenting concluding remarks.

II. RELATED WORK

A. Machine Learning for Traffic Modelling

Research similar to ours was put forward by [3], who
introduced an AKNN-AVL method which combines Advance
K-Nearest Neighbour and a balanced binary tree data
structure, resulting in a mean absolute percentage error
(MAPE) of just 8.45%. This approach was put forward to
overcome KNN’s computational complexity and memory
limitations. Our approach is not affected by these same
weaknesses and in addition considers spatial variables with
the use of neighbourhood features.

Research most comparable to our own involved spatio-
temporal data mining (SDM) and was conducted by [2]. Here
spatio-temporal features were used to predict the average
daily traffic data in Hong Kong; features included shopping
centre locations, home communities and car parks. Their
Bayesian Belief Network (BBN) yielded an r2 of 57.76% in
some, but not all, cases of short term prediction. Our research
takes the same spatial approach, but includes more variables,
stricter feature selection, use of a REPTree and no forecasting.

Spatial decision trees have repeatedly performed well in
traffic modelling, most notably with neighbourhood graphs
based on an ID3 decision tree, which acts in a similar way
to a REPTree, with the one distinct difference that the ID3



Fig. 1. Process flow for our proposed spatial analytics, which can be used as a simulation prior

algorithm does not prune [6]. Moreover, a demographic
analysis undertaken by [7] included data such as income,
neighbourhood population and proximity to the closest
park; this work effectively considered spatial functions with
non-spatial data, and generated a set of non-spatial concept
hierarchies for implementation into a binary decision tree. In
our research we propose that local trends (termed features)
can be employed to determine traffic flow at a national level.

B. Techniques based on Distributed Simulation

Various techniques have been employed for the distributed
simulation of real-time traffic data, including the use of cellular
automata [8]. Such techniques rely on driver vehicle units in
a discrete space, and aim to derive localised rules. Although
fast, this approach relies on assumptions which can, in turn,
produce poor accuracy. Alternatively, microscopic simulation
research such as that shown by [5] and [9] utilise position,
speed and acceleration of vehicles, computed periodically. A
time-stepped, time-flow mechanism is used to provide highly
granular simulation, with the inevitable bi-product of increased
computation time. Our research aims to complement such
approaches with a prior step, which may be used to increase
accuracy in cellular automata-based approaches and reduce the
computational complexity of microscopic simulations.

III. METHOD

A. Data Description

The open-source data discussed come in two formats; ‘text’
and ‘shape’. Shape files are displayed in three internal file
formats, .shp, .shx and .dbf, which represent the shape format,
the shape index format and the attribute table respectively.
Shape files can come in three different styles: points, polylines
and polygons. Figure 2 gives an example in a Geographical
Information System (GIS), where the ‘postcode centroids’
are points, the ‘parcels’ are polygons and the ‘roads’ are
polylines. These shape files are input at Stage 1 of Figure 1.

Fig. 2. An example Geographical Information System (GIS) input, showing
postcode centroids, land parcels and polylines

Here the input text files (Stage 3 of Figure 1) are a set
of statistical data-points related to spatial areas such as a
postcode, census output area (OA) or county.

The traffic counts released by the Highways Agency
England and the Department for Transport (DfT) are sourced
from 8,000 road-side sensors [10]. This includes 116,615
instances of daily average traffic flow counts for a 16-year
period, together with “Road Category” information (‘M’,
‘A’, ‘B’, ‘C’, ‘U’, where M is a motorway, A, B and C are
dual or single lane roads and U is an unclassified road).
Additionally, the Office of National Statistics (ONS) release
a number of spatial statistics such as postcode population.
Finally, the Valuation Office Agency (VOA) provided a
Summary Valuation (SV) dataset of all UK commercial
transactions registered. This dataset includes the land use (in
269 categories, including restaurant, shop, sports centre etc.),
address and rateable value.

Feature selection was performed using best-first search,
correlation and 10-fold cross validation. This ensured that,
for example, a postcode with a large number of shops - and
most likely a proportionally higher number of restaurants -



did not bias the final traffic flow decision tree by employing
both highly correlated features. An additional benefit of this
approach was that pre-selecting a subset of 21 non-redundant
features improved the performance of the model calculation.

B. Training the Traffic Flow Predictor

Our approach employs spatio-temporal linear regression,
a K-Nearest Neighbour algorithm (KNN) and a Reduced
Error Pruning Tree (REPTree). Regressions are commonly
used in industry, for example in residential valuation and
stock prediction [11]. Spatio-temporal linear regression forms
our baseline model; we are aware however that concerns
regarding linear regressions include their uncertainty towards
the cause of an ascertained relationship and their inability
to capture neighbourhood interrelations and micro-variations
[12] [13].

KNN forms a more robust alternative [14]. Given a set
of N traffic counts Y = [y1, ..., yn] ε R

N , all with a set of D
spatial and thematic features X = [x1, ..., xn] ε R

DXN and
an objective to predict a road’s traffic count y′i with no prior
traffic flow information, but similar spatial features, the aim is
to find the k-nearest neighbours in terms of common features
and allocate a traffic flow accordingly. The most significant
identified weakness of KNN is it having no memory.

A REPTree-based solution predicts based on a splitting
criteria of information gain and prunes using reduced error
[15]. This model is particularly good for reducing the error
arising from variance. The root node will be the one with the
highest information gain for the full training set. Then a set
of child nodes will be produced with the highest information
gain based on the root node’s value; this continues until the
minimum information gain threshold is met (0.001 in our
case). We set the maximum depth to -1, the minimum number
of instances to warrant a branch at 2.0, the number of folds
to 10 in our iterative validation. This approach has been
criticised based on its potential naivety to smaller decision
trees and datasets [16]. This is true to an extent, due to the
process of partitioning into three sets; training, validation and
testing, which discards valuable information. However [17]
shows that the accuracy of the REP method increases with
the size of the tree, showing an error of ≤ 10% on trees of
≥ 100 nodes. This method has not previously been applied
to spatio-temporal traffic predictions, despite the good fit to
this problem domain. We also believe that this method would
serve as an excellent prior for large, distributed traffic flow
simulation.

C. Validation Metrics

For comparison between methods, two relative and two
absolute performance metrics were applied: r2, Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error and
Training Time. The r2 calculation measures the predictor’s
‘goodness of fit’ (the model’s ability to fit the test data):
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The Relative Mean Squared Error, intuitively takes the square
root of the sum of the mean squared errors:

RMSE =
√
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MAPE is the mean absolute error, expressed as a percentage:
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Finally, the training time is the time it took for 10-fold cross
validation on 116,615 instances on a Windows machine with
32GB of RAM and a 3.5GHz quad-core processor.

IV. RESULTS

On 10-fold cross validation, the linear regression produced
an r2 of 0.405, an RMSE of 13279.24 and a MAPE
of 90.39%. ‘Class legend’, ‘road nature’, ‘population’ and
‘households’ were predicted to have the most significant
dependence on traffic flow. The KNN algorithm produced an
r2 of 0.74, an RMSE of 4044.92 and a MAPE of 9.31%.
The resulting REPtree had 115,599 nodes. The features with
the highest information gain were: ‘class description’, ‘class
legend’, ‘primary class’ and ‘Rcat’ (negative correlation). The
REPTree produced an r2 of 0.879, an RMSE of 5385.9 and
a MAPE of 19.59%. It can be seen in Table 1 and Figure 3
that the REPTree produced the most effective goodness-to-fit,
yielding an impressive 88.2%.

TABLE I
PERFORMANCE COMPARISON OF LR, KNN AND REPTREE-BASED

SOLUTIONS

Result Regression KNN REPTree
r2 0.41 0.74 0.88

RMSE 13279.24 4044.92 5385.90

MAPE 90.39 9.13 19.59

Training 1.21 0.08 5.33

Fig. 3. Comparison of R2 and training time between all three models



V. IMPLEMENTATION

The results of this research are embedded in NimbusMaps
(patent pending), a property intelligence tool created by As-
sured Property Group. The interface, powered by GoogleMaps,
provides polygons representing all available Title numbers in
England and Wales. One can search by postcode or current
location and then select a Title number of interest, for which
ownership details, site size, flood risk, estimated residential
value and traffic flow are returned. All traffic counts were
split into 10 equal frequency bins, where ‘1’ represents the
bottom 10% of traffic on a single road and ‘10’ represents the
converse. This addresses the heavy skew towards low traffic
flows, we also found that this was more intuitive for clients.
To illustrate the tool’s use, consider a fast food company
with drive-through restaurants interested in developing a new
outlet. The company will have specific criteria to ensure that
their business is profitable, which will include traffic flow,
population density etc. Using NimbusMaps the company can
find all properties that sit on a road which meets these criteria.

VI. THE IMPACT ON TRAFFIC SIMULATION

We believe this approach has a significant role to play
in real-time distributed traffic simulation, including: (1)
Its ability to decrease the size of large networks before
simulations take place, to reduce sub-network load balancing
and inter-process communication management; (2) Potential
to extend simulations for roads with no sensors; (3) The use
of large, open-source data sets and spatial machine learning
to augment existing state-of-the-art techniques.

In [18], two methods for the division of road traffic
networks for heterogeneous clusters are presented, which is
typical amongst high-powered, distributed, traffic simulations.
Additionally, [19] introduced an agent-based architecture
proposed for simulating common concerns linked to
urbanisation, including congestion, collisions and high levels
of emissions; the research is demonstrated on a small sample
of roads in Singapore. We believe that both experiments
would benefit from our approach as it utilises an initial step
of identifying common features on a single stretch of road in
non-spatially common networks. As a result, larger networks,
cities, or even countries could potentially be simulated.

VII. CONCLUSIONS

In this paper we have: (1) deployed spatial matching
algorithms to combine features; (2) trained a set of traffic
flow data-points on over 8,000 roads across the UK; (3)
extended traditional traffic flow predictions to include spatial,
temporal and neighbourhood features. Validation reports a
88.2% accuracy with the REPTree algorithm. In addition
we (4) discussed the benefit of introducing spatio-temporal
machine learning as a prior to real-time distributed traffic
simulation and (5) implemented this research into a real
estate decision engine.

Planned extensions include the use of the Department

for Transport’s API, whose data is updated every 10 minutes,
to predict traffic counts throughout the day. This additional
data will similarly be integrated into APG’s NimbusMap user
interface, to support consumer centralized estate management.
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